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Abstract

Tearing of brittle thin elastic sheets, possibly adhered to a substrate, involves a rich inter-
play between nonlinear elasticity, geometry, adhesion, and fracture mechanics. In addition
to its intrinsic and practical interest, tearing of thin sheets has helped elucidate fundamental
aspects of fracture mechanics including the mechanism of crack path selection. A wealth of
experimental observations in different experimental setups is available, which has been often
rationalized with insightful yet simplified theoretical models based on energetic considera-
tions. In contrast, no computational method has addressed tearing in brittle thin elastic
sheets. Here, motivated by the variational nature of simplified models that successfully ex-
plain crack paths in tearing sheets, we present a variational phase-field model of fracture
coupled to a nonlinear Koiter thin shell model including stretching and bending. We show
that this general yet straightforward approach is able to reproduce the observed phenomenol-
ogy, including spiral or power-law crack paths in free standing films, or converging/diverging
cracks in thin films adhered to negatively/positively curved surfaces, a scenario not amenable
to simple models. Turning to more quantitative experiments on thin sheets adhered to pla-
nar surfaces, our simulations allow us to examine the boundaries of existing theories and
suggest that homogeneous damage induced by moving folds is responsible for a systematic
discrepancy between theory and experiments. Thus, our computational approach to tearing
provides a new tool to understand these complex processes involving fracture, geometric
nonlinearity and delamination, complementing experiments and simplified theories.

Keywords: Variational model, Tearing, Fracture, Thin sheets, Subdivision surface.

1. Introduction

Thin elastic sheets are very common in nature and technology. In addition to an in-
plane mode of fracture, thin sheets exhibit tearing, a situation in which cracks propagate

∗Corresponding author
Email address: marino.arroyo@upc.edu (Marino Arroyo)

Preprint submitted to Journal of the Mechanics and Physics of Solids July 30, 2018



driven by out-of-plane loading. Tearing a thin sheet is a very common experience in our
daily life when we peel a piece of fruit or open a package. We lack, however, a complete
theoretical understanding of this phenomenon, which challenges classical theories of fracture.
In classical fracture mechanics, various crack path selection criteria have been successful in
predicting crack propagation in bulk brittle materials, including the maximum hoop stress
criterion (Erdogan and Sih, 1963), the principle of local symmetry (Cotterell, 1965; Goldstein
and Salganik, 1974), the minimum strain energy density (Sih, 1974), or maximum energy
release rate (Wu, 1978; Palaniswamy and Knauss, 1978). While these different criteria are
very similar, or even equivalent, for bulk isotropic materials, it is far from obvious how to
generalize some of them to a brittle, possibly anisotropic, thin sheet (Takei et al., 2013;
Roman, 2013; Ibarra et al., 2016). For instance, the principle of local symmetry relies on
stress intensity factors (SIFs). The study of the stress field around a crack tip in linear
elastic thin plates (Williams, 1961; Sih et al., 1962; Zehnder and Viz, 2005) and Kirchhoff-
Love shells (Folias, 1977), has identified, in addition to the usual in-plane SIFs KI and
KII, two additional SIFs k1 and k2, which correspond to a symmetric bending mode and
antisymmetric twisting and shearing mode. How to extend the principle of local symmetry
to this setting is not obvious (Roman, 2013). Furthermore, tearing is typically characterized
by large geometric nonlinearity (Hamm et al., 2008; Bayart et al., 2010, 2011; Kruglova
et al., 2011; Takei et al., 2013; Roman, 2013; Ibarra et al., 2016), and therefore it is not clear
whether the crack tip fields of the linear theory characterized by the SIFs are meaningful (Hui
et al., 1998) or if and how they determine crack propagation (Cohen and Procaccia, 2010).
There have been attempts to develop theories that explain tearing in thin sheets including
geometric nonlinearity (Cohen and Procaccia, 2010), which have focused on characterizing
the stress state in the vicinity of the crack tip and have invoked a generalized principle of
local symmetry. This reference captures some qualitative features of crack propagation such
as convergent cracks in three-flap tearing tests, but fails to describe the power-law geometry
of the crack path (Bayart et al., 2010, 2011).

The interplay between geometry, surface energy, stretching and bending deformation
leads to non-trivial and rich behaviors (Bayart et al., 2010, 2011; Takei et al., 2013; Brau,
2014; Ibarra et al., 2016), particularly when the thin film is adhesively coupled to a flat
(Hamm et al., 2008) or curved (Kruglova et al., 2011) substrate. The complexity of these
problems restricts analytical approximate solutions to very simplified settings (e.g. planar
sheets) and specific parameter regimes (e.g. inextensible limit) (Hamm et al., 2008; Roman,
2013; Brau, 2014). Simple energetic models in these references have been remarkably suc-
cessful in explaining almost quantitatively nontrivial observations such as the dependence of
crack path on interfacial adhesion (Hamm et al., 2008; Roman, 2013), peeling angle (Bayart
et al., 2011; Roman, 2013; Brau, 2014), or anisotropy in the fracture surface energy (Takei
et al., 2013; Ibarra et al., 2016). However, a general modeling approach to tearing, capable
of examining in detail the mechanics of tearing in general geometries and arbitrary material
parameter regimes has been lacking.

The success of restricted variational models suggests that the general variational ap-
proach to brittle fracture may provide a unifying and general framework extending from
bulk brittle fracture to materials with strongly anisotropic surface energy (Li et al., 2015) or
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to tearing of brittle thin elastic sheets. The variational approach to brittle fracture proposed
by Francfort and Marigo (1998), which formulates the crack initiation and quasi-static evolu-
tion in terms of the minimization of a Griffith-like energy functional consisting of the elastic
energy and surface energy of a cracked body. This theory was subsequently regularized into
a phase-field or gradient damage model suitable for numerical calculations (Bourdin et al.,
2000; Bourdin, 2007), which converges to the sharp variational theory of brittle fracture
(Bourdin et al., 2008). In these models, the complexity of tracking and evolving cracks is
addressed by introducing an additional field describing cracks in a smeared way, which needs
to be solved for using a partial differential equation coupled to the equations of elasticity.
Subsequently, Pham et al. (2011); Pham and Marigo (2013); Marigo et al. (2016) inter-
preted it as a non-local gradient damage model and proposed a general class of variational
gradient damage models that Gamma-converge to Griffith brittle fracture theory (Braides,
1998) and have some advantages from numerical and theoretical standpoints (Pham et al.,
2011). These works have prompted further developments extending the original approach to
account for fracture in piezoelectric and ferroelectric materials (Abdollahi and Arias, 2012),
fracture in rubbery polymers (Miehe and Schänzel, 2014), complex crack patterns induced
by thermal shocks (Maurini et al., 2013; Bourdin et al., 2014; Sicsic et al., 2014), thin film
fracture and delamination (Mesgarnejad et al., 2013; Baldelli et al., 2013, 2014), hydraulic
fracture (Wilson and Landis, 2016), and fracture in linear (Amiri et al., 2014; Kiendl et al.,
2016) and nonlinear thin shells (Reinoso et al., 2017; Millán et al., 2018).

To systematically explore tearing of thin films, we develop here a model coupling a
geometrically exact Koiter thin shell model capturing stretching and bending elasticity,
fracture, and adhesion to a substrate, see Section 2. Brittle fracture is modeled using the
variational approach to fracture (Bourdin et al., 2008). The delamination of thin sheets
adhered to substrates is modeled with a cohesive model (Xu and Needleman, 1994). We
numerically implement the model with subdivision surface finite elements (Cirak et al.,
2000), see Section 3. In Section 4 we demonstrate that this modeling approach is capable of
reproducing tearing behaviors involving complex crack paths observed experimentally in a
variety of assays. To our knowledge, ours are the first computational results capturing the
phenomenology of tearing. We quantitatively examine tearing of thin sheets adhered to flat
substrates in the light of previous theoretical predictions and experiments, delineating the
boundaries of our understanding of tearing.

