Antoine Miné
email: antoine.mine@lip6.fr

Matthieu Journault
email: matthieu.journault@lip6.fr

Design of a Modular Platform for Static Analysis

Keywords: Static analysis, Abstract interpretation, Tool Acknowledgments

published or not. The documents may come

Introduction

Abstract interpretation [START_REF] Cousot | Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints[END_REF], a theory of the approximation of semantics, allows designing sound static analyzers that infer automatically program properties. It has enjoyed a growing success, as witnessed by commercial tools used in the industry: Polyspace Verifier, Astrée [START_REF] Kästner | Astrée: Proving the absence of runtime errors[END_REF], Sparrow [START_REF] Oh | Design and Implementation of Sparse Global Analyses for C-like Languages[END_REF], Julia [START_REF] Spoto | JULIA: A Generic Static Analyser for the Java Bytecode[END_REF], etc. Open-source industrial-strength frameworks to design analyzers by abstract interpretation have also been proposed: Frama-C [START_REF] Cuoq | Frama-C: A software analysis perspective[END_REF], IKOS [START_REF] Brat | IKOS: A Framework for Static Analysis Based on Abstract Interpretation[END_REF], Infer [START_REF] Calcagno | Moving Fast with Software Verification[END_REF], etc. Most tools focus on analyzing families of C-like or Java-like languages, and do not target dynamic languages (e.g., Python, JavaScript) and a forciori cannot handle both kinds of languages. Moreover, while all tools are based on a modular combination of abstractions, as advocated by abstract interpretation [START_REF] Cousot | Systematic design of program analysis frameworks[END_REF], these are often restricted to specific abstractions: e.g., Astrée [START_REF] Cousot | Combination of abstractions in the Astrée static analyzer[END_REF] achieves a reduced product of numeric abstractions but has a monolithic memory abstraction; Frama-C's abstractions can be composed either through coarse-grain plug-ins, or as nonrelational value abstractions [START_REF] Blazy | Structuring Abstract Interpreters Through State and Value Abstractions[END_REF]. To try and address these TAPAS'18, August 28, 2018, Freiburg im Breisgau, Germany 2018.

issues, and push abstract interpretation frameworks further, we have started the design of a Modular Open Platform for Static Analysis (Mopsa) in OCaml. It is based on a standard interpreter by induction on the syntax and a collection of abstractions (see, e.g., [START_REF] Bertrane | Static Analysis and Verification of Aerospace Software by Abstract Interpretation[END_REF]) but with unique features: all domains share a common extensible Abstract Syntax Tree datatype; it can express both high-level syntax close to the source languages, and simpler intermediate ones used internally by abstractions (e.g., numeric fragments); we eschew static simplifications common to frameworks (e.g., LLVM [START_REF] Lattner | LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation[END_REF]); transformations are performed dynamically during interpretation and benefit from inferred facts; all domains share a common interface and are easy to compose; notably, iterators are viewed as domains, and domains are responsible for statement simplification; domains need only handle a fragment of the AST; they can be reused after extending the AST to new languages. Mopsa is a work in progress: its architectural foundations are implemented, but it is not ready to analyze realistic programs. As a proof of concept, we have implemented analyses for both a fragment of C and Python, showing it can support legacy abstractions (e.g., numeric domains, low-level C memory models [START_REF] Miné | Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics[END_REF]) and is a great help developing novel ones (e.g., modular C analysis [START_REF] Journault | Modular static analysis of string manipulations in C programs[END_REF], Python analysis [START_REF] Fromherz | Static value analysis of Python programs by abstract interpretation[END_REF]). Sections 2 and 3 present the domain signature and domain composition; Sect. 4 reports on early experiments (analyzing part of Juliet for C and Python's regression tests); Sect. 5 concludes.

Unified Domains Signature

Abstract domains are OCaml modules implementing the DOMAIN signature in Fig. 1. In the following, we describe the main types and functions, and state the core design goals.

