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Abstract

Image sequences allow visualizing dynamic systems and understand-
ing their intrinsic characteristics. One first component of this dynamics
is retrieved from the estimation of the velocity displayed on the sequence.
Motion estimation has been extensively studied in the literature of im-
age processing and computer vision. In this paper, we step beyond the
traditional optical flow methods and address the problem of recovering
the acceleration from the whole temporal sequence. This issue has been
poorly investigated, even if this is of major importance for major data
types, such as fluid flow images. Acceleration is defined as the space-
time function resulting from the forces applied to the studied system. To
estimate its value, we propose a variational approach where an energy
function is designed to model both the motion and the acceleration fields.
The contributions of the paper are twofold: first, we introduce a uni-
fied variational formulation of motion and acceleration under space-time
constraints; second, we describe the minimization scheme, which allows
retrieving the estimations, and provide the full information on the dis-
cretization schemes. Last, experiments illustrate the potentiality of the
method on synthetic and real image sequences, visualizing fluid-like flows,
where direct and precise calculation of acceleration is of primary impor-
tance.

Keywords
acceleration, Coriolis force, data assimilation fluid flow, gravity force, motion,

shallow water

1 Introduction

Estimating motion from images is of major importance for a large range of en-
vironmental applications. Analyzing satellite acquisitions of Sea Surface Tem-
perature allows, for instance, to detect precursors of extreme events and better
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mitigate their risks. Processing fish-eye sky images acquired on a solar plant al-
lows forecasting the solar irradiance and accurately estimating the photovoltaic
production.

Motion estimation on fluid flows has been extensively discussed in, for in-
stance, Heitz et al. [1]. The underlying problems of the fluid flows context
are quite different of those that are usually occurring in most computer vision
applications. One major difference is that these fluid flows data require a dense
in space and dense in time description and can not be summarized by local
features, which are tracked in time. This is the spirit of the research work de-
scribed in the following and it explains most of the technical choices that were
done when implementing the approach.

Acceleration estimation seems having been seldom investigated in the state-
of-the-art, whatever the type of image acquisitions. In Arnspang [2], the assump-
tion of Lagrangian constancy of both brightness and velocity is used to estimate
motion and acceleration on three consecutive frames. However, these fields are
supposed to be locally constant. Hu and Ahuja [3] propose an approach, which
is not based on the image data but on a set of characteristics points tracked on
consecutive acquisitions, and compute the affine and projective parameters of
motion and a constant, in space and time, acceleration. Staković et al. [4] de-
termine the motion and acceleration fields using Fourier-based techniques, but
motion is restricted to be locally translational and acceleration is also locally
constant.

Multi-frame motion has been the focus of a large number of research works.
Tomasi and Kanade [5] and Irani [6] extend the pioneer work of Lucas and
Kanade [7] in a multi-frame context. Under the assumption of locally stationary
motion, they prove that motion fields are included in a low rank subspace. The
main advantage of their methods is the robustness to noise and the capability
to solve the aperture problem without applying any regularization process. In
the same spirit, Garg et al. [8] also compute non rigid motion fields from their
projection on a low rank subspace. Ricco and Tomasi [9] define a multi-frame
method to assess long-range motion and detect the occlusions by computing the
Lagrangian trajectories of points on the low rank subspace. Garg et al. [10]
apply the same concept for image registration purpose. The major limitation
of this whole set of these methods, compared with our approach, is the poor
representation of the dynamics, with a small size basis, which is precise enough
for their application domains but fails for the complex motion fields of fluid flows.
This remark originates our motivation for implementing a dynamic model IM
describing both the temporal evolution of the motion field and the transport of
the image data.