2. Theoretical model

2.1. Nonlinearly elastic model of thin sheets

We model thin elastic sheets with a geometrically exact nonlinear thin shell formulation
sometimes referred to as the nonlinear Koiter shell model (Ciarlet, 2005). We provide below
a succinct description of this theory. More details about the justification of this theory from
three-dimensional elasticity can be found in Ciarlet (2005), Steigmann (2013), and references
therein.

In this theory, the middle surface of the undeformed shell Ω0 is parametrized with a
mapping ϕϕϕ0 from a parametric domain A ⊂ R2 into R3. We describe A with Cartesian

3



coordinates (ξ1, ξ2). Likewise, another mapping ϕϕϕ describes the deformed middle surface
Ω, see Figure 1. These mappings induce curvilinear coordinates on the undeformed and
deformed surfaces. We use Greek indices to denote these curvilinear coordinates, a comma
before an index denotes partial differentiation, subscripts refer to covariant components, and
superscripts denote contravariant components.
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Figure 1: Reference, deformed and parametric configurations of the middle surface of thin shell.

The area element of the deformed middle surface can be computed as dΩ = j̄ dξ1dξ2,
where j̄ = |ϕϕϕ,1 ×ϕϕϕ,2|, and the unit normal is t = (ϕϕϕ,1 × ϕϕϕ,2)/j̄. Analogous objects can
be defined on the undeformed middle surface. The membrane strain tensor is defined as
εαβ = 1

2
(ϕϕϕ,α ·ϕϕϕ,β −ϕϕϕ0,α ·ϕϕϕ0,β), which measures changes in the in-plane metric tensor or first

fundamental form (Do Carmo, 1976). The bending strain tensor, measuring changes in the
second fundamental form, is given by ραβ = ϕϕϕ,α · t,β −ϕϕϕ0,α · t0,β.

In Koiter’s thin shell model, the elastic strain energy is expressed exclusively in terms of
the kinematics of the middle surface, that is the mapping ϕϕϕ, and is written as

Πela[ϕϕϕ] =

∫
Ω0

W (ε,ρ) dΩ0, (1)

where W is the strain energy density per unit undeformed surface, which for an isotropic
material and a shell of thickness t can be expressed as

W (ε,ρ) =
1

2
Cαβγδ

(
t εαβεγδ +

t3

12
ραβργδ

)
, (2)

with

Cαβγδ =
E

(1− ν2)

[
νaαβ0 aγδ0 +

1

2
(1− ν)

(
aαγ0 aβδ0 + aαδ0 a

βγ
0

)]
, (3)

where (a0)αβ = ϕϕϕ0,α ·ϕϕϕ0,β are the convected components of the surface metric tensor, (a0)αβ

are defined by the relation aαγ0 (a0)γβ = δαβ , E is the Young’s modulus and ν is Poisson’s
ratio.
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The membrane and bending stress resultants in this theory are given by

nαβ=
∂W

∂εαβ
= t Cαβγδεγδ, mαβ=

∂W

∂ραβ
=
t3

12
Cαβγδργδ. (4)

In the numerical implementation, it is convenient to resort to Voigt’s notation, denoted by
{·}, which exploits the symmetry of the tensors involved in the theory. With this notation,
we have

{n} =

 n11

n22

n12

 = t{C}{ε}, {m} =

 m11

m22

m12

 =
t3

12
{C}{ρ}, (5)

{ε} =

 ε11

ε22

2ε12

 , {ρ} =

 ρ11

ρ22

2ρ12

 , (6)

and

{C} =
E

1− ν2

 (a11
0 )2 νa11

0 a
22
0 + (1− ν)(a12

0 )2 a11
0 a

12
0

(a22
0 )2 a22

0 a
12
0

symm 1
2

[(1− ν)a11
0 a

22
0 + (1 + ν)(a12

0 )2]

 . (7)

Using this notation and referring the integral to the referential domain, the elastic energy
can be written as

Πela[ϕϕϕ] =

∫
A

1

2

(
t{ε}T{C}{ε}+

t3

12
{ρ}T{C}{ρ}

)
j̄0 dξ

1dξ2. (8)

2.2. Phase-field approximation of brittle fracture

In the variational approach to brittle fracture proposed by Francfort and Marigo (1998),
the crack initiation and quasi-static evolution are the natural results of the minimization
of a Griffith-like energy functional defined as the sum of the elastic energy and the surface
energy of the cracked body. The minimization has to be taken among all the kinematically
admissible displacements and admissible crack sets, and subject to Dirichlet boundary con-
ditions and an irreversibility condition to avoid unphysical healing of cracks. This theory
has been subsequently regularized into a phase-field or gradient damage models, suitable for
numerical calculations (Bourdin et al., 2000; Bourdin, 2007; Bourdin et al., 2008), and which
converge to the sharp variational theory of brittle fracture (Bourdin et al., 2008). These
and related models (Pham et al., 2011; Pham and Marigo, 2013) have been studied in detail
in bulk materials and only barely explored in linear thin shells (Amiri et al., 2014; Kiendl
et al., 2016).

In the regularized approximation of brittle fracture, cracks are represented by a phase-
field variable (scalar order parameter) φ, which is 0 inside a cracked zone, 1 away from the
crack, and changes from 0 to 1 smoothly. In the present setting, we choose to describe
φ as a field on the middle surface of the undeformed shell Ω0 only, implicitly assuming
that the phase-field is constant across the thickness of thin sheet. Physically, this means
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that our model rules out partial cracking through the thickness, which is reasonable to
model very thin shells but may not be adequate for thicker shells progressively cracking
under bending. The model cannot resolve effects that may depend on the structure of the
crack front through-the-thickness. Despite these potential limitations, we will explore such
a model, where the phase-field couples to the elastic energy through the modified elastic
energy functional

Πela[ϕϕϕ, φ] =

∫
Ω0

φ2W (ε,ρ) dΩ0. (9)

The other ingredient in a phase-field model of brittle fracture is a functional depending on
φ approximating the crack length. In a finite deformation setting, it is natural to consider
the length of the crack in the undeformed configuration. We consider a recently proposed
higher-order phase-field model (Borden et al., 2014), which here needs to be formulated in
the curved two-dimensional middle surface of the thin shell in its undeformed configuration
(Millán et al., 2018) as

Πfrac[φ] =

∫
Ω0

Gct

[
(φ− 1)2

4κ
+
κ

2
|∇sφ|2 +

κ3

4
(∆sφ)2

]
dΩ0, (10)

where Gc is the critical energy release rate and ∇s and ∆s are the surface gradient and
Laplacian operators in the undeformed middle surface. The metric tensor of this surface
is given by aαβ = ϕ0,α · ϕ0,β and its contravariant components are given by the relation
aαγaγβ = δαβ . Then, the expressions involving surface operators can be computed as

|∇sφ|2 = aαβφ,αφ,β, (11)

and
∆sφ = aαβφ,αβ − aαβφ,γΓγαβ, (12)

where the comma denotes partial differentiation and

Γγαβ =
aγµ

2

(
∂aαµ
∂ξβ

+
∂aβµ
∂ξα

− ∂aαβ
∂ξµ

)
, (13)

are the Christoffel symbols of the second kind (Marsden and Hughes, 1983). The regulariza-
tion parameter κ has units of length and dictates the width of the smeared crack. A finite
value of κ is necessary for the numerical simulations and needs to be resolved by the mesh.

