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A two species hyperbolic-parabolic model of tissue growth

Piotr Gwiazda∗† Benôıt Perthame‡§¶ Agnieszka Świerczewska-Gwiazda‖†

August 25, 2018

Abstract

Models of tissue growth are now well established, in particular in relation to their applications
to cancer. They describe the dynamics of cells subject to motion resulting from a pressure gradient
generated by the death and birth of cells, itself controlled primarily by pressure through contact
inhibition. In the compressible regime we consider, when pressure results from the cell densities and
when two different populations of cells are considered, a specific difficulty arises from the hyperbolic
character of the equation for each cell density, and to the parabolic aspect of the equation for the
total cell density. For that reason, few a priori estimates are available and discontinuities may
occur. Therefore the existence of solutions is a difficult problem.

Here, we establish the existence of weak solutions to the model with two cell populations which
react similarly to the pressure in terms of their motion but undergo different growth/death rates.
In opposition to the method used in the recent paper [16], our strategy is to ignore compactness
on the cell densities and to prove strong compactness on the pressure gradient. We improve known
results in two directions; we obtain new estimates, we treat higher dimension than 1 and we deal
with singularities resulting from vacuum.
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Introduction

The topic of modeling tissue growth has recently progressed with various inputs from physics and
mechanics [29, 13, 19, 30]. Models are now used for image-based prediction of cancer growth [9, 31].
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They describe the dynamics of cell number density subject to motion resulting from a pressure gradi-
ent generated by the death and birth of cells, itself controlled primarily by pressure through contact
inhibition. In the compressible regime, pressure results from a combination of the cell densities and
controls both the motion through Darcy’s law and birth and death of cells according to a finding in
[12] and commonly used since then. Models with a single type of cells have been studied recently by
many authors, as well as their incompressible limit [28, 27, 21, 22, 25]. More general formalisms using
incompressibility conditions also occur in two phase flows, and they appear, e.g., in oil recovery [1, 2]
where each phase has its own pressure. Models may also contain several “phases”, and have also been
widely established and studied [14, 32, 15, 20, 6]. For instance, a specific question is to understand
when segregation occurs [5, 16].

Here, we consider the following compressible two cell population model, that we state in the full
space for the sake of simplicity, ∂tn1 − div[n1∇p] = n1F1(p) + n2G1(p), x ∈ Rd, t ≥ 0,

∂tn2 − div[n2∇p] = n1F2(p) + n2G2(p),
(1)

with

n := n1 + n2, p = nγ , γ > 1. (2)

We assume that there is a value PH > 0 (the name homeostatic pressure was coined in [30]) such that
the smooth functions Fi, Gi, describing the division/death rates of cells, satisfy the properties

F (p) := F1(p) + F2(p) ≤ 0, G(p) := G1(p) +G2(p) ≤ 0, ∀p ≥ PH . (3)

We also assume that the initial data n01, n
0
2, n

0 = n01 + n02 satisfy

n01 ≥ 0, n02 ≥ 0, p0 := (n01 + n02)
γ ≤ PH , (4)

n0(1 + |x|2 + | ln(n0)|) ∈ L1(Rd), (5)

∇p0 ∈ L2(Rd), ∆p0 ∈Mloc(Rd),
(
∆p0

)
− ∈ L

2
loc(Rd), (6)

where Mloc(Rd) refers to the vector space of locally bounded measures. At some point, we will also
need the restrictions that γ is large enough when d ≥ 5 and that near p = 0 some cancelation occurs,
namely

γ > 2− 4

d
, sup

0≤p≤PH

|F (p)−G(p)|2

p1/γ
≤ CH . (7)

In words, the total proliferation rates of cells n1 and n2 are the same when p ≈ 0.

A specific difficulty arises from the hyperbolic character of the equation for each cell density ni,
and to the parabolic aspect of the total cell density n. For example, it is known that solutions n1, n2
may have discontinuities. For that reason, the existence of solutions is a difficult problem by lack of
strong a priori estimates. Also we cannot hope for strong solutions in general. Here, we establish the
existence of weak solutions. In opposition to the method used in the recent paper [16], our strategy is
to ignore compactness on the cell densities and to prove strong compactness on the pressure gradient.
Therefore, we improve known results in two directions; we treat higher dimension than 1 as in [16]
and we deal with vacuum while [6] only considers uniformly positive and smooth solutions.
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Theorem 1 (A priori estimates) With the assumptions (3)–(6), the following estimates hold true
for all T > 0 with constants C(T ) which only depend on the bounds in the above assumptions

n(x, t) ≥ 0,

∫
Rd
n(x, t) dx ≤ CeCt, p(x, t) ≤ PH , (8)