Lattice. Each domain defines a type t characterizing its abstract state, as well as corresponding lattice operators (join, widening, etc.). In Mopsa, the internal abstract state of a domain is private: other domains have no direct access. This separation ensures a low coupling between domains.

Managers.

During the analysis of one statement, a domain may require computing the post-condition of statements handled by other domains. To allow inter-domain communication without sacrificing modularity, each domain transfer function is not defined over its private type t, but on the product of types from all domains. To ensure that each domain can be programmed independently from the others, the val exec : stmt -> ('a, t) man -> 'a flow -> 'a post option val eval : expr -> ('a, t) man -> 'a flow -> 'a evals option val ask : 'r query -> ('a, t) man -> 'a flow -> 'r option (* Interface *) val exec_interface : zone interface val eval_interface : (zone * zone) interface end product is a type parameter 'a, and we use an encoding of polymorphic records in OCaml: the manager ('a, t) man is a record providing lattice operators on 'a, transfer functions over all domains in 'a, and accessor functions get: 'a -> t and set: t -> 'a -> 'a to allow a domain to access and update its private abstraction within the global abstraction.

Flows. Mopsa operates by induction on the syntax of the program. To handle non-local control flows, we use continuations (similarly to Astrée [START_REF] Bertrane | Static Analysis and Verification of Aerospace Software by Abstract Interpretation[END_REF]): we collect not only environments reaching the current program location, but also those at previously encountered jump locations. Suspended flows are merged back into the current flow when reaching the corresponding jump target. Expressing flows as continuations makes it possible to abstract very complex non-local control, such as generators in Python [START_REF] Fromherz | Static value analysis of Python programs by abstract interpretation[END_REF]. Flow continuations are implemented as maps from flow tokens into the global abstraction 'a. Tokens belong to an extensible type, thus allowing a domain to add new control flow abstractions independently from the remaining domains.

Example 2.1. We give in Fig. 2 an example of a transfer function for handling forward goto statements in C. Flows are enriched with a new token T_goto annotated with the target label. When reaching a statement goto label, the current environments are moved to token T_goto label, before being reset to ⊥ because the next control location becomes unreachable. Encountering label: stmt merges environments associated to T_goto label into current environments, and returns a post-condition of stmt via the manager. The default case returns None, indicating that other domains should handle the other constructions. Such a pure iterator domain does not maintain any abstract state by itself, hence t = unit. Despite its brevity, the code in Fig. 2 analysis. It is completely decoupled from other domains, and thus highly reusable.

Evaluations. Domains in Mopsa can implement dynamic rewriting rules to simplify expressions by exploiting the available abstract information. A classic use is transforming modular arithmetic from C expressions into mathematical arithmetic, easier to handle in relational numeric domains, after ensuring the absence of overflows in the current state.

After a statement or expression is transformed by one domain, it is executed again via the manager on all existing domains. We must take care to avoid infinite rewriting loops. Mopsa introduces the notion of zones to avoid this problem. Zones define (possibly overlapping) AST fragments, such as expressions with modular arithmetic or purely mathematical expressions. When adding a new language, the extensible type Zone.t of zones can be enriched along with the extensible type of statements and expressions. Calls to transfer functions and rewriting tag input and output AST with zone information, and the manager routes the calls accordingly to relevant domains. It is then easy to ensure that abstract computations and rewriting progress until completion.

Another contribution of Mopsa is the ability to handle natively disjunctive evaluations. Domains can return different results for different parts of the input abstract environment. Consider the following example from Python analysis: Example 2.2. Fig. 3 shows the evaluation of an index access on Python lists. We assume that lists are abstracted with summary and length variables over-approximating the contents and the number of elements, as done in [START_REF] Fromherz | Static value analysis of Python programs by abstract interpretation[END_REF]. When analyzing a read access, the function getitem_cases is used to partition the pre-condition w.r.t. the length. The first flow flow1 represents the case when index i is outside the size of self. The associated evaluation is an empty expression since an exception is raised. The second flow flow2 is obtained by filtering the pre-condition verifying that the list contains exactly one element. In this case, the summary variable is returned as a sound simplification of index access. Finally, when the list contains at least two elements, a temporary variable is created as a copy of the summary variable using the expand function, similarly to the case of summarized arrays [START_REF] Gopan | Numeric Domains with Summarized Dimensions[END_REF]. With the expression, a cleaning function is returned that will be called to remove the temporary variable once all rewritings are done.