Accuracy of motion estimation, both in direction and intensity is also a key
component for forecasting images at short temporal horizon and mitigating fu-
ture events. This concern is particularly crucial for environmental issues as, for
instance, the short-term forecast of heavy rain or clear sky, which are required
for mitigating flashfloods or estimating and regulating the production of pho-
tovoltaic energy. However, the pertinence of the forecasted images relies on the
full knowledge of the space-time dynamics, and not only on the motion field
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component. In the operational application which is considered for the discus-
sion given in the paper, such forecast is applied with a temporal sliding-window
setting: a set of images is first processed for estimating motion and accelera-
tion, which are further used for forecasting the image data at a given temporal
horizon, then the temporal window is iteratively incremented in time. In such
context, the only knowledge of motion snapshots is not sufficient for a correct
forecast of the future motion fields and a dense in time model of motion and
acceleration is strongly required.

For a large range of environmental systems observed with image data, math-
ematical models of the physical processes are available. This is well-known for
meteorology and oceanography for instance, which are both based on the Navier-
Stokes equations. These physical laws should then be used when processing the
image acquisitions, in order to allow a full and reliable estimation of the dynam-
ics. The paper describes the design of an image model that includes evolution
equations for all studied quantities such as image brightness, velocity and accel-
eration. Then, we discuss the estimation of the full dynamics, motion and accel-
eration, with a data assimilation approach, which originates in the meteorology
forecasting community and is currently used in meteorological institutes all over
the world. These data assimilation techniques appeared in the last decade in the
image processing and computer vision community for estimating motion from
image sequences, as for instance in Papadakis et al. [11,12], Titaud et al. [13]
and Béréziat et al. [14]. One primary output of these approaches is an elegant
solution of the well-known aperture ambiguity by an explicit model of motion.
But the paper makes a strong improvement, compared to these state-of-the-art
methods, as it allows the estimation of forces applied to the system, or equiva-
lently the simultaneous estimation of motion and acceleration. For an accurate
comparison with the literature, we highlight that Papadakis et al. [11, 12] or
Heas et al. [15] also include an additional quantity, which could be viewed as
an acceleration term. However, their mathematical formulation constrains this
quantity to be small or sparse, consequently suppressing any physical interpre-
tation. In this paper, we focus on a class of approaches named 4D-Var in the
data assimilation literature that are relying on an adjoint formulation. How-
ever ensemble-based approaches are also possible [16]. Our approach solves the
following inverse problem: given NO images IOl , l = 1, · · · , NO, the motion
and acceleration fields are estimated under the constraint of the given dynamic
model, expressed by partial differential equations, and space-time regularity
properties. Compared to the previously mentioned motion estimation methods
that rely on data assimilation, an additional equation is added to the model,
which corresponds to the description of the acceleration. If this equation in-
cludes a parametric formulation of the acceleration [17], the problem reduces to
the estimation of the parameters values without any strong difficulty. But, in
the general case of fluid-flows images, the parametric assumption is not valid on
the data and a variational data assimilation technique is applied for estimating
a dense acceleration field [18]. A specific energy is then designed whose control
variables are the values of all variables at the beginning of the studied temporal
interval and the acceleration field at each space-time value. The optimization is
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conducted by computing iteratively the values of the energy and of its gradient,
which are the input of the optimization solver, named BFGS [19]. The outputs
are the motion and acceleration fields on a continuous temporal interval.

Paper Organization: Section 2 discusses the problem faced in the paper,
provides the basic notations and describes the mathematical content. The vari-
ational data assimilation technique is then shortly discussed in Section 3, which
provides the main mathematical and technical components for understanding
the approach. Our method is extensively described in Section 4 for allowing
interested Readers to reproduce the full implementation and the experiments.
Results are thoroughly discussed in Section 5, and Section 6 concludes the paper
and gives indications on future work.

2 Mathematical setting

In order to improve the understanding of our approach, all symbols included
in the paper are the same for continuous and discrete descriptions, even if not
always fully correct from the mathematical point of view.

Ω is the image domain and [0,T] is the temporal interval on which images
are acquired and processed. The set A = Ω× [0,T] is the studied space-time
domain. If a function f is defined on A, f(x, t) denotes the value at point x
and time t and f(t) describes the spatial field at time t.

The motion vector at point x and time t is written w(x, t) =
(
u(x, t) v(x, t)

)T
with .T being the transpose operator and u and v the horizontal and vertical

components. The acceleration is written a(x, t) =
(
au(x, t) av(x, t)

)T
.