∫ T

0

∫
Rd

|∇p|2

p1−1/γ
dxdt ≤ C(T ). (9)

Assuming also (7), we have for t ∈ (0, T ), and with φ(·) ∈ C2
Comp(Rd) a localizing function,

∫
Rd
|∆p(t)|2−φ(x) dx ≤ C(T ),

∫ T

0

∫
Rd
|∆p(t)|3−φ(x) dxdt ≤ C(T ), (10)

∫
Rd
|∆p(x, t)| φ(x) dx ≤ C(T ). (11)

Since our framework includes the Barenblatt solutions, see [33], we know that these estimates are
sharp in the sense that ∆p may be a singular measure supported by the free boundary. Note that p
being bounded, the estimate (9) also gives an L2

t,x bound on ∇p. Another a priori estimate is also
available, which we do not use in the subsequent results, and that we postpone to the Appendix.

As a consequence of the estimates in Theorem 1, we establish the following stability result

Theorem 2 (Stability of weak solutions) Assume (3) and (7) and that the family of initial data
satisfies, with uniform bounds, the assumptions (4)–(6). Then, the corresponding weak solutions nεi ,
with the above bounds true, satisfy after extraction of subsequences,

nεi ⇀ ni, in L∞
(
(0, T )× Rd

)
− w∗, i = 1, 2,

nε → n, pε → p, in Lq
(
(0, T )× Rd

)
, 1 ≤ q <∞,

∇pε → ∇p, in L2
(
(0, T )× Rd

)
and n1, n2, p satisfy, in the weak sense, the system (1)–(2) with initial data n01, n02.

Finally, these two results lead us to the existence theorem, which is the main result of the current
paper.

Theorem 3 (Existence of weak solutions) With the assumptions of Theorem 2, there exists a
weak solution n1, n2, p ∈ L∞((0, T )× Rd) to the system (1)–(2), i.e., for i = 1, 2∫ T

0

∫
Rd

[
−ni∂tψ + ni∇p.∇ψ −

(
n1Fi(p) + n2Gi(p)

)
ψ
]
dxdt =

∫
Rd
n0iψ(0) dx (12)

holds for all ψ ∈ C1
Comp(R× Rd) and relations (2) hold a.e. in (0, T )× Rd.
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The main observation is that, while our problem is of hyperbolic nature, we can take advantage of
informations coming from the parabolic equation on n

∂tn− div[n∇p] = n1F (p) + n2G(p) =: nR(c1, c2, p), x ∈ Rd, t ≥ 0, (13)

where, following [16], we define

ci =
ni
n
≤ 1 and ci(x, t) = 0 when n(x, t) = 0,

R = c1F (p) + c2G(p) ∈ L∞. (14)

Next, multiplying equation (13) with p′(n), we compute that p satisfies

∂tp− |∇p|2 − γp∆p = γpR. (15)

It is also useful for later purpose to state the equation for the ci’s

∂tci −∇p.∇ci = c1Fi(p) + c2Gi(p)− ciR. (16)

To obtain the equation for ci we multiply the equation for ni with 1/n and add it to the equation for
n multiplied by −ni/n2. Indeed, observe that

− 1

n
div[ni∇p] +

ni
n2

div[n∇p] = − 1

n
∇ni.∇p−

ni
n

∆p+
ni
n2
∇n.∇p+

ni
n2
n∆p = −∇(

1

n
ni).∇p

and the remaining terms are immediate.

The rest of the paper is devoted to the proofs of these three theorems which we perform in the three
next sections. Some remarks and open problems are commented in the conclusion.