We discuss next our motivation to use this higher-order phase field model of fracture
instead of the standard second order model involving only up to first derivatives of φ in the
fracture energy. Our choice allows us to use the same basis functions to discretize ϕϕϕ and φ.
Indeed, because the Koiter model involves the second fundamental form, a direct Galerkin
method requires smooth basis functions for ϕϕϕ, which in the present work are subdivision
spline-like approximants. However, as shown in Borden et al. (2014) and Amiri et al. (2016),
if smooth basis functions are used to approximate φ in combination with the standard second
order fracture energy, which exhibits solutions with discontinuous derivatives, then very poor
numerical convergence is obtained. In contrast, the higher-order surface energy in Eq. (10)
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leads to smooth solutions for the phase field, which are very accurately approximated with
higher convergence rates using smooth basis functions. Thus, we choose to treat on an
equal footing the elastic and the fracture functionals: each of these functionals requires
that the fields ϕϕϕ and φ have second order square integrable derivatives, a condition which
is numerically dealt with using smooth subdivision basis functions. Recent mathematical
results have substantiated the higher order fracture energy used here, by showing that it is an
elliptic approximation of the Mumford-Shah functional in the sense of Gamma-convergence
(Burger et al., 2015). It is noteworthy that this fourth-order model is a particular instance
of the extended Cahn-Hilliard model for fracture developed in Li et al. (2015).

2.3. Adhesion energy between a thin sheet and a substrate

We model the adhesive interaction between thin shells and rigid substrates by cohesive
zone model based on an exponential potential (Xu and Needleman, 1994). In this model,
the adhesion energy is expressed as

Πadh[ϕϕϕ] =

∫
Ω0

Γ

[
1−

(
1 +

∆n

δn

)
exp

(
−∆n

δn
− ∆2

t

δ2
t

)]
dΩ0, (14)

where the Γ is interfacial adhesion energy per unit area, δn and δt are characteristic length-
scales, and ∆n and ∆t are the normal and tangential components of the displacement jump
across the interface. For a thin sheet adhered to a curved surface, ∆n and ∆t are computed
by projecting the displacement of the middle surface u = ϕϕϕ − ϕϕϕ0 along the normal and
tangential directions, ∆n = u · n and ∆t = |u − (u · n)n|. To avoid interpenetration of
the thin sheet into a rigid substrate, the condition ∆n ≥ 0 should be imposed. Otherwise,
this model just limits the extent of interpenetration with an elastic penalty. In all the
examples presented later, in which sheets are torn away from the support, interpenetration
into the substrate was very small even though the inequality constraint was not enforced.
We also note that this model describes decohesion thanks to a non-convex energy landscape,
which defines bound and unbound states under stress. It is thus reversible and does not
preclude the formation of an adherent interface if a free-standing thin sheet is brought in
close proximity of a substrate.

2.4. Phase-field model of fracture in brittle adhesive thin sheets

Collecting all the ingredients in the previous sections, the total energy of a possibly
fractured adhesive thin sheets is

Πtot[ϕϕϕ, φ] = Πfrac[φ] + Πela[ϕϕϕ, φ] + Πadh[ϕϕϕ]. (15)

The minimization of functional Eq.(15) with respect to both ϕϕϕ and φ, subject to Dirichlet
boundary condition and to irreversibility of cracks provides a computable approximation of
the generalized Griffith’s brittle fracture model for geometrically nonlinear thin and adhesive
shells.
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3. Numerical implementation

Because the total energy involves second-order derivative of both the shell deformation
ϕϕϕ and of the phase-field φ, a C1 continuous approximation scheme is necessary to apply a
straightforward Galerkin discretization approach. In our previous work (Li et al., 2015), we
resorted to smooth meshfree basis functions. Here, we use subdivision surface finite elements
(Cirak et al., 2000; Cirak and Ortiz, 2001) with boundary control (Biermann et al., 2000;
Cirak and Long, 2011) to approximate the deformation ϕϕϕ and the phase-field φ. We follow
a total Lagrangian approach, with the same parameter space and basis functions for the
undeformed and deformed configurations. Let ϕϕϕe0 be the undeformed configuration mapping
of the middle surface restricted to element e and defined over the parametric space Ae of
this element. It is numerically represented as

ϕϕϕe0(ξ1, ξ2) =
N e∑
a=1

Ba(ξ
1, ξ2) ϕϕϕ0a, (16)

where Ba(ξ
1, ξ2) are subdivision surfaces basis functions of that patch, N e is the number

of nodes contributing to element e, and ϕϕϕ0a is the position in three-dimensional space of
the a−th control point contributing to the approximation in element e and defining the
undeformed shell middle surface. Similarly, the deformed configuration and the phase-field
are discretized as

ϕϕϕe(ξ1, ξ2) =
N e∑
a=1

Ba(ξ
1, ξ2) ϕϕϕa, (17)

and

φe(ξ1, ξ2) =
N e∑
a=1

Ba(ξ
1, ξ2) φa. (18)

Inserting Eqs. (17,18) into Eq. (15), we obtain a total energy function depending on nodal
variables ϕϕϕa and φa. We minimize this energy with respect to deformation and phase-field
degrees of freedom following the alternate minimization algorithm developed in Bourdin
(2007) and Bourdin et al. (2008). At each load increment, the energy is first minimized with
respect to ϕϕϕa freezing the phase-field and using Newton’s method combined with line-search
(Millán et al., 2013), and then minimized with respect to φa freezing the deformation, which
results in a linear algebraic system. This procedure is iterated until convergence reached.
We use the approach by Miehe et al. (2010) to approximate the irreversibility condition,
which stores the maximum strain energy density W achieved in history at each Gauss point
and replaces W by this history field in the minimization problem to solve for the phase field
φ.

4. Numerical Experiments

In this section, we consider numerical experiments split in two groups, depending on
whether or not the brittle thin sheet is adhered to a substrate. The goal of these numerical

8



experiments is two-fold, on the one side to determine whether the variational phase-field
model of fracture of thin sheets presented above is able to reproduce the phenomenology
observed experimentally, and on the other side to examine the boundaries of approximate
theories for tearing of thin sheets. We note that in our phase-field simulations, there is
no sharp crack but rather a continuous yet localized phase-field and the deformation is
continuous. However, for physical clarity, we post-process our simulations by removing
elements where the phase-field is very low.
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Figure 2: Numerical simulation of crack propagation in a trouser-test (a). We performed simulations with
a reference mesh (κ/h = 2) and a fine mesh (κ/h = 4), obtaining very similar results in terms of bending
energy and fracture energy as a function of the imposed displacement in the trouser-test (b), and justifying
our criterion for mesh resolution (κ/h = 2).

4.1. Tearing of thin sheets without adhesion

We first considered a trouser-test in which a long thin strip with a pre-crack defining
two flaps is torn apart, see Figure 2(a). In this simple test, the crack is expected to ad-
vance stably along a straight path (Bayart et al., 2010), with a length proportional to the
applied displacement. We used this example to examine the effect of mesh resolution. The
discretization should be able to resolve the phase-field profile along a crack, characterized
by the length-scale κ, which can lead to very fine meshes and expensive simulations. The
material parameters are E = 1.8×107, t = 5×10−4, Gc = 5×102, ν = 0.3 and regularization
parameter is κ = 2× 10−3. The trouser-test simulation was performed at fixed κ and with
two meshes: a reference mesh satisfying κ ≈ 2h and a finer mesh satisfying κ ≈ 4h and
leading to much longer simulation times. Figure 2(b) shows that the bending energy, which
remains nearly constant during crack propagation, and the surface energy (a proxy for crack
length) obtained with the two meshes agrees quite well. On the basis of this and other sim-
ulations, we performed all calculations in the remainder of the paper with meshes satisfying
κ ≈ 2h, at least in the regions where cracks are expected. This mesh resolution represents
a compromise between numerical accuracy and manageable computational cost. Similarly,
the discretization needs to resolve the cohesive lengths, which requires that δn > 2h and
δt > 2h.
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We also used this example to quantitatively examine the sharp interface interpretation
of the fracture functional in Eq. (10), according to which ∂Πfrac/∂s should be equal to
Gct, where ds is an increment in crack length. In this example, geometry imposes that
dz = 2ds, where dz is an increment in imposed displacement. This relation implies that
∂Πfrac/∂s = 2∂Πfrac/∂z, which can be evaluated from the remarkably constant slope of the
curve Figure 2(b). This slope is approximately equal to 0.27/2, providing an estimate for
the fracture surface energy very close to Gct = 0.25 used in the simulations.