〈f, g〉 denotes the scalar product of functions f and g in the continuous
domain (or in the discrete domain) and verifies:

〈f, g〉 =

∫
Ω

f(x)g(x)dx (1)

A discrete sequence of images IOl , l = 1, · · · , NO, is available and processed
for estimating motion and acceleration. IOl is acquired at time tl and is a
snapshot of the continuous function IO, defined on A, with values IO(x, tl).

As pointed out in the introduction, our approach estimates motion and ac-
celeration from images and is based on a dynamic model IM. A state vector

X is first defined on A: X(x, t) =
(
u(x, t) v(x, t) I (x, t)

)T
, which includes

the two components u and v of the velocity w and a synthetic image I . The
function I satisfies the same physical and mathematical properties than the real
image acquisitions. It is initialized with the first image IO1 , at the beginning of
the studied temporal interval, and transported by the motion field w(x, t). If
this transport is correctly performed by the estimated motion field, the bright-
ness values I (x, t) should be almost identical to the image values IOl (x) at each
acquisition time tl. Consequently, our method method estimates motion and ac-
celeration by forcing the image function I to be almost identical to the observed
images IOl .
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The model IM, expressing the evolution of the state vector, is defined by
partial differential equations regulating the time evolution of w, a and I . The
motion and acceleration functions are mathematically linked by:

dw

dt
(x, t) =

∂w

∂t
(x, t) + (w.∇)w(x, t) = a(x, t) (2)

The evolution equation chosen for the synthetic image function I is the linearized
transport equation:

∂I (x, t)

∂t
+ w(x, t).∇I (x, t) = 0 (3)

In the following, the symbol a denotes both the acceleration function, defined

on A, and its representation in the state vector space: a =

(
a
0

)
. Eqs. (2) and (3)

are then merged in:
∂X

∂t
+ IM(X) = a (4)

The optimization process, that will be described in the next section, con-
strains the synthetic image function I to be close to the observed image function
IO. A measure of the reconstruction error is given by:

I (x, t) = IO(x, t) + εR(x, t) (5)

where the term εR(x, t) characterizes both the acquisition noise of real images
and the uncertainty on the state vector values X(x, t).

At each iteration of the optimization estimating motion and acceleration,
Eq. (4) is integrated in time from an initial value Xb(x). The result of the
optimization, X(x, 0), differs from the value Xb(x) as this process modifies the
state vector according to the image acquisitions. This idea is described by the
following equation:

X(x, 0) = Xb(x) + εB(x) (6)

where εB(x) denotes the uncertainty on the initial value Xb(x).
The error functions εR and εB are supposed independent, unbiased and

Gaussian.
For estimating the motion field w and the acceleration a from images, ac-

cording to Eqs. (4), (5) and (6), the variables εB(x) (or X(x, 0)−Xb(x)) and
εR(x, t) (or I (x, t)− IO(x, t)) are minimized as described in the next section,
dedicated to the data assimilation theory.

3 Data Assimilation

The previous equations, Eqs (4, 5, 5), model the links between the observational
images and the mathematical model IM. They are the base of the so-called
data assimilation approach. Apte et al. [20] gives a Bayesian view of data
assimilation, in which the posterior distribution of X is computed from the prior
distributions of the errors εB and εR. Their paper defines various optimization
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approaches, which output a posteriori estimators. Following their description,
we are looking for the solution X that solves System (4,5,6) and minimizes the
error terms on the temporal interval [0,T]. An energy function J is defined,
whose control variables are the initial value X(0) and the acceleration field a(t)
at each time t. This function is primary written as the squared norm of the two
error variables εB and εR or equivalently of (X(0)−Xb) and (I (t)− IO(t)):

2J(X(0),a(t)) =
〈
X(0)−Xb, B

−1(X(0)−Xb)
〉

+

∫ T

0

〈
I (t)− IO(t), R−1(I (t)− IO(t))

〉 (7)

The first term issues from Eq. (6) on the initial condition and the second from
Eq. (5) on the image acquisitions. B and R denote the covariance matrices of
εB and εR.