1 Proof of Theorem 1

The first estimates come from the balance law expressed by the equation (1) and from the maximum
principle for equation (15). One easily gets, by integrating (13) over Rd and using the Gronwall
inequality, that ∫

Rd
n(t, x) dx ≤

∫
Rd
n0(x) dx exp(t‖R‖∞). (17)

To show the uniform bound on p we multiply (15) with (p − PH)+. Observe that for any η ∈ C2 it
holds ∆η(p) = ∆pη′(p) + η′′(p)|∇p|2, which allows us to handle the highest order term with η′(p) =
p(p− PH)+. Thus we get

1

2
∂t(p− PH)2+ + [γη′′(p)− (p− PH)+]|∇p|2 − γ∆η(p) = γp(p− PH)+R(p). (18)

We integrate over Rd and observe that as γ > 1, thus γη′′(p)− (p− PH)+ ≥ 0 and

1

2

d

dt

∫
Rd

(p− PH)2+ dx ≤ γ
∫
Rd
p(p− PH)+R(p) ≤ 0, (19)

where the last inequality follows from (3) and (4).
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Before passing to the next estimate, on |∇p|2, let us observe that the second moment of n is bounded.
Indeed, multiplying (13) with x2ΦL, where ΦL(|x|) is a radially symmetric smooth function, which
vanishes outside the ball of radius L + 1, equals to 1 on the ball of radius L, with ∇ΦL and ∆ΦL

bounded uniformly in L; and integrating by parts over Rd gives

d

dt

∫
Rd
x2nΦL dx+

γ

γ + 1

∫
Rd
nγ+1(x2∆ΦL + 4x∇ΦL + 2ΦL) dx =

∫
Rd
x2nRΦL dx. (20)

Since nγ ≤ PH , we can furthermore obtain

d

dt

∫
Rd
x2nΦL dx ≤ C

∫
Rd
x2nΦL dx+

∫
Rd
nΦL dx+

∫
{L≤|x|≤L+1}

nx|∇ΦL| dx+

∫
{L≤|x|≤L+1}

nx2|∆ΦL| dx,

(21)
where the constant C depends on ‖R‖∞, γ and PH . As n ∈ L1, we can claim that the second term
on the right-hand side is bounded. For the moment let us assume that n vanishes sufficiently fast at
infinity, what we will prove later. Then, by the Lebesgue dominated convergence theorem we can pass
to the limit in terms containing ΦL and using that n vanishes for large x and both ∇ΦL and ∆ΦL are
uniformly bounded, we show that the last two terms on the right-hand side vanish. We complete the
estimate by applying the Gronwall inequality.

The estimate (9) comes from the entropy relation. We multiply (13) with ΦL lnn, where ΦL is the
same truncation function as above, integrate over Rd, and find

d

dt

∫
Rd
n(ln(n)− 1)ΦL dx+

1

γ

∫
Rd
p−1+1/γ |∇p|2ΦL dx

− 1

γ − 1

∫
{L≤|x|≤L+1}

p
1− 1

γ (ln(p)− 1)∆ΦL dx =

∫
Rd
n ln(n) RΦL dx.

(22)

It is easy to observe that if the function n, and thus also p vanishes sufficiently fast, then again the
integral over the annulus vanishes as L → ∞ and we conclude (9). For that purpose we recall also
that a control of the second moment in x is used here to control the negative values of n ln(n). Indeed,
observe that∫

Rd
n| ln(n)| dx =

∫
Rd
n ln(n) dx−

∫
{x∈Rd:n<1}

n ln(n) dx ≤
∫
Rd
n ln(n) dx+ 2

∫
Rd
n|x|2 dx+ c. (23)

And the above inequality allows us to get∫
Rd
n| ln(n)| dx ≤ ‖R‖∞

∫ T

0

∫
Rd
n| ln(n)|+ 2

∫
Rd
n|x|2 +

∫
Rd
ndx+

∫
Rd
n0(ln(n0)− n0) dx+ c. (24)

We complete the estimate (9) using the Gronwall lemma.

Finally, the fundamental estimates (10) come from Aronson and Benilan’s method [4, 33] for the
porous media equation with several adaptations. Firstly, and this s a new feature here, we weaken
their estimate to L2 rather than L∞. Secondly, we need to localize the estimate in space. Thirdly, we
adapt the functional under consideration using also the idea from [28], and we do not work directly
with ∆p but with

w = ∆p+R, ∂tp = |∇p|2 + γpw.
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We compute
∂t∆p = 2(∂ijp)

2 + 2∇p∇∆p+ γ∆(pw),

∂tR = Rc1∂tc1 +Rc2∂tc2 +Rp∂tp

= F (p)[∇c1.∇p+ ξ1] +G(p)[∇c2.∇p+ ξ2] +Rp[|∇p|2 + γpw]
(25)

where
ξi := c1Fi(p) + c2Gi(p) + ciR, i = 1, 2,

are the right-hand sides from equations (16). Therefore, since c1 + c2 = 1, we find