(b)

pulling

crack tip

initial cut

r ✓

✓

slope 0.229

ln
(r

)

(a)

Figure 3: Spiral crack produced by pulling a flap of thin sheet.(a) The initial cut is tangent to the circular
hole in the thin sheet and the flap is pulled vertically. Crack path in the undeformed configuration and fit
of the crack path to a logarithmic spiral. (b) Deformed configuration obtained by the numerical simulation
at different stages of fracture process.

We then considered a setup in which a spiral crack develops by pulling a flap perpen-
dicularly to the thin sheet (Romero et al., 2013). We considered an annular thin sheet with
traction-free boundary conditions in the circular hole located at the center and clamped
boundary conditions at the outer boundary of the annulus. A small flap was formed by
an initial cut tangent to the circular hole. The flap was pulled vertically to propagate
the crack, see Figure 3(a). The parameter space of the problem is characterized by four
non-dimensional groups: ν, Rinn/Rout, t/Rinn, and Et/Gc, the latter two bearing more phys-
ical significance. In the calculations shown here, we considered ν = 0.4, Rinn/Rout = 0.1,
t/Rinn = 10−3, and Et/Gc = 102.

The experiments performed by Romero et al. (2013) showed that as the flap was pulled
vertically, it adopted a characteristic pine-tree shape while developing a spiral crack. Re-
markably, our simulations captured this phenomenology, which involves very large shape
changes and a complex crack path, see Figure 3(b). The fracture process is dictated by the
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competition between the elastic energy (bending and stretching) concentrated at the fold
connecting the flap with the planar part of the thin sheet and the fracture energy. Romero
et al. (2013) showed that crack trajectories closely followed a logarithmic spiral. If this
was the case, points (ri, θi) along the crack should lie on a straight line when plotted in a
semi-logarithmic scale. Figure 3(a) shows that this is the case in our simulations, with small
fluctuations comparable to those in the experiments. The slope characterizing the shape of
the logarithmic spiral is 0.23 in our simulations, in good agreement with the experimental
value 0.24± 0.01 (Romero et al., 2013). We note that in these experiments, the parameters
are such that t/Rinn ≈ 10−2 and Et/Gc ≈ 10.
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Figure 4: Tearing experiments in a three-flap configuration (a,b,c) and in a laterally clamped thin sheet
with a central flap (d,e,f). As the convergent cracks develop, the inner flap develops a tongue-like shape
(b,e). Log-log plot of the width w of the center flap as a function of the distance l to the tip defined by the
merging point of the two cracks (c,f).

In the third numerical experiment, we considered a long elastic thin sheet with two
cracks positioned symmetrically and parallel to the center axis of the sheet, thus creating
three flaps at one end of the sheet. Then, the flaps were torn apart as shown in Figure 4(a).
The length and width of the thin sheet are denoted by L and W , and the initial width of
the central flap is w0. In the simulations, we considered ν = 0.3, L/W = 2.6, w0/W = 0.3,
t/w0 = 6× 10−3 and Ew0/Gc = 103. To prepare the initial configuration, we deformed the
three flaps to form a 90◦ angle with the rest of the sheet, and connected these flaps through
cylindrical segments, see Figure 4(a). Then, the system was relaxed while the ends of the
three flaps were fully constrained and the other end of the strip were constrained in the z
direction. To induce crack propagation, the outer flaps were incrementally displaced in the
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−z direction while the inner flap was displaced in the z direction by same amount. During
this loading, all other degrees of freedom were constrained and the ends of the flaps and the
z degrees of freedom were constrained along the bottom end of the strip.

Similarly to experimental observations, in our simulations the cracks converged as they
propagate, eventually meeting and splitting the sheet into two parts. The inner flap detached
from the rest of the sheet adopts a characteristic tongue-like shape as shown in Figure 4(b).
We analyzed the crack trajectory by measuring the width w of the inner flap as a function
of the distance l to the tip of the tongue. We found that w(l) followed a power law with
exponent 0.60 as shown in the Figure 4(c). The exponent 0.60 is in very good agreement
with the exponent 0.64 ± 0.06 measured experimentally (Bayart et al., 2010, 2011) and
with the exponent 2/3 predicted by a theoretical model by Brau (2014), which combines
Griffith’s criterion, the maximum energy release rate, and Euler’s elastica to estimate the
elastic bending energy.

In the fourth numerical experiment, we considered a peel-like experimental configuration,
with the same material and geometric parameters as in the previous experiment. A thin
sheet was laterally clamped. Two parallel edge cracks were initially created parallel to the
center axis of the sheet, creating a flap. Then, the flap was lifted and pulled as shown in
Figure 4(d) to propagate the cracks. Similarly to the previous example, we prepared the
initial configuration by displacing and rotating the flap so that it remains parallel to the
undeformed sheet and by connecting the displaced flap to the rest of the sheet through a
half-cylinder fold. Then this configuration was relaxed keeping the lateral boundaries and
the end of the flap constrained. As the flap was pulled, the distance between the end of the
flap and the planar sheet was adjusted during the simulation to maintain the flap parallel
to the planar sheet. This adjustment is necessary because during tearing the curvature of
the fold increases as the length of the curved fold decreases.

Similarly to the previous example, the width of the flap decreased as the cracks propagate,
eventually vanishing as the flap detached from the thin sheet, see Figure 4(e). The final shape
of the flap is qualitatively similar to the previous simulation and can also be described by a
power law of exponent 0.71 as shown in Figure 4(f). This exponent is close but noticeably
differs from that obtained experimentally, 0.77 ± 0.05 by Bayart et al. (2011) and Roman
(2013) or theoretically, 8/11 by Brau (2014) in the unstretchable limit Ew0/Gc � 1.

4.2. Tearing thin sheets adhered to curved substrates

We then considered tearing of elastic thin sheets adhered to substrates. On a flat sub-
strate, experiments show that the detached flaps have a triangular shape (i.e. exponent 1)
and hence crack trajectories are straight in this case. Before turning to flat substrates in Sec-
tion 4.3, for which more quantitative results are available, we examined curved substrates.
Experiments have shown that the geometry of the substrate can control the shape of the
tears (Kruglova et al., 2011). The paths of the two cracks in a pulled flap are not straight
and can either converge or diverge, depending on the curvature of a cylindrical substrate.
We reproduced next such experiments. The initial configurations used in the simulations are
shown in Figure 5(a-b). Because of the curvature of the substrate, the initial and subsequent
configurations are incompatible with an isometry, and therefore involve stretching. In our
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Figure 5: Tearing thin sheets adhered on cylinder substrate experiments. Tearing adhesive thin sheet on
exterior side of a cylinder (negative curvature, a). Tearing adhesive thin sheet on the interior side of a
cylinder (positive curvature, b). Tearing an adhesive thin sheet on the exterior side of a cylinder, converging
crack path on the undeformed cylindrical configuration (c) and on the “unrolled” undeformed configurations
(d). Tearing an adhesive thin sheet on the interior side of a cylinder, diverging crack path on the undeformed
cylindrical configuration (e) and on the “unrolled” undeformed configurations (f). Deformed configuration
during tearing (g) and the elastic energy density in the undeformed configuration (h).

simulations we observed the classical motifs of paper crumpling after relaxation, such as con-
ical point defects and stretching ridges (Witten, 2007). The flap was then pulled at constant
peeling angle. The material and geometry parameters are E = 4 · 105, ν = 0.3, Gc = 20,
Γ = 1.0, t = 10−3, a cylinder radius of 0.29 and a width of the flap of w = 0.2/w = 0.37 for
the negatively/positively curved substrate.