The gradient of J , denoted ∇J , is derived with the well-known calculus of
variations, as initially defined by Lions [21]. Its two components, which are
respectively the partial derivatives with regard to X(0) and a(t), are given by:

∂J

∂X(0)
= B−1(X(0)−Xb) + λ(0)

∂J

∂a(t)
= λ(t)

(8)

λ(t) is the adjoint variable of X(t), which is mathematically defined by:

λ(T) = 0 (9a)

−∂λ(t)

∂t
+

(
∂IM

∂X

)∗
λ(t) = R−1(I (t)− IO(t)) (9b)

where

(
∂IM

∂X

)∗
is the adjoint model of IM. λ(t) is computed from its initial value

λ(T) with a backward in time integration of the the adjoint model. Reader is
referred to [22] for a full proof.

The optimization minimizes the error between the given image sequence
and the synthesized image sequence through the minimization of the energy
J(X(0),a(t)) with an iterative steepest descent method. In our implementation,
we make use of the low memory BFGS solver [19]. At each iteration, the forward
integration of X(t), according to Eq. (4), provides the value of J , and the
backward integration of λ(t), according to Eq. (9b), computes the values of
λ(0) and λ(t), which are used to compute ∇J , as specified by Eq. (8).

The next section describes the use of these data assimilation tools in the
context of motion and acceleration estimation from observational images and
gives full knowledge of the additional components.
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4 Motion and acceleration estimation

The implementation of the motion and acceleration estimator is obtained with
a numerical model discretizing the continuous equations, Eqs. (2) and (3), of
the image model IM. Time and space resolutions are denoted by 4t and 4x
(which is equal to 4y), and uni,j gives the approximation of u(x, y, t) at location
(xi, yj , tn). The equations are first discretized in time with an Euler scheme.
The linear advection terms are discretized in space with a first-order upwind
scheme, as described in Hundsdorfer and Spee [23]. The nonlinear terms are
rewritten in a conservative form and approximated by a first-order Godunov
scheme, given in Leveque [24]. For instance, the non-linear advection of the
horizontal component of velocity is rewritten as:

∂u

∂t
= −u∂u

∂x
= − ∂

∂x
f(u) (10)

with f(u) = 1
2u

2. This equation is then approximated by:

un+1
i,j = uni,j −

4t
4x

(
g(uni,j , u

n
i+1,j)− g(uni−1,j , u

n
i,j)
)

(11)

with g defined by:

if s1 < s2 : g(s1, s2) =


f(s2) if s2 ≤ 0

f(s1) if s1 ≥ 0

0 otherwise

if s1 ≥ s2 : g(s1, s2) =

{
f(s2) if s1 ≤ 0

f(s1) if s2 ≥ 0

(12)

The backward in time integration of the adjoint variable λ involves the ad-

joint operator

(
∂IM

∂X

)∗
, in Eq. (9b), that is obtained by the automatic differ-

entiation software Tapenade [25] from the numerical model IM. The numerical
adjoint obtained with Tapenade is the exact adjoint of IM, as each line of the
numerical code is differentiated by the software.

Having coded the direct model and derived its numerical adjoint, the imple-
mentation of our approach is based on the definition of the following compo-
nents: the initial condition Xb, the characterization of εB and εR, the design of
the regularization terms, and the implementation of the minimization process.

• The covariance matrix B models the uncertainty on the initial value Xb.
We assume that the three components of Xb are not correlated and set

B =

Bu 0 0
0 Bv 0
0 0 BI

.

• The initial value Xb =
(
ub vb Ib

)T
is set to

(
0 0 IO1

)T
. The image

field Ib is given the value of the first acquisition IO1 , as the image function
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I has to be close to the observations for a correct estimation of motion and
acceleration. The motion field wb =

(
ub vb

)T
is given a null value at the

beginning of the optimization process if no prior information is available.
We then give an infinite uncertainty to ub and vb and set B−1

u = B−1
v = 0.