∂tw = 2(∂ijp)
2 + 2∇p∇∆p+ γ∆(pw) + [F (p)−G(p)]∇c1.∇p+Rp[|∇p|2 + γpw] +Bdd1

with “Bdd” terms which are bounded in L∞,

Bdd1 := F (p)ξ1 +G(p)ξ2,

but this may change from line to line. Since

∇p.∇∆p = ∇p.∇(w −R) = ∇p.∇w − div(R∇p) +R(w −R)

this is also

∂tw ≥
2

d
(∆p)2 + 2∇p∇w − 2div(R∇p) + 2R(w −R) + γ∆(pw)

+ [F (p)−G(p)]∇c1.∇p+Rp[|∇p|2 + γpw] +Bdd1.
(26)

The negative part, that we denote by |w|−, therefore satisfies, with sgn− := 1I{w<0},

∂t|w|− ≤−
2

d
|w|2− + 2∇p∇|w|− + 2sgn−div(R∇p) + 2(1− 2

d
)R|w|− + γ∆(p|w|−)

− sgn−[F (p)−G(p)]∇c1.∇p− sgn−Rp|∇p|2 + γRpp|w|− +Bdd
(27)

using that −2
d(w−R)2 = −2

dw
2 + 4

dRw−
2
dR

2, where the last term we include within bounded terms
that we still gather in Bdd.

We reorganize this inequality as (here the parameter α > 0 can be chosen as small as we wish)

∂t|w|− ≤− (
2

d
− α)|w|2− + 2∇p∇|w|− + γ∆(p|w|−) + 2sgn−div(R∇p)

− sgn−[F (p)−G(p)]∇c1.∇p− sgn−Rp|∇p|2 +Bdd .

Notice that, above, we have applied the Young inequality to the terms 2(1− 2
d)R|w|− and γRpp|w|−,

that is

2R|w|−(1− 2

d
) ≤ α

2
|w|2− + c(α)R2, Rpγp|w|− ≤

α

2
|w|2− + c(α)|Rpγp|2,

and thus the term Bdd is given by

Bdd := F (p)ξ1 +G(p)ξ2 −
2

d
R2 + c(α)(R2 + |γRpp|2).

We need to localize and use a nonnegative, compactly supported, smooth test function Φ to compute

d

dt

∫
Rd

|w|2−
2

Φ dx ≤ I + II. (28)
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The terms II are those with ∇Φ which are certainly better because they contain one less derivative
in the unknowns.

For the difficult term we have, after several integrations by parts, in particular to eliminate deriva-
tives in c1 which are the worse,

I ≤− (
2

d
− α)

∫
Rd

Φ|w|3− dx−
∫
Rd

Φ|w|2−∆p dx− γ
∫
Rd

Φp|∇|w|−|2 dx+
γ

2

∫
Rd

Φ|w|2−∆p dx

− 2

∫
Rd

ΦR∇|w|−.∇p dx+

∫
Rd

Φc1[F (p)−G(p)]|w|−∆p dx

+

∫
Rd

Φc1[F (p)−G(p)]∇|w|−.∇p dx+ C

∫
Rd

Φ|w|−|∇p|2 dx+

∫
Rd

Φ|w|−Bdd dx .

(29)

where C is constant which here takes into account c1(F
′ − G′) as well as Rp and which is changing

from line to line below.

The linear and quadratic terms in |w|− are not a problem because the dominant term contains a
cubic power of |w|−. We observe about the third-power terms that∫

Rd
Φ|w|2−∆p dx =

∫
Rd

Φ|w|2−(w −R) dx = −
∫
Rd

Φ|w|3− dx−
∫
Rd

Φ|w|2−Rdx.

Because R = G(p) + c1[F (p)−G(p)], we also have

I ≤− (
γ

2
+

2

d
− 1− α)

∫
Rd

Φ|w|3− dx− γ
∫
Rd

Φp|∇|w|−|2 dx

− 2

∫
Rd

ΦG∇|w|−∇p dx+

∫
Rd

Φc1[F (p)−G(p)]|w|−∆p dx

−
∫
Rd

Φc1[F (p)−G(p)]∇|w|−.∇p dx+ C

∫
Rd

Φ|w|−|∇p|2 dx

+ (1− γ

2
)