We first considered the negatively curved substrate and a peeling angle of 100◦. We
found that the initially parallel cracks converged and eventually the center flap detached
from the substrate, as shown in Figure 5(c-d). The positive curvature case with peeling
angle of 70◦ led to divergent cracks as shown in Figure 5(e-f). The convergent/divergent
crack paths in the negatively/positively curved substrates observed in the simulations are in
good agreement with the experimental observations by Kruglova et al. (2011). Figure 5(h)
shows the elastic energy density in the shell, highlighting the d-cones and stretching ridges
required to match the geometry of the adhered part of the sheet and the free-standing flap.

Our simulations of thin sheets adhered to cylindrical substrates also captured the exper-
imentally observed deviations from “straight” crack paths, understood as geodesic curves.
Indeed, upon isometric flattening of the cylindrical surfaces, crack paths did not exhibit
straight trajectories, Figure 5 (d) and (f). To further examine the effect of substrate curva-
ture on crack path, we performed simulations of spherical thin sheets adhered to spherical
substrates, see Figure 6, which to our knowledge have not been examined experimentally.
We found that crack paths consistently followed “straight” paths, that is great circles of the
sphere, generalizing the straight converging paths observed in the case of the flat substrate
(Section 4.3). Since crack paths followed geodesics on the sphere and on the plane, but not
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Figure 6: Tearing an adhesive thin sheet from the exterior side of a spherical substrate. Deformed configu-
ration during tearing (a) and cracks represented in the undeformed configuration, showing that they closely
follow geodesic curves shown in green (b).

on the cylinder, we speculated that deviations from a straight path could be related to the
curvature anisotropy.
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Figure 7: (a) Schematic diagram of the tearing experiments of adhesive thin sheets on a flat substrate
and of the geometrical parameters necessary to describe the shape of the tear. (b) Snapshots of a tearing
simulation: deformed configuration colored by the phase-field.

4.3. Tearing thin sheets adhered to flat substrates

We considered next an elastic thin sheet adhered to a flat substrate, in which a rect-
angular flap was created by cutting two paralleled cracks on one end of its edges. Before
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launching the simulation, we first prescribed a cylindrical segment connecting the substrate
to a flap forming an angle of ϕ with the planar substrate (see the Figure 7(a)). The radius
of curvature of the cylindrical segment was estimated as in Kruglova et al. (2011). Then,
holding fixed the end of the flap, we relaxed the system. The initial length of the flap was
long compared to the radius of curvature, minimizing any boundary effect. The flap was
then pulled with fixed peeling angle ϕ, causing the initially parallel cracks to propagate
inwards and the flap to progressively detach from the substrate. As in experiments, the
two crack tips merged into a point, completely detaching the flap and leaving a perfectly
triangular tear characterized by the angle θ, Figure 7(b).
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Figure 1 Three rectangular flaps of adhesive film were cut and pulled at the

same speed, and the resulting tears were digitally scanned. a, Width versus
length in millimetres on a log–log plot for the flaps with initial widths of 10 (open
circles), 50 (times symbols) and 100 (plus symbols) mm. Solid red lines have been
included for comparison. Inset: Schematic representation of the experimental
set-up. The film is attached to a solid plane using an adhesive. Then a flap is cut and
joined to a metal rod that acts as a winch drum. The rotation of the rod pulls the flap
and starts the tearing. b, The tear shapes obtained in the experiment are shown
overlapped. Here, L is defined as the distance from a given point along the axis of
symmetry (horizontal dashed line) to the tip and is measured on a high-resolution
scanned image of the tear. The width W is the distance between the two sides of the
tear along the perpendicular line to the axis of symmetry.

where the first, second and third terms are the elastic, fracture and
adhesion energies, respectively. Here, t is the film thickness, s is
the length of the crack, � is the work of fracture of the film, ⌧ is
the adhesive energy required to peel a unit area of interface and
A and 2t s are the peeling and tearing surface areas, respectively.
The factor 2 in the fracture energy term accounts for the fact that
two fracture paths are propagating along the film. In the following,
because the work of fracture always comes in the combination � t
and this parameter has a dimension of a force, we refer to � t as the
‘fracture force’.

Assuming that the end of the flap is always at an angle of 180�

from the reference plane defined by the solid wall, we conclude
that the elastic energy is only a function of the tip displacement,
x, and the length of the strip along its axis of symmetry, ` (Fig. 2b).
The excess of length 2` � x is folded near the detachment line
(Fig. 2a,b), so that we expect the elastic energy to be a function
of the tip displacement in this combination. Thus, the energy as
a function of the geometrical parameters must be of the form
UE = UE(2`�x,W ).
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Figure 2 Schematic diagram showing the side and top views of the experiment

and the geometrical parameters involved to describe the shape of the tear.

a, Side view of the flap. The distance h gives the ‘height’ of the fold. b, Top view of
the experiment. c, The close up shows a view of the tear at the position of the crack
tip. The fracture propagation can be interpreted as the balance of four vectorial
forces: two of them due to adhesion and fracture force, and the other two due to the
pulling force and the inward force @WUE.

The crack tip advances to a position that minimizes the
total energy5. In a displacement-controlled experiment, the first
variation of U with respect to the geometrical parameters is
�U = (@W UE)x,`�W + (@`UE)x,W �`+2� t�s+ ⌧W �`. In addition,
the force is given by the work theorem as F = (@x UE)W ,`

for a quasistatic fracture propagation. This equation combined
with the specific dependence of the elastic energy on the
geometrical parameters yields for the energy minimum, �U/�s =0,
the condition

0 = �2(@W UE)x,` sin✓�2F cos✓+2� t + ⌧W cos✓, (2)

where sin ✓ = ��W/2�s and cos ✓ = �`/�s. The constitutive
relation for the force F = F(x,`,W ) allows the elimination of the
parameter x in equation (2). Hence, an implicit relation between
the force and the tearing angle of the form F = F(✓, `, W ) is
obtained. To find the fracture path, we require that the tear
follows the direction where a minimal force is necessary for
the advancement of the crack tips, that is (@✓F)`,W = 0. An
implicit derivative of equation (2) gives the equivalent condition
@✓(�U/�s) = 0 that is usually referred to as the maximum-energy-
release-rate criterion5. Thus, a second condition is obtained as

0 = �2(@W UE)x,` cos✓+2F sin✓� ⌧W sin✓. (3)

Equations (2) and (3) have a clear interpretation in terms
of static equilibrium of in-plane forces which is schematically
represented in Fig. 2c. These forces, acting on one half of the strip,
are: the fracture force � t resisting crack propagation, the operator
pulling force F opposed to the adhesion energy dissipation ⌧W/2
and the lateral elastic energy gradient @W UE. In this interpretation,
it is clear that a convergent or divergent tear depends on the sign
of @W UE. The forces projected along the forward and sidewise
directions give the equivalent equations

F = ⌧
W

2
+� t cos✓ (4)