Consequently, the first term of J reduces to
〈
I(0)− Ib, B−1

I (I(0)− Ib)
〉
.

The reader should remark that the initial motion field has no constraint
to stay close to this null value in the estimation process with such value
of the covariance matrix B.
The alternative, which is the one used in our operational setting, relies on
a sliding-window approach: - the initial value of the motion field of the
first window is again given a null value, - but, for the next windows, the
initial value is defined as the estimation on the previous one. Again, B−1

u

and B−1
v are given a zero value as ub and vb being not observed, their

uncertainty can not be quantified.

• The covariance matrix BI of the error term εB(x) depends on the loca-
tion x. It describes the uncertainty on the initial image value IO1 (x). It
is chosen equal to that of the acquisition sensor. However, noisy pixels
(identified as such from the metadata provided with images) get the value
BI(x) = 108 so that their contribution in the energy function J of Eq. (7)
is infinitesimal.

• The covariance matrix R of the error term εR(x, t) depends on x and t
and describes the uncertainty on image acquisitions. R(x, t) gets the same
value than BI(x). The same process is applied to discard the noisy pixels
from the computation.

• The estimation of w(0) and a(t) from a sequence of images remains an
ill-posed problem. As we assume that the initial motion field is Markovian
Gaussian rather than degenerated Gaussian, the cost function J includes
spatial regularization terms, which are depending on the norm of the gra-
dient of w(0) and a(t).

2J(X(0),a(t)) =
〈
I(0)− Ib, B−1

I (I(0)− Ib)
〉

+

∫ T

0

〈
I (t)− IO(t), R−1(I (t)− IO(t))

〉
+α 〈∇w(0),∇w(0)〉+ β

∫ T

0

〈∇a(t),∇a(t)〉 dt

(13)

The gradient of J is:

∂J

∂X(0)
= B−1

I (I(0)− Ib)− α∇2w(0) + λ(0)

∂J

∂a(t)
= −β∇2a(t) + λ(t)

(14)
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λ remains ruled by Equations (9a,9b).
Values of α and β are chosen so that the regularization terms get the same
range order than the background term.

As previously explained, the minimization of the energy J is conducted with
a steepest descent method and the BFGS solver. The full description is given
by Algorithm 1, in case of null initial values of motion and acceleration values.

Algorithm 1 4D-Var algorithm.

1: Read the observational images IOl , l = 1, · · · , NO

2: Set the initial background value Xb =
(
0 0 IO1

)T
3: Set the iteration index k = 0
4: Initialize the state vector value X(0)k = Xb

5: Set the initial acceleration value: ak =
(
0 0

)T
6: Run the model IM (forward integration) and compute Jk

7: Run (backward) the adjoint model and compute ∇Jk

8: while |∇Jk| > E and k < MaxIter do
9: Update state vector X(0) and acceleration a:

(X(0)k+1,ak+1) = BFGS
(
X(0)k,ak, Jk,∇Jk

)
10: Run the model IM and compute Jk+1

11: Run the adjoint model and compute ∇Jk+1

12: Set k = k + 1
13: end while
14: Set k = k − 1
15: Return X(0)k and ak(t) for each time index t

At this stage, all components of our approach have been discussed. Addi-
tional setting of the implementation are depending on the application domain
and on the operational use of images. They will be discussed jointly with the
analysis of the results in the next section.

5 Results

As explained in the previous discussions, our approach is a strong theoretical
improvement compared to the state-of-the-art on motion estimation with data
assimilation techniques and to our own research work on the subject [26]. Having
knowledge of the acceleration gives a full understanding of the observed system
and allows, for instance, to accurately forecast the future images.

This section demonstrates the impact of our approach on fluid flow data and
provides results on synthetic and satellite image sequences.