∫
Rd

Φ|w|2−Rdx+

∫
Rd

Φ|w|−Bdd dx ,

(30)

it holds∫
Rd

Φc1[F (p)−G(p)]|w|−∆p dx = −
∫
Rd

Φc1[F (p)−G(p)]|w|2− dx−
∫
Rd

Φc1[F (p)−G(p)]|w|−Rdx

and estimating further (the second term of the above we include already in
∫
Rd Φ|w|−Bdd dx),

I ≤− (
γ

2
+

2

d
− 1− α)

∫
Rd

Φ|w|3− dx− γ
∫
Rd

Φp|∇|w|−|2 dx

+ 2

∫
Rd

ΦG|w|−∆p dx+ 2

∫
Rd

ΦG′(p)|w|−|∇p|2 dx

+
1

2

∫
Rd

Φpc21|∇|w|−|2 dx+
1

2

∫
Rd

Φ
[F (p)−G(p)]2

p
|∇p|2 dx+ C

∫
Rd

Φ|w|−|∇p|2 dx

+ (1− γ

2
)

∫
Rd

Φ|w|2−Rdx−
∫
Rd

Φc1[F (p)−G(p)]|w|2− dx+

∫
Rd

Φ|w|−Bdd dx .

(31)
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We arrive at the final form, using the constant CH in (7),

I ≤− (
γ

2
+

2

d
− 1− α)

∫
Rd

Φ|w|3− dx− (γ − 1

2
)

∫
Rd

Φp|∇|w|−|2 dx

+ C

∫
Rd

Φ|w|2− dx+
CH
2

∫
Rd

Φ
|∇p|2

p1−1/γ
dx+ C

∫
Rd

Φ|w|−|∇p|2 dx+

∫
Rd

Φ|w|−Bdd dx .
(32)

where a constant C standing next to the integral
∫
Rd Φ|w|−|∇p|2 dx takes into account also 2G′. The

first two terms on the right-hand side are the “good terms”. Indeed, they have a good sign, unless
γ > 2(1− 2

d), which is automatically satisfied as we assume γ > 1 in d ≤ 4 and in higher dimensions
implies higher requirement of the exponent γ as stated in (7). The difficult term is at the highest
order ∫

Rd
Φ|w|−|∇p|2 dx = −

∫
Rd

Φ[∇|w|−p∇p+ |w|−p∆p] dx. (33)

which is under control. Indeed,∫
Rd

Φ∇|w|−p∇p dx ≤ (γ − 1

2
)

∫
Rd

Φp|∇|w|−|2 dx+ c(γ)

∫
Rd

Φp|∇p|2 dx.

Here, the first term on the right hand side just cancels the second “good term”and the second is
bounded.

For the second term of the right-hand side of (33) we have∫
Rd

Φ|w|−p∆p dx =

∫
Rd

Φ|w|−p(w −R) dx = −
∫
Rd

Φ|w|2−p dx+

∫
Rd

Φ|w|−pR dx

where both these terms are under control to give the final estimate

I ≤ −(
γ

2
+

2

d
− 1− α)

∫
Rd

Φ|w|3− dx+ C. (34)

The terms containing gradient of Φ are collected in II

II =

∫
Rd
∇p|w|2−∇Φ dx− γ

∫
Rd
∇p|w|2−∇Φ dx− γ

∫
Rd
p∇(|w|2−)∇Φ dx− 2

∫
Rd
R∇p|w|−∇Φ dx

+

∫
Rd

[F (p)−G(p)]c1∇p|w|−∇Φ dx+ 2

∫
Rd
∇ΦG|w|−∇p dx−

∫
Rd
∇Φ|w|−p∇p dx

(35)

and they all do not bring additional difficulties.
Therefore, using the inequality (28) and the negative sign in the right hand side of (34), we obtain the

a priori estimates announced in (10). The L1 bound for ∆p in (11) is a simple consequence because∫
Φ∆pdx is bounded, therefore

∫
Φ|∆p|+dx is controlled by

∫
Φ|∆p|−dx which itself is controlled

thanks to (10).

2 Proof of Theorem 2

The goal here is to explain the main compactness argument which is used to pass to the limit in an
approximate sequence. As in [16], the compactness in time is a major issue.
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Weak convergence of the quantities nεi follows from the bound in L∞. The strong convergence of pε

follows from compactness by Sobolev injections. Indeed, on the one hand, we control
∫ T
0

∫
Rd |∇p

ε|2dxdt
from (9) because the pressure is bounded by PH . On the other hand, we may win time compactness
by the Lions-Aubin Lemma using equation (15), which also reads

∂tp
ε = (γ − 1)|∇pε|2 +

γ

2
∆pε2 + γpεRε, (36)

and the space compactness on pε together with the known bounds provide time compactness. There-
fore the expression nε = (pε)1/γ shows that we may also extract a sub-sequence of nε which converges.