(@W UE)x,` = � t sin✓. (5)
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<latexit sha1_base64="RAhQxyCdeN8Ga9MX1V4zpcy692k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx5bMLbQhrLZTtu1m03Y3Sgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH9wr+NUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0M/Wbj6g0j+WdGScYRHQgeZ8zaqzUeOqWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PQvg4zLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6VfUa55XadZ5GEY7gGE7BgwuowS3UwQcGCM/wCm/Og/PivDsf89aCk88cwh84nz9THIzP</latexit><latexit sha1_base64="RAhQxyCdeN8Ga9MX1V4zpcy692k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx5bMLbQhrLZTtu1m03Y3Sgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH9wr+NUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0M/Wbj6g0j+WdGScYRHQgeZ8zaqzUeOqWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PQvg4zLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6VfUa55XadZ5GEY7gGE7BgwuowS3UwQcGCM/wCm/Og/PivDsf89aCk88cwh84nz9THIzP</latexit><latexit sha1_base64="RAhQxyCdeN8Ga9MX1V4zpcy692k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx5bMLbQhrLZTtu1m03Y3Sgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH9wr+NUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0M/Wbj6g0j+WdGScYRHQgeZ8zaqzUeOqWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PQvg4zLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6VfUa55XadZ5GEY7gGE7BgwuowS3UwQcGCM/wCm/Og/PivDsf89aCk88cwh84nz9THIzP</latexit><latexit sha1_base64="RAhQxyCdeN8Ga9MX1V4zpcy692k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx5bMLbQhrLZTtu1m03Y3Sgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH9wr+NUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0M/Wbj6g0j+WdGScYRHQgeZ8zaqzUeOqWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PQvg4zLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6VfUa55XadZ5GEY7gGE7BgwuowS3UwQcGCM/wCm/Og/PivDsf89aCk88cwh84nz9THIzP</latexit>

w
<latexit sha1_base64="RAhQxyCdeN8Ga9MX1V4zpcy692k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx5bMLbQhrLZTtu1m03Y3Sgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH9wr+NUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0M/Wbj6g0j+WdGScYRHQgeZ8zaqzUeOqWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PQvg4zLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6VfUa55XadZ5GEY7gGE7BgwuowS3UwQcGCM/wCm/Og/PivDsf89aCk88cwh84nz9THIzP</latexit><latexit sha1_base64="RAhQxyCdeN8Ga9MX1V4zpcy692k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx5bMLbQhrLZTtu1m03Y3Sgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH9wr+NUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0M/Wbj6g0j+WdGScYRHQgeZ8zaqzUeOqWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PQvg4zLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6VfUa55XadZ5GEY7gGE7BgwuowS3UwQcGCM/wCm/Og/PivDsf89aCk88cwh84nz9THIzP</latexit><latexit sha1_base64="RAhQxyCdeN8Ga9MX1V4zpcy692k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx5bMLbQhrLZTtu1m03Y3Sgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH9wr+NUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0M/Wbj6g0j+WdGScYRHQgeZ8zaqzUeOqWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PQvg4zLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6VfUa55XadZ5GEY7gGE7BgwuowS3UwQcGCM/wCm/Og/PivDsf89aCk88cwh84nz9THIzP</latexit><latexit sha1_base64="RAhQxyCdeN8Ga9MX1V4zpcy692k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx5bMLbQhrLZTtu1m03Y3Sgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH9wr+NUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0M/Wbj6g0j+WdGScYRHQgeZ8zaqzUeOqWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PQvg4zLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6VfUa55XadZ5GEY7gGE7BgwuowS3UwQcGCM/wCm/Og/PivDsf89aCk88cwh84nz9THIzP</latexit>

w
<latexit sha1_base64="RAhQxyCdeN8Ga9MX1V4zpcy692k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx5bMLbQhrLZTtu1m03Y3Sgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH9wr+NUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0M/Wbj6g0j+WdGScYRHQgeZ8zaqzUeOqWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PQvg4zLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6VfUa55XadZ5GEY7gGE7BgwuowS3UwQcGCM/wCm/Og/PivDsf89aCk88cwh84nz9THIzP</latexit><latexit sha1_base64="RAhQxyCdeN8Ga9MX1V4zpcy692k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx5bMLbQhrLZTtu1m03Y3Sgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH9wr+NUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0M/Wbj6g0j+WdGScYRHQgeZ8zaqzUeOqWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PQvg4zLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6VfUa55XadZ5GEY7gGE7BgwuowS3UwQcGCM/wCm/Og/PivDsf89aCk88cwh84nz9THIzP</latexit><latexit sha1_base64="RAhQxyCdeN8Ga9MX1V4zpcy692k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx5bMLbQhrLZTtu1m03Y3Sgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH9wr+NUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0M/Wbj6g0j+WdGScYRHQgeZ8zaqzUeOqWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PQvg4zLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6VfUa55XadZ5GEY7gGE7BgwuowS3UwQcGCM/wCm/Og/PivDsf89aCk88cwh84nz9THIzP</latexit><latexit sha1_base64="RAhQxyCdeN8Ga9MX1V4zpcy692k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx5bMLbQhrLZTtu1m03Y3Sgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH9wr+NUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0M/Wbj6g0j+WdGScYRHQgeZ8zaqzUeOqWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PQvg4zLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6VfUa55XadZ5GEY7gGE7BgwuowS3UwQcGCM/wCm/Og/PivDsf89aCk88cwh84nz9THIzP</latexit>

�w
<latexit sha1_base64="JWgwkUNfMzV7qhtMI1szd6wsM40=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68VjBfkAbymYzaZduNnF3o5TQP+HFgyJe/Tve/Ddu2xy09cHA470ZZuYFqeDauO63s7K6tr6xWdoqb+/s7u1XDg5bOskUwyZLRKI6AdUouMSm4UZgJ1VI40BgOxjdTP32IyrNE3lvxin6MR1IHnFGjZU6vRCFoeSpX6m6NXcGsky8glShQKNf+eqFCctilIYJqnXXc1Pj51QZzgROyr1MY0rZiA6wa6mkMWo/n907IadWCUmUKFvSkJn6eyKnsdbjOLCdMTVDvehNxf+8bmaiKz/nMs0MSjZfFGWCmIRMnychV8iMGFtCmeL2VsKGVFFmbERlG4K3+PIyaZ3XPLfm3V1U69dFHCU4hhM4Aw8uoQ630IAmMBDwDK/w5jw4L8678zFvXXGKmSP4A+fzB8VBj8c=</latexit><latexit sha1_base64="JWgwkUNfMzV7qhtMI1szd6wsM40=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68VjBfkAbymYzaZduNnF3o5TQP+HFgyJe/Tve/Ddu2xy09cHA470ZZuYFqeDauO63s7K6tr6xWdoqb+/s7u1XDg5bOskUwyZLRKI6AdUouMSm4UZgJ1VI40BgOxjdTP32IyrNE3lvxin6MR1IHnFGjZU6vRCFoeSpX6m6NXcGsky8glShQKNf+eqFCctilIYJqnXXc1Pj51QZzgROyr1MY0rZiA6wa6mkMWo/n907IadWCUmUKFvSkJn6eyKnsdbjOLCdMTVDvehNxf+8bmaiKz/nMs0MSjZfFGWCmIRMnychV8iMGFtCmeL2VsKGVFFmbERlG4K3+PIyaZ3XPLfm3V1U69dFHCU4hhM4Aw8uoQ630IAmMBDwDK/w5jw4L8678zFvXXGKmSP4A+fzB8VBj8c=</latexit><latexit sha1_base64="JWgwkUNfMzV7qhtMI1szd6wsM40=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68VjBfkAbymYzaZduNnF3o5TQP+HFgyJe/Tve/Ddu2xy09cHA470ZZuYFqeDauO63s7K6tr6xWdoqb+/s7u1XDg5bOskUwyZLRKI6AdUouMSm4UZgJ1VI40BgOxjdTP32IyrNE3lvxin6MR1IHnFGjZU6vRCFoeSpX6m6NXcGsky8glShQKNf+eqFCctilIYJqnXXc1Pj51QZzgROyr1MY0rZiA6wa6mkMWo/n907IadWCUmUKFvSkJn6eyKnsdbjOLCdMTVDvehNxf+8bmaiKz/nMs0MSjZfFGWCmIRMnychV8iMGFtCmeL2VsKGVFFmbERlG4K3+PIyaZ3XPLfm3V1U69dFHCU4hhM4Aw8uoQ630IAmMBDwDK/w5jw4L8678zFvXXGKmSP4A+fzB8VBj8c=</latexit><latexit sha1_base64="JWgwkUNfMzV7qhtMI1szd6wsM40=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68VjBfkAbymYzaZduNnF3o5TQP+HFgyJe/Tve/Ddu2xy09cHA470ZZuYFqeDauO63s7K6tr6xWdoqb+/s7u1XDg5bOskUwyZLRKI6AdUouMSm4UZgJ1VI40BgOxjdTP32IyrNE3lvxin6MR1IHnFGjZU6vRCFoeSpX6m6NXcGsky8glShQKNf+eqFCctilIYJqnXXc1Pj51QZzgROyr1MY0rZiA6wa6mkMWo/n907IadWCUmUKFvSkJn6eyKnsdbjOLCdMTVDvehNxf+8bmaiKz/nMs0MSjZfFGWCmIRMnychV8iMGFtCmeL2VsKGVFFmbERlG4K3+PIyaZ3XPLfm3V1U69dFHCU4hhM4Aw8uoQ630IAmMBDwDK/w5jw4L8678zFvXXGKmSP4A+fzB8VBj8c=</latexit>