5.1 Synthetic Experiments

The method is first applied on a synthetic sequence in order to get a quantitative
evaluation. The image and motion fields are obtained by integrating Eqs. (2,3)
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with the initial conditions displayed on Figure 1. The acceleration a(x, t) is

Figure 1: Initial conditions (left and middle) and acceleration term (right).

chosen to be constant in time, consequently denoted a(x), and modeled by

a spatial Balgovind function [27], a(x) =

(
Bu(x)
Bv(x)

)
, which is visualized on the

right of Figure 1. Bu(x) and Bv(x) are zero-mean normal laws, whose covariance
values depend on the distance between x and x′:

Σ(x,x′) =

(
1 +
‖x− x′‖

L

)
exp

(
−‖x− x′‖

L

)
(15)

L is the bandwidth: x and x′ are statistically independent if ‖x− x′‖ > L. In
this experiment, L is set to 20% of the image size.

Five snapshots of the image component I (t) are taken as observational im-
ages. They are displayed on Figure 2. The method estimates motion and accel-
eration on the whole time interval from these observations. In order to assess
the performance, we compare the results on motion and acceleration with the
ground truth values, obtained from the simulation run, and we compute errors
statistics. The averaged angular and relative norm errors on the motion field
are respectively of 4.5 degrees and 7%. This demonstrates the accuracy of both
motion and acceleration estimation, as motion can be correctly retrieved on the
whole time interval only if acceleration is simultaneously accurately assessed.

In a second experiment, we show that our approach is able to retrieve motion
and acceleration on synthetic data having the same characteristics than satel-
lite acquisitions of the ocean surface. We assume that the surface circulation
is described by the shallow water equations, which characterize the temporal
evolution of the motion field by the gravity and Coriolis forces, and neglect the
surface friction and the diffusion in this experiment.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= fv − g′ ∂h

∂x
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −fu− g′ ∂h

∂y
∂h

∂t
+
∂(hu)

∂x
+
∂(vh)

∂y
= 0

(16)
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Figure 2: Observational images.

In System (16), h is the mixed layer thickness, f the Coriolis parameter, and
g′ = g(ρ0 − ρ1)/ρ0 the reduced gravity, ρ0 being the reference density and ρ1

the average density of the mixed layer.
We further summarize the geophysical forces, gravity and Coriolis, as an

acceleration term a with two components au and av:
au = fv − g′ ∂h

∂x

av = −fu− g′ ∂h
∂y

(17)

The synthetic experiment is then designed. Given the initial conditions on
velocity w, layer thickness h, and synthetic image I visualized on Figure (3),
the shallow-water equations of System (16) and the transport of the image
function with Eq. (3) are integrated in time. These initial conditions come from
experiments conducted on ocean satellite images that are not further discussed
in the paper.

The numerical simulation provides eight image snapshots that are used as
observational data for our motion and acceleration approach. Our method re-
trieves motion with an averaged angular error of 5.3◦ and an averaged relative
norm error of 11%. As a comparison, Sun et al. [28] obtain, on the same data,
an averaged angular error of 16◦ and a relative norm error of 32%. This comes
from the fact that their model does not include information on the physical forces
or equivalently on the acceleration. Additionally, the estimation of velocity w
and acceleration a allows us to further derive the Coriolis and gravity forces
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(a) w(0). (b) h(0).

(c) I (0).

Figure 3: Initial conditions of the simulation run.

of Eq. (17). The Coriolis force is estimated as C = fw⊥, with w⊥ =

(
v
−u

)
,

and the gravity force G is obtained as G = a − C. For motion estimated with
Sun et al. [28], the acceleration is computed as a first-order finite difference
and the Coriolis and gravity forces are retrieved with the same equations. Both
estimations are compared with the ground truth values CGT and GGT, defined
by: CGT = fw⊥GT and GGT = −g′∇hGT, where wGT and hGT are the ground
truths for motion and mixed layer thickness.

Figures 4 and 5 concern the Coriolis force and show the accuracy of our
method: the estimation is close to the ground truth value both in orientation and
norm. The displays also provide the results of Sun et al. Averaged angular and
relative norm errors are respectively of 6.1◦ and 10% for our method and 15.9◦

and 39% for Sun et al. [28]. This conclusion is not new as this is well known
that optical flow methods fail to retrieve an accurate estimation of acceleration
and consequently of geophysical forces.