The strong compactness for ∇pε is more involved. It mainly relies on the second estimate (10)
which provides the space compactness, still by the Sobolev embedding theorems. Indeed, the control
in L1

loc of ∆pε is enough for compactness of ∇pε, a fact which can be inferred from the representation
formula for the solution of the Laplace equation.

For time compactness of ∇pε, we write, using (36),

∂t∇pε = ∇
[
(γ − 1)|∇pε|2 + γpεRε

]
+
γ

2
∇∆pε2.

Again, we know the local space compactness of ∇pε from the previous paragraph, the right hand side is
a sum of space derivatives of bounded functions, therefore we may apply the Lions-Aubin compactness
argument and find that ∇pε is compact in space and time.

To pass to the limit in the equations is now easy. All the nonlinear terms, that are

nεi∇pε, nεiFj(p
ε), nεiGj(p

ε),

have limits as products of weak limits of nεi by strong limits of pε and ∇pε. This completes the proof
of Theorem 2.

At this stage, let us point out that our strategy differs deeply from that in [16] based on BV
estimates for the quantities cεi in one dimension. This estimate is somehow sharp since examples with
discontinuities on the nεi are known. Also the method for time compactness is very different since [16]
use a control of the Wasserstein distance.

3 Proof of Theorem 3

We already have a priori estimates and a weak sequential stability result, thus to complete the exis-
tence proof we need to construct an approximate system compatible with these estimates. We do that
in two steps. Firstly, we make positive the initial data and prove a control from below by a (small)
Gaussian. Secondly, we introduce a uniform parabolic regularization.

First step. A regularized problem with a positive control from below. We show that the function

n(t, x) = c exp

(
−|x|

2

2
− ct

)
(37)

is a subsolution to equation (13) if we choose c sufficiently large. Since ∂tn = −cn, ∇n = −xn and
∆n = dn + |x|2n, we may insert (37) into the equation for n and as we search for a subsolution, we
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change equality to inequality. We obtain

− cn− γ(γ + 1)nγ+1|x|2 + γnγ+1 −Rn ≤ 0 (38)

which holds true choosing c large enough so that the inequality is satisfied

− c− γ(γ + 1)

[
exp

(
−|x|

2

2
− ct

)]γ
|x|2 + γ

[
exp

(
−|x|

2

2
− ct

)]γ
+ ‖R‖∞ ≤ 0. (39)

It is now a matter of standard estimates, [33], to obtain that if we start with the specific initial

condition larger than n0, we will call it n0δ := n0 + δ exp(−|x|
2

2 ), with δ > 0, then the solution to the
problem will be larger than the subsolution n given by (37) with c large enough.

Thus our first approximation step is to replace an initial data n0 by n0δ as it is introduced above.
In a consequence the corresponding solution nδ, as well as pδ are locally bounded away from zero, we
call these bounds nδ and p

δ
. The solution has a regularity Lq(0, T ;W 2,q

loc (Rd)), see [33] for details and
the method in [6].

Note that an analogue maximum estimate can be proven to provide a bound from above and justify
that n vanishes at infinity, what we announced earlier.

Second step. A uniformly parabolic approximation. We consider the system of equations, which
consists of a parabolic equation for n and hyperbolic equations for c1 and c2. Thus we construct a
parabolic approximation of the equation for ci, i = 1, 2. Let ε > 0,

∂tc
ε
i −∇pε.∇cεi − εdiv[pε∇cεi ] = cε1Fi(p

ε) + cε2Gi(p
ε)− cεiR(pε). (40)

Note that all the quantities are for simplicity labelled only with ε, but they depend both on ε and δ,
i.e. pε := pε,δ as well as the other quantities. We proceed now as follows: We solve a parabolic system

consisting of (13) and (40) with initial data p0δ and
n0
i,δ

n0
δ

, completed with the relation pε = (nε)γ .

The equations (40) allow to observe the crucial property, which ci possessed and which was the only
information on these quantities used in a priori estimates. Indeed, adding the equations on cεi , we
keep the fundamental relationship cε1 + cε2 ≡ 1 thanks to the definition of R in (14), since initially
cε1 + cε2 = 1. Finally, with the fully parabolic framework at hand, it is in the folklore of the domain to
obtain the existence of the coupled problem between nε and cεi .