Queries. When a domain needs specific information maintained by another domain, it can fetch them via queries, similarly to Astrée [START_REF] Cousot | Combination of abstractions in the Astrée static analyzer[END_REF]. The type _ query is an extensible public GADT type that can be enriched by domains. For example, an interval query can be defined by: type _ query += Q_interval: expr -> Itv.t query Numeric domains handle requests to Q_interval in the transfer function ask, and client domains retrieve this information via their manager by calling man.ask (Q_interval e) flow. GADT typing ensures that the returned value has type Itv.t.

Domain Composition

The global abstraction of an analysis instance is constructed at run-time by composing domains according to a user-given configuration file. An illustrative example is depicted in Fig. 4 representing a simplified version of an analysis of C. Three types of generic composers are used to connect leaf domains:

Iterators. This composer iterates sequentially over a set of domains, which is materialized with in Fig. 4. Lattice operators are defined pointwise, and transfer functions are called in sequence until one succeeds: domain i is invoked only if previous domains j < i returned None. This composition is useful to combine a set of iterators defining transfer functions for disjoint parts of the AST, such as loops, function calls, etc. In addition, it allows plugging new iteration schemes easily, e.g., replacing the induction-based iterators with CFG-based ones.

Reduced products. The classic method employed in most static analyzers (e.g., [START_REF] Bertrane | Static Analysis and Verification of Aerospace Software by Abstract Interpretation[END_REF]) for creating reduced products is via cascading binary functors. Mopsa provides instead a generic n-ary reduced product composer that enables better propagation of reduction channels. Lattice operators are defined pointwise and transfer functions of argument domains are called in parallel. All post-conditions are given to a userdefined reduction operator, that can access directly abstract elements of any domain in the pool and can exploit the published reduction channels to refine the final post-condition.

Stacks. Another novelty in Mopsa is a stacked reduced product of n functors sharing the same subordinate domain instance. This form of composition is useful when several domains depend on an external domain to delegate management of parts of their abstract state. Consider the case of cell and smashing abstractions from [START_REF] Bertrane | Static Analysis and Verification of Aerospace Software by Abstract Interpretation[END_REF][START_REF] Miné | Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics[END_REF] in Fig. 4. Both domains need a pointer domain for address resolution and a numeric domain for abstracting numeric environments. By sharing the same numeric domain instance, relations between cells and smashed variables can be inferred.

Experiments

We instantiated two analyzers, one for C (Fig. 4) and one for Python (Fig. 5). We note that the configurations share several domains (underlined), including iterators, heap and numeric abstractions. C benchmarks were taken from the Juliet Test Suite (v 1.3) for C/C++. We selected all the C tests corresponding to the following categories: CWE190 on integer overflows, CWE369 on divisions by zero, and CWE476 on null pointer dereferences. Each category provides several test cases, themselves split in two programs: a bad program containing an error, and its corrected version. Python benchmarks were performed on regression tests from the official Python 3.6.3 distribution, that test the builtins of the language and the standard library. The current configuration for the Python analysis does not provide an analyzer able to handle all the 500 regression tests; we selected 9 tests in the scope of our configuration (see [START_REF] Fromherz | Static value analysis of Python programs by abstract interpretation[END_REF] for more information). Tables 1 and2 provide results of these experimentations: ✓ are good programs for which no alarm was raised, ✓ are bad programs for which an alarm was raised, ✗ are good programs for which the analyzer raised an alarm (false positive), ✱ are programs that could not be handled by the analyzer (e.g., by lack of stubs). False positives in CWE369 are due to the use of a non-partitioned numerical domain for the analysis of programs testing divisions by zero; thanks to the modularity of the analyzer, this could be avoided by adding a partitioning domain.