Figures 6 and 7 provide the same displays for the estimation of the gravity
force. Statistics on angular error and relative norm errors are 24.2◦ and 36% for
our method against 56◦ and 38% for Sun et al. [28]. Our estimation appears
however to be less accurate than the one of the Coriolis force. This comes
from the approximation of the shallow water equations and from the removal of
friction and diffusion forces in the model.
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(a) Orientation of C computed by our
method.

(b) Orientation of C computed by Sun
et al.

(c) Orientation of CGT.

Figure 4: Orientation of the Coriolis force.
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(a) Norm of C computed by our
method.

(b) Norm of C computed by Sun
et al.

(c) Norm of CGT.

Figure 5: Norm of the Coriolis force.
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(a) Orientation of G computed by our
method.

(b) Orientation of G computed by Sun
et al.

(c) Orientation of GGT.

Figure 6: Orientation of the gravity force.
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(a) Norm of G computed by our
method.

(b) Norm of G computed by Sun
et al.

(c) Norm of GGT.

Figure 7: Norm of the gravity force.
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5.2 Satellite data

After having been quantified in the previous subsection, the method was applied
on a database of ocean satellite acquisitions. Two examples are discussed in the
following.

A first display, on Figure 8, concerns Sea Surface Temperatures acquired on
January 13, 2005 by NOAA-AVHRR. These acquisitions include missing values
that are visible as black points or black regions. They mostly originate from
sensor failures. They are excluded from the estimation process by giving them
a high variance value (an a null impact) in the energy function J of Eq. (7).

Figure 8: Four SST acquisitions at times T0, T0+3h30, T0+6h30, T0+11h15.

The estimation is made with the setting described in Section 4 (see descrip-
tion of Xb, B, R). The motion results are given at acquisition times on Figure 9,
with an arrows display superposed on the image data for a better visualization
of the cyclonic motion of the vortex structure.

Figure 9: Motion field superposed to the satellite acquisitions.
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The estimated acceleration a is given on Figure 10, at times corresponding
to the acquisition of the second, third and fourth images, with a colors and
arrows coding.

Figure 10: Acceleration at acquisition times.

The Coriolis force C is then computed, see Figure 11, which is in complete
adequacy with the cyclonic mushroom-shaped vortex.

Figure 11: Coriolis force at acquisition times.

Last, Figure 12 displays the estimated gravity force G.

Figure 12: Gravity at acquisition times.

Having knowledge on image and motion fields and on the forces applied to
that system allows to use this whole set of information to forecast the future
images at short temporal horizon, which is one major application of this work
in environmental sciences.

The method is further illustrated with images acquired on April 23, 2007.
The satellite acquisitions are displayed on Figure 13. They show an anticyclonic
motion field.

The estimated motion fields w(t) are visualized on Figure 14, superposed to
the acquisitions.

The estimated acceleration a, the Coriolis force C and the gravity G are
respectively given on Figures (15), (16) and (17), with a vectors and colors
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Figure 13: Four Observations (with missing data) at times T0, T0+4h, T0+14h;
T0+16h30.

Figure 14: Motion fields superposed to image acquisitions.
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coding. We can observe that the map of the Coriolis force is coherent with the
anticyclonic vortex, which is evolving on the data.

Figure 15: Acceleration a at acquisition times.

Figure 16: Coriolis force C at acquisition times.

Figure 17: Gravity G at acquisition times.

5.3 Evaluation on short and mid-term forecasting

In this section, we provide experiments for the use of the estimated accelera-
tion for short and mid-term forecasting. This is conducted in an operational
context and compared to state-of-the-art results. For providing a quantitative
analysis, we make use of synthetic SST images computed by the operational
oceanographic software NEMO (Nucleus for European Modeling of the Ocean).
NEMO provides an estimation of the ocean state and produces realistic synthetic
SST images as reanalysis obtained from data assimilation of satellite acquisi-
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tions with an ocean physical model. We retrieve1 a sequence of 456 images
(from 2016-01-01 to 2017-04-06) from data acquired over North Atlantic. The
space resolution of each pixel is 10 kilometers and the time interval between
two images is one day. After computing the reanalyses, we extract a region of
interest of size 481× 456. Figure 18 displays some of these NEMO SST images.