Next, we notice that all the a priori bounds used to pass to the limit are true. Multiplying with
cεi |wε|−Φ and integrating over (0, T )× Rd gives

∫
Rd
|cεi |2|wε|−Φ dx+

∫ T

0

∫
Rd
∇pε.∇cεi cεi |wε|−Φ dxdt

+ ε

[∫ T

0

∫
Rd
pε|∇cεi |2|wε|−Φ dxdt+

∫ T

0

∫
Rd
pε∇cεi∇|wε|−Φ dxdt

]
=

∫ T

0

∫
Rd

[cε1Fi(p
ε) + cε2Gi(p

ε) + cεiR(pε)]|wε|−cεiΦ dxdt+

∫
Rd
|cεi (0)|2|wε|−Φ dx.

(41)
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We observe that∫ T

0

∫
Rd
∇pε.∇cεi cεi |wε|−Φ dxdt =

1

2

∫ T

0

∫
Rd
∇pε.∇|cεi |2|wε|−Φ dxdt

= −1

2

∫ T

0

∫
Rd

∆pε|cεi |2Φ dxdt− 1

2

∫ T

0

∫
Rd
∇pε|cεi |2∇Φ dxdt

− 1

2

∫ T

0

∫
Rd
∇pε|cεi |2∇|wε|−Φ dxdt.

(42)

Consequently, we find that

ε

[∫ T

0

∫
Rd

pε|∇cεi |2|wε|−Φ dxdt+

∫ T

0

∫
Rd
pε∇cεi∇|wε|−Φ dxdt

]
≤ C

∫ T

0

∫
Rd
|∆pε|Φ dxdt+ C

∫ T

0

∫
Rd
|∇pε|∇Φ dxdt+ C

∫ T

0

∫
Rd
∇pε|cεi |2∇|wε|−Φ dxdt

+ C

∫ T

0

∫
Rd
|wε|−cεiΦ dxdt+

∫
Rd
|cεi (0)|2|wε|−Φ dx.

(43)
Therefore the first integral on the right-hand side can be again estimated by∫ T

0

∫
Rd
|∆pε|Φ dxdt ≤

∫ T

0

∫
Rd

(|wε|− +R)Φ dxdt.

This approximation step will affect our a priori estimates on the level of using computations (25),
as additional terms related with parabolic approximation, which are estimated above, will appear.
Taking these into account, we may pass to the limit as in Section 2, first with ε → 0 and no major
difficulty arises. Thus we obtain a limit system for n and ci’s, but still we lack the information whether
the equations for ni are satisfied in distributional sense. To recover this we multiply the equations for
cεi with nε and add the equation for nε multiplied with cεi . Let us then define nεi := cεin

ε and observe
that this operation will lead us to equations for nεi

∂tn
ε
i − div[nεi∇pe]− εdiv[pε∇cεi ]nε = nε1Fi(p

ε) + nε2Gi(p
ε) (44)

The only term that needs to be discussed is εdiv[pε∇cεi ]nε. To show that this term vanishes in a limit
observe that∫

Rd
div[pε∇cεi ]nεφdx = −

∫
Rd
pε∇cεi .∇[(pε)

1
γ ]φdx−

∫
Rd
pε∇cεi (pε)

1
γ∇φdx

= −1

γ

∫
Rd

(pε)
1
γ∇pε.∇cεiφdx−

∫
Rd

(pε)
1
γ
+1∇cεi .∇φdx

=
1

γ

∫
Rd

(pε)
1
γ ∆pεcεiφdx+

1

γ

∫
Rd
∇((pε)

1
γ ).∇pεcεiφdx+

1

γ

∫
Rd

(pε)
1
γ∇pεcεi∇φdx

+

∫
Rd

(pε)
1
γ
+1
cεi∆φdx+

∫
Rd
∇[(pε)

1
γ
+1

]cεi∇φdx.

(45)
Since pε and cεi are bounded, then the first term on the right-hand side is bounded due to (11). The
boundedness of the second term is provided by (9). For the third and fifth term we use Young’s
inequality and argue with boundedness of ∇pε in L2

t,x. The fourth term is obvious. Thus after letting
ε→ 0 this error term will vanish. Finally we let δ → 0 and complete the proof.
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4 Conclusion and perspectives

We have proposed a strategy to prove existence of weak solutions for a two species model of tumor
invasion. It relies on the extension of the Aronson-Benilan regularizing effect for porous media equa-
tions which provides estimates of the Laplacian of the pressure. The most important limitation so
far is a combined condition on the two bulk growth terms and it is an open question to remove it. A
route in this direction could be to use the energy type estimate given in Theroem 4 in the appendix.