�w
<latexit sha1_base64="JWgwkUNfMzV7qhtMI1szd6wsM40=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68VjBfkAbymYzaZduNnF3o5TQP+HFgyJe/Tve/Ddu2xy09cHA470ZZuYFqeDauO63s7K6tr6xWdoqb+/s7u1XDg5bOskUwyZLRKI6AdUouMSm4UZgJ1VI40BgOxjdTP32IyrNE3lvxin6MR1IHnFGjZU6vRCFoeSpX6m6NXcGsky8glShQKNf+eqFCctilIYJqnXXc1Pj51QZzgROyr1MY0rZiA6wa6mkMWo/n907IadWCUmUKFvSkJn6eyKnsdbjOLCdMTVDvehNxf+8bmaiKz/nMs0MSjZfFGWCmIRMnychV8iMGFtCmeL2VsKGVFFmbERlG4K3+PIyaZ3XPLfm3V1U69dFHCU4hhM4Aw8uoQ630IAmMBDwDK/w5jw4L8678zFvXXGKmSP4A+fzB8VBj8c=</latexit><latexit sha1_base64="JWgwkUNfMzV7qhtMI1szd6wsM40=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68VjBfkAbymYzaZduNnF3o5TQP+HFgyJe/Tve/Ddu2xy09cHA470ZZuYFqeDauO63s7K6tr6xWdoqb+/s7u1XDg5bOskUwyZLRKI6AdUouMSm4UZgJ1VI40BgOxjdTP32IyrNE3lvxin6MR1IHnFGjZU6vRCFoeSpX6m6NXcGsky8glShQKNf+eqFCctilIYJqnXXc1Pj51QZzgROyr1MY0rZiA6wa6mkMWo/n907IadWCUmUKFvSkJn6eyKnsdbjOLCdMTVDvehNxf+8bmaiKz/nMs0MSjZfFGWCmIRMnychV8iMGFtCmeL2VsKGVFFmbERlG4K3+PIyaZ3XPLfm3V1U69dFHCU4hhM4Aw8uoQ630IAmMBDwDK/w5jw4L8678zFvXXGKmSP4A+fzB8VBj8c=</latexit><latexit sha1_base64="JWgwkUNfMzV7qhtMI1szd6wsM40=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68VjBfkAbymYzaZduNnF3o5TQP+HFgyJe/Tve/Ddu2xy09cHA470ZZuYFqeDauO63s7K6tr6xWdoqb+/s7u1XDg5bOskUwyZLRKI6AdUouMSm4UZgJ1VI40BgOxjdTP32IyrNE3lvxin6MR1IHnFGjZU6vRCFoeSpX6m6NXcGsky8glShQKNf+eqFCctilIYJqnXXc1Pj51QZzgROyr1MY0rZiA6wa6mkMWo/n907IadWCUmUKFvSkJn6eyKnsdbjOLCdMTVDvehNxf+8bmaiKz/nMs0MSjZfFGWCmIRMnychV8iMGFtCmeL2VsKGVFFmbERlG4K3+PIyaZ3XPLfm3V1U69dFHCU4hhM4Aw8uoQ630IAmMBDwDK/w5jw4L8678zFvXXGKmSP4A+fzB8VBj8c=</latexit><latexit sha1_base64="JWgwkUNfMzV7qhtMI1szd6wsM40=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KokIeix68VjBfkAbymYzaZduNnF3o5TQP+HFgyJe/Tve/Ddu2xy09cHA470ZZuYFqeDauO63s7K6tr6xWdoqb+/s7u1XDg5bOskUwyZLRKI6AdUouMSm4UZgJ1VI40BgOxjdTP32IyrNE3lvxin6MR1IHnFGjZU6vRCFoeSpX6m6NXcGsky8glShQKNf+eqFCctilIYJqnXXc1Pj51QZzgROyr1MY0rZiA6wa6mkMWo/n907IadWCUmUKFvSkJn6eyKnsdbjOLCdMTVDvehNxf+8bmaiKz/nMs0MSjZfFGWCmIRMnychV8iMGFtCmeL2VsKGVFFmbERlG4K3+PIyaZ3XPLfm3V1U69dFHCU4hhM4Aw8uoQ630IAmMBDwDK/w5jw4L8678zFvXXGKmSP4A+fzB8VBj8c=</latexit>

✓
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(b)

Figure 8: (a) When the cracks are parallel and the fold is singly curved, its bending energy can be computed
by multiplying the elastic energy per unit length of the optimal profile of the fold by its width w. (b) When
the cracks converge, such a calculation ignores the bending energy in the shaded region.

The current analytical model to understand these experiments relies on three strong
assumptions (Hamm et al., 2008; Roman, 2013):

(i) The system is assumed to be completely elastic, except for the fracture processes.

(ii) In the strong adhesion limit Γw � Gct, the fold connecting the flap and the adhered
sheet is singly curved. Therefore stretching and bending do not compete, the sheet
can be assumed to be inextensible, and the energy of the fold is purely due to bending.

(iii) The mechanics of the fold is modeled using the classical Euler elastica theory to find
the optimal profile for the fold and its elastic energy per unit length, assuming that
the debonding front is sharp. The energy of the fold is then obtained by multiplying
this elastic energy per unit length and the distance between the crack tips, i.e. the
width of the strip at the detachment line. Thus, this model disregards the bending
energy of a small region near the edges of the fold when θ 6= 0, see Figure 8.
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An important consequence of assumption (iii) is that the elastic energy of the fold depends
only on the distance between the crack tips, that is the position of the crack tips, but
not their previous path. As a result, this model predicts that the system forgets its past.
With these assumptions and following an energy method combining Griffith’s theory with
the maximum energy release rate path selection criterion, an analytical expression can be
obtained for the crack path angle as (Roman, 2013)

sin θ =

√
2ΓB

Gct

[
1− cos(ϕ/2)

sin(ϕ/2)

]
, (19)

where B = Et3/12(1− ν2) is the bending rigidity of the elastic sheet. This equation shows
that the triangular shape of the tear is determined by the material constants B, Γ and Gct,
and by the peeling angle ϕ. The case ϕ = 180◦ was carefully studied experimentally in
Hamm et al. (2008), where B and Gct were varied.

To test this relationship, we performed tearing simulations varying various parameters
but setting in all cases E = 2 · 105, ν = 0.3, t = 10−3 and w = 0.4 in a square domain of
unit lateral size. In a first set of simulations, we fixed the peeling angle ϕ and the fracture
energy Gc and varied the surface energy Γ . In a second set of simulations, we fixed ϕ and
Γ , and varied Gc. In a third set of simulations, we fixed Gc and Γ , and varied ϕ. The
results are summarized in Figure 9(a) and (b). In agreement with the previous theory and
experiments, in all cases we found that cracks are straight, allowing us to easily measure the
crack angle from the phase-field colormaps. The figure also shows that with our choices of
parameters we were able to span a wide range of crack angles. As shown in Figure 9(b), our
computational results agree very well with the theoretical prediction in Eq. (19) for nearly
all calculations, although some points such as (1) or (A) exhibit significant discrepancies
from the theoretical relation. To understand these discrepancies, we examined more closely
these simulations.