Figure 18: Six pseudo SST observations computed by NEMO.

The sliding window method is designed as follows. We compute a motion
field from the first four consecutive synthetic images. Then, from the last image
and the corresponding motion field, the state vector is integrated in time using
Eqs (2,3) up to the chosen horizon of forecast. The process, estimation and
forecast, is iterated on each interval of four consecutive images until having
processed the whole sequence.

Our approach is then compared with the competitive Zack et al.’s optical
flow method [29]. We display on Figure 19 the motion result estimated by
our method at observation 4 (see Figure 18) and the result of Zack’s method
estimated between observations 3 ans 4.

Forecasts, at 1-day and 10-day, provided by both motion fields, are com-
pared to the synthetic images produced by NEMO on Figures 20 and 21. We
consider the Mean Square Error (MSE) criterion, computed between forecasts
and synthetic images, to quantify performances. As it can be seen on Figure 20,
short time forecasts obtained by the two motion fields are quite similar. This is

1http://marine.copernicus.eu/services-portfolio/access-to-products/
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Figure 19: Motion estimation by our method (left) and Zack et al (right)

confirmed by the MSE criteria, computed on the whole synthetic SST sequence
and displayed on Figure 22. MSE shows a slight advantage for our approach
with an average value of 0.093 against 0.102 for Zack et al. However, our ap-
proach is clearly better than Zack et al for larger temporal horizon. This is
visible on Figure 23 for 10-days forecasts. The average value of MSE is of 1.88
for our approach against 2.35 for Zack et al.

Figure 20: 1-day forecast. Left: our method, middle: Zack et al, right: obser-
vation.

6 Conclusion and Future works

In this paper, a variational approach for assessing the dynamics of a studied sys-
tem from image data is described. The acquisitions are processed on line with
a sliding window approach and the first guess of the acceleration and motion
fields on a given window is obtained from the result on the previous one. We
design a model of motion and acceleration fields and an energy function, based

22



Figure 21: 10-day forecast. Left: our method, middle: Zack et al, right: obser-
vation.

on space-time constraints, for their estimation. The optimization minimizes the
discrepancy between the given images and the ones synthetized by our model. It
outputs both the motion field at the beginning of the studied temporal interval
and the acceleration field at each time step. The knowledge of this acceleration,
as a space-time function, has a strong additional value, compared to its compu-
tation by finite difference from the motion fields, as it gives the full knowledge
of the physical forces applied on the system.

The experiments conducted on synthetic data quantify the approach and
illustrate its potential on fluid-like flows images, such as satellite acquisitions of
the atmosphere and ocean.

Future research is two-fold. First, the design of the regularization terms in-
cluded in the energy function will be reinvestigated, for improving the quantita-
tive accuracy of the estimation, without increasing computational requirements.
Second, the whole software will be parallelized with MPI/OpenMP techniques
for processing larger size image data and longer duration observation. The con-
straint of size and duration is the major limitation for an operational use of the
method for monitoring local sites. The first foreseen operational application is
the forecast of the photovoltaic production at short temporal horizon, through
the solar irradiation estimation from image data.
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[15] P. Héas, A. Drémeau, C. Herzet, An efficient algorithm for video super-
resolution based on a sequential model, Journal on Imaging Sciences 9 (2).
3

25

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.2008.00370.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.2008.00370.x
http://dx.doi.org/10.1111/j.1600-0870.2008.00370.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.2008.00370.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.2008.00370.x
http://dx.doi.org/10.1111/j.1600-0870.2009.00416.x
http://dx.doi.org/10.1111/j.1600-0870.2009.00416.x


[16] G. Evensen, The ensemble Kalman filter: Theoretical formulation and prac-
tical implementation, Ocean Dynamics 53 (2003) 343–367. 3

[17] D. Dee, Bias and data assimilation, Quaterly Journal of the Royal Meteo-
rological Society 131 (2005) 3323–3343. 3
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