A question which we do not handle here is the strong compactness on the nεi in the stability re-
sult of the approximation process. The bounds on ∆p are too weak for the L1 theory in [18] and are
boarder line to apply the compactness theorems in [3, 7] which require that D2p is a bounded measure.

The extension to more than two species, with the present strategy, requires combined conditions on
the three growth terms which read, in the case of three species for instance, c1F (p)+c2G(p)+c3H(p) ≤
Cp1/γ whenever the nonnegative ci satisfy c1 + c2 + c3 = 1. Then, the analysis goes through without
major changes.

There are other questions which arise in this area and that we leave open. One of them concerns
the ‘incompressible limit’ γ → ∞ which has attracted much attention recently [28, 21, 17, 20, 22]
because of its relation to congested traffic [24, 8, 25, 26]. Clearly the bounds provided here are not
enough to investigate this question. However the one dimensional case is under investigation [10] based
upon arguments from [16]. Another question is about different mobilities, see [23, 12, 11], where the
parabolic aspects of the equation for n = n1 + n2 do not apply.

A Additional a priori bounds

Another remarkable estimate can be obtained for solutions of the system (1)–(2). We give it here for
the sake of completeness. It can be interpreted as some kind of energy because the kinetic energy is

given by EK = n |v|
2

2 = p1/γ |∇p|
2

2 .

Theorem 4 (Energy type a priori estimates) With the assumptions (3)–(6), the following esti-
mates hold true with constants C(T ) which only depend on the bounds in the above assumptions. For
α∗ = 2

γ , we control ∫ T

0

∫
Rd

[
div(p

α∗+1
2 ∇p)− p

α∗+1
2
|∇p|2

2p

]2
≤ C(T ), (46)

∫
Rd
pα∗ |∇p(t)|2 dx ≤ C(T ) ∀t ∈ (0, T ). (47)

Proof. These two estimates, (46) and (47) come together and require some elaborate computations.
We write

∂t∇p = ∇[|∇p|2 + γp∆p+ γpR],

∂t
|∇p|2

2
= ∇p.∇[|∇p|2 + γp∆p+ γpR],

12



∂tp
α |∇p|2

2
= pα∇p.∇[|∇p|2 + γp∆p+ γpR] + αpα−1

|∇p|2

2
[|∇p|2 + γp∆p+ γpR].

Therefore, we find

d

dt

∫
Rd
pα
|∇p|2

2
=

∫
Rd

[−pα∆p− αpα−1|∇p|2 + αpα−1
|∇p|2

2
] [|∇p|2 + γp∆p+ γpR]

d

dt

∫
Rd
pα
|∇p|2

2
=

∫
Rd

[−pα∆p− αpα−1 |∇p|
2

2
] [|∇p|2 + γp∆p+ γpR]

but pα∆p is not a good quantity. So the right-hand side has to be rewritten (divide it by γ)

−[p
α+1
2 ∆p+ αp

α+1
2
|∇p|2

2p
] [p

α+1
2
|∇p|2

pγ
+ p

α+1
2 ∆p+ p

α+1
2 R] =

−[div(p
α+1
2 ∇p)−α+ 1

2
p
α+1
2
|∇p|2

p
+αp

α+1
2
|∇p|2

2p
] [p

α+1
2
|∇p|2

pγ
−α+ 1

2
p
α+1
2
|∇p|2

p
+div(p

α+1
2 ∇p)+p

α+1
2 R]

= −[div(p
α+1
2 ∇p)− p

α+1
2
|∇p|2

2p
] [div(p

α+1
2 ∇p)− p

α+1
2
|∇p|2

2p
(α+ 1− 2

γ
) + p

α+1
2 R].

To create a negative square, we use the special value of α given by

α∗ =
2

γ

and the right-hand side is controlled as −[div(p
α+1
2 ∇p)− p

α+1
2
|∇p|2
2p ]2 + C

∣∣div(p
α+1
2 ∇p)− p

α+1
2
|∇p|2
2p

∣∣.
Therefore, we obtain the inequalities (46) and (47).
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