Simulation (1) corresponds to the smallest peeling angle. Figure 9(c) shows the cohesive
traction between the thin sheet and the adhesive substrate for the lowest and the highest
peeling angles in our simulations. The spacial spreading of the traction is a consequence
of the finite length-scales δn and δt in our cohesive model. Our simulations show that the
width of the traction band strongly depends on the peeling angle. For a high peeling angle,
this width is very narrow in closer correspondence with assumption (iii) of the theoretical
model, according to which tractions are localized along a line of zero width. However, for low
peeling angle this width is much larger and, presumably, the cohesive tractions significantly
modify the profile of the fold. This possibility was already hypothesized by Hamm et al.
(2008). Beyond the details of our cohesive model, these calculations identify a mechanism
by which Eq. (19) may break down, particularly at low peeling angles.

Simulation (A) also departs from the theoretical prediction, and corresponds to the lowest
adhesion energy and to the lowest non-dimensional number Γw/(Gct) = 10. We recall that
Eq. (19) was derived in the limit in which this number is large. Close examination of the
geometry the fold in this simulation shows that it exhibits double curvature, and hence non-
zero Gaussian curvature and a noticeable amount of stretching (Witten, 2007; Zhang and
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Figure 9: (a) Crack paths for numerical experiments with different material parameters. In the first row,
we fix ϕ = 180◦ and Gc = 20 and vary the adhesion energy: (A) Γ = 0.5, (B) Γ = 1.0, (C) Γ = 1.5, (D)
Γ = 2.0, (E), Γ = 2.5, (F) Γ = 3.0. In the second row, we fix ϕ = 180◦ and Γ = 1.0 and vary the fracture
energy: (i) Gc = 20, (ii) Gc = 18, (iii) Gc = 16, (iv) Gc = 15, (v) Gc = 14, (vi) Gc = 13. In the third
row, we fix Γ = 1.0 and Gc = 20 and vary the peeling angle: (1) ϕ = 90◦, (2) ϕ = 120◦, (3) ϕ = 135◦, (4)
ϕ = 150◦, (5) ϕ = 165◦, (6) ϕ = 180◦. The crack path is represented by the phase-field in the undeformed
configuration. (b) Fit of the computational data with the theoretical prediction in Eq. (19) with parameter
η = 0.54. (c) Map of the cohesive traction between the thin sheet and the adhesive substrate for two peeling
angles. (d) Morphology of the fold between the flap and the adhered part of the thin sheet for two adhesion
energies corresponding to (A) and (F).

Arroyo, 2014, 2016), Figure 9(d). In contrast, a simulation with higher adhesion energy such
as (F) exhibits a singly curved fold geometry, except in the close vicinity of the fold ends.
Thus, the energetics of the fold in (A) are much more complex and depend on an interplay
between adhesion, bending and stretching, which departs from assumption (ii) leading to
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Eq. (19).
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Figure 10: Examination of Eq. (19) in simulations keeping ϕ = 180◦ and Γ = 1.0 fixed and varying Gc (i.e.
Gc = 20, 18, 16, 15, 14). (a) Phase-field represented in the undeformed configuration using a scale that
better highlights lower values for our reference model (top), a model with a reduced κ (middle) and a model
allowing for damage healing (bottom). (b) Fit of the crack direction to Eq. (19) for the different models,
requiring different values of the factor η, which is 1 in the ideal theoretical model.

We then turned our attention to the fact that to fit our data to Eq. (19) in Figure 9(b),
we had to introduce a factor η = 0.54 in the denominator or the right-hand-side of Eq. (19).
To fit their experimental results, Hamm et al. (2008) also had to introduce such a factor
of similar magnitude, whose origin was unclear although plastic deformation, observed to
take place in the folded region, was suspected as a possible reason for discrepancy. We
examined more closely the mechanism that explains this factor in our simulations. We
noticed that, in addition to the highly localized damage along the propagating cracks, our
numerical solutions exhibited a nearly homogeneous and moderate damage (φ ≈0.66) in the
region of the flap delimited by the newly created cracks, Figure 10(a), in contradiction with
assumption (i) of the theoretical model. We observed that already in the preparation stage
of the simulation, the fold between the flap and the adhered part of the sheet lead to partial
damage co-localized with curvature, which was developed by the model to relax the bending
elastic energy at the expense of a slight increase in regularized fracture energy. We reasoned
that this homogeneous damage was left behind by the fold as it swept the triangular part
of the flap during propagation, since the irreversibility condition precludes damage healing.
This kind of coexistence between homogeneous and localized damage in phase-field models
of fracture has been previously discussed (May et al., 2015; Cazes and Moës, 2015).
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The homogeneous damage in our phase field model of fracture is spurious and a conse-
quence of the lack of threshold for damage evolution in this model. The spurious homoge-
neous damage is absent in other phase-field models of fracture (Pham et al., 2011; Pham and
Marigo, 2013; Marigo et al., 2016), which require, however, more involved solution methods.
Within our phase-field model, this effect can be alleviated by reducing the regularization
parameter κ (Pham et al., 2011; Borden et al., 2012; Tanné et al., 2018). To check if the
factor η was related to spurious homogeneous damage, we performed calculations with a
two-fold reduction in κ, which required computational meshes twice as fine. As expected,
the simulations exhibited lower homogeneous damage (φ ≈0.82) and we could fit Eq. (19)
with a factor η = 0.67 closer to 1, Figure 10(b). To further test the role of homogeneous
damage, we performed simulations in which we lifted the irreversibility condition, which is
unphysical but can be done in our calculations. In these simulations, the partial damage
was restricted to the fold, Figure 10(a), and we could fit Eq. (19) with a factor η = 0.80
even closer to 1, Figure 10(b).

Taken together, these results show that homogeneous damage taking place at the fold
modifies the energy competition leading to Eq. (19) in a remarkably simple way, which only
requires introducing a factor η ≤ 1 in this relation. It is thus conceivable that analogous
inelastic processes, e.g. plasticity, may have developed at the fold in the experiments by
Hamm et al. (2008). Further theoretical work is required to more quantitatively explain
tearing in the presence of multiple localized and distributed inelastic processes (Alessi et al.,
2015).

5. Conclusions

Tearing of thin sheets is an important mode of fracture that has been extensively ex-
amined experimentally and theoretically, invoking strong assumptions difficult to control.
However, this phenomenon had not been studied computationally. Here, we have developed
a computational strategy to simulate brittle fracture in thin elastic sheets accounting for
geometric nonlinearity and adhesion to a substrate. We have simulated a wide variety of
tearing experiments of thin sheets adhered to a substrate or not. Our simulations reproduce
important qualitative features of the crack paths, such as their power-law or logarithmic
spiral geometry, as well as theoretical estimates for the crack path in adhered sheets based
on the maximum energy release rate. Taken together, our results show that the regularized
variational approach to brittle fracture naturally generalizes to fracture in thin elastic sheets,
and is able to predict complex crack paths in the presence of strong geometric nonlinearity.

Importantly, our simulations have allowed us to examine the limits of current theories.
We have shown how finite extensibility, finite cohesive length or irreversible mechanical
processes at the fold between a torn flap and the adhered part of the thin sheet can explain
deviations from the theoretical crack direction. All these phenomena involve small-scale
processes in the vicinity of the fold. These bounds in our theoretical understanding of tearing
of thin sheets could motivate new experiments and theories. From a modeling point of view,
the phase-field model of fracture used here couples homogeneous and localized damage in a
way that is difficult to control and that depends on the regularization parameter κ, which
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also controls the crack width. A better approach to systematically understanding tearing
should be based on a model that more clearly distinguishes between the homogeneous and
localized damage, for instance coupling phase-field models of fracture that do not exhibit
distributed damage (Pham et al., 2011; Pham and Marigo, 2013) and models accounting for
bending-induced damage or plasticity.
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