Figure 1 .

 1 Figure 1. Unified signature for abstract domains.

 is the complete transfer function of a domain that adds C-style forward goto to an type token += T_goto of Ast.label let exec stmt man flow = match stmt with | S_c_goto(label) -> (* Case of S ♯ goto label *) let cur_env = Flow.find T_cur man flow in let flow' = Flow.add (T_goto label) cur_env man flow in let flow'' = Flow.set T_cur man.bottom man flow' in Post.return flow'' | S_c_label(label, stmt) -> (* Case of S ♯ label: stmt *) let goto_env = Flow.find (T_goto label) man flow in let flow' = Flow.add T_cur goto_env man flow in let flow'' = man.exec stmt flow' in Post.return flow'' | _ -> None

Figure 2 .

 2 Figure 2. Transfer function for forward goto statements.

(

 * Case of E ♯ list.__getitem__(self, i) *) let flow1, flow2, flow3 = getitem_cases self i man flow in let evl1 = let flow' = man.exec (mk_raise "IndexError") flow1 in Eval.empty flow' in let evl2 = Eval.singleton (summary self) flow2 in let evl3 = let tmp = mk_tmp () in let flow' = man.exec (expand tmp (summary self)) flow3 in Eval.singleton tmp flow' ~cleaner:[remove_var tmp] in Eval.or_list [evl1; evl2; evl3]

Figure 3 .

 3 Figure 3. Evaluation of index access on lists in Python.

Table 1 .

 1 We have presented the design principles of Mopsa, a new platform for static analysis development through compositions of highly reusable abstractions. It is not yet featurecomplete, but it is already successfully used in research projects to support the analysis of non-trivial C and Python codes[START_REF] Fromherz | Static value analysis of Python programs by abstract interpretation[END_REF][START_REF] Journault | Modular static analysis of string manipulations in C programs[END_REF]. In the future, we plan to extend the support for C standard libraries and Python built-ins to be able to analyze realistic codes. Other research projects on Mopsa include static analysis of novel properties beyond safety, such as a portability analysis. We plan to release Mopsa as open-source. Benchmarks on regression tests of Python 3.6.

	C program	C libs	C desugarisation					
	C switch C interproc	loops	Regression test test_augassign	Lines Tests Time ✓ ✗ ✱ Coverage 273 7 645ms 4 2 1 85.71%
					test_baseexception	141	10	20ms	6 0 4	60.00%
	intraproc	interproc	C goto	test_bool	294	26	47ms 12 0 14	46.15%
					test_builtin	454	21	360ms 3 0 18	14.29%
					test_contains	77	4	418ms 1 0 3	25.00%
		heap			test_int_literal	91	6	29ms	6 0 0	100.00%
					test_int	218	8	88ms	3 0 5	37.50%
	C cells	×	C smash		test_list test_unary	106 39	9 6	88ms 11ms	3 0 6 2 0 4	33.33% 33.33%
		C integers		Total	1693	97	1.71s 40 2 55	43.30%
	C pointers							
			boxes						
	Leaf domains	Functor domains	Iterator composer					
	Product composer	Stack composer						
	Figure 4. C analysis configuration.					
	5 Conclusion and Future Work						
	Py program	Py libs	Py desugarisation					
	Py exceptions Py generator	intraproc					
	interproc	loops	Py objects					
	Py containers Py data model	heap					
			boxes					
	Figure 5. Python analysis configuration.					

Table 2 .

 2 Benchmarks on CWE from the Juliet test suite.

	tests	Loc Tests	Time	✓	✓	✗	✱	Coverage
	CWE190 440k 6840 11.0mn 2584 3213 0 1043	84.75%
	CWE369 109k 1368 3.30mn	76	380 304 608	55.55%
	CWE476 25k	522 0,207mn 270 252	0	0	100%
	Total	574k 8730 14.5mn 2930 3845 304 1651	77.60%

This work is partially supported by the European Research Council under Consolidator Grant Agreement 681393 -Mopsa.