
HAL Id: hal-01870617
https://hal.sorbonne-universite.fr/hal-01870617v4

Submitted on 9 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Vademecum on Blockchain Technologies: When,
Which and How

Marianna Belotti, Nikola Božić, Guy Pujolle, Stefano Secci

To cite this version:
Marianna Belotti, Nikola Božić, Guy Pujolle, Stefano Secci. A Vademecum on Blockchain Technolo-
gies: When, Which and How. Communications Surveys and Tutorials, IEEE Communications Society,
2019, 21 (4), pp.3796-3838. �10.1109/COMST.2019.2928178�. �hal-01870617�

https://hal.sorbonne-universite.fr/hal-01870617v4
https://hal.archives-ouvertes.fr

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 1

A Vademecum on Blockchain Technologies:
When, Which and How

Marianna Belotti, Nikola Božić, Guy Pujolle, Stefano Secci, Senior Member, IEEE

Abstract—Blockchain is a technology making the shared
registry concept from distributed systems a reality for a
number of application domains, from the cryptocurrency one
to potentially any industrial system requiring decentralized,
robust, trusted and automated decision making in a multi-
stakeholder situation. Nevertheless, the actual advantages in
using blockchain instead of any other traditional solution (such
as centralized databases) are not completely understood to
date, or at least there is a strong need for a vademecum
guiding designers toward the right decision about when to
adopt blockchain or not, which kind of blockchain better meets
use-case requirements, and how to use it. In this article we
aim at providing the community with such a vademecum,
while giving a general presentation of blockchain that goes
beyond its usage in Bitcoin and surveying a selection of
the vast literature that emerged in the last few years. We
draw the key requirements and their evolution when passing
from permissionless to permissioned blockchains, presenting
the differences between proposed and experimented consensus
mechanisms, and describing existing blockchain platforms.

Index Terms—DLT, Permissionless Blockchain, Permissioned
Blockchain, Consensus Protocols, Blockchain Platforms.

I. INTRODUCTION

BLOCKCHAIN can be regarded as a quality leap from
the distributed database technology [1] studied since the

seventies, which consists in a transaction database shared by
different users. Generally, Distributed Ledger Technologies
(DLTs) are designed to deal with database in the form of data
shared in a distributed manner, and blockchain represents
one possible DLT to do it (see Fig. 1).

Blockchain allows sharing a ledger of transactions that
are read, validated and stored in a chain of blocks. Systems
based on the blockchain technology work in a distributed
manner, involving multiple agents or participants that ought
to be independent of each other, and which can use peer-
to-peer communications (P2P) to structure themselves into
a network collectivity. In contrast to legacy client-server
architectures [2], P2P network nodes do not always have
specific roles, a fixed hierarchy; roles may not exist, or
may change over time depending on the actual operation
behind a communication, i.e., a blockchain transaction. The
adoption of P2P as communication paradigm adequately
supports the goal that resources are shared and dispersed

M. Belotti and S. Secci are with Cnam, Cedric, ROC team (https://roc.
cnam.fr), Paris, France. Email: firstname.lastname@cnam.fr. M. Belotti is
also with Caisse des Dépôts, LabChain, Paris, France.

N. Božić and G. Pujolle are with Sorbonne Université, LIP6 CNRS, Paris,
France. Email: firstname.lastname@sorbonne-universite.fr. N. Božić is also
with SQUAD, France.

over a network which by construct forbids the existence
of providers or servers centralizing tasks. The result is
a decentralized ecosystem with no central authority [3].
Blockchain can hence be used in diverse sectors with several
applications. However, it is crucial for users to understand
whether the technology fits the problems that they are aiming
to solve or not. There may be cases where the price paid for
decentralization results commercially unreasonable [4, 5],
and this is one of the reasons why regular databases are still
widely used.

Fundamental bricks in the design of a blockchain tech-
nology are as follows: (i) communications and transaction
data storage are regulated by cryptographic security, net-
work nodes have to agree on both the validity and the
order in which transactions are listed in the blockchain,
(ii) distributed consensus protocols solve these issues in a
scenario where each node comes to vote. The first example
of such a blockchain is Bitcoin, proposed in 2008 by its
anonymous identity [6]. The Bitcoin behavior traces what
can be defined as the ‘classical’ blockchain, consisting in
a permissionless blockchain alternative enabling a digital,
distributed and decentralized payment system.

The Bitcoin blockchain is structured in order to protect
the ecosystem against attacks launched by malicious or
simply rational nodes of the network. As attackers may
exploit blockchain vulnerabilities in several ways to achieve
a privileged position on the network, the Bitcoin blockchain
was designed primarily for preventing the so called double
spending and Sybil attacks, without addressing other impor-
tant aspects [7, 8] such as: (i) complete anonymity – Bitcoin
provides its users with only pseudonymity; (ii) blocks have
a limited size, limiting both the number of transactions that
can be validated with one block and the number of validated
transactions per second (tps) – Bitcoin has a 1 MB limit
with a transaction rate ranging from 3.3 to 7, incomparable
to current credit card systems managing tens of thousands
tps [9]; (iii) eco-sustainability of the validation process –
Bitcoin is designed to make it difficult to validate blocks with
validating agents or miners required to solve computationally
heavy crypto-puzzles, and therefore consuming energy. As
a consequence, even if Bitcoin remains the most successful
cryptocurrency in circulation, a large number blockchain-
based cryptocurrencies have been defined – as of [10],
more than 50 alternative cryptocurrencies exist. Some of
these ‘Altcoins’ [11] can guarantee anonymity, solve the
energy consumption issue, reduce the price volatility (Stable-

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 2

Fig. 1: DLT evolution: from the traditional ledger to blockchain.

coins [12]) or rely on a permissioned blockchain – accessible
only to authorized nodes, in order to offer a more scalable
and fast system.

Going beyond the Bitcoin case, the general blockchain
technology aims at assuring the third party benefits such
as integrity, authenticity, security and non-repudiation in
a distributed and decentralized environment. In addition
to auditability and transparency, it offers immutability 1

(stored transactions are not editable once published) and
pseudonymity [13] to its users. Besides being evident for
currency systems, these features are useful for any trans-
actional system that is to be used by multiple independent
trustless parties.

With the introduction of permissioned blockchains, users
may opt for its adoption by placing constraints and cus-
tomizing the behavior of network nodes. While with classical
blockchains it is possible to build a completely open and
decentralized system, permissioned ones allow only a limited
number of users to have the right of validating transactions.
Validators constitute a set of nodes that can be publicly
elected or selected by a central authority. Limiting the
number of participants in the validation procedure can grant
significant scalability improvements by using appropriate
consensus mechanisms. Moreover, protocols changes (in
both the blockchain data and consensus structure) made
to support the execution of Turing-complete codes, facil-
itate the deployment of distributed applications (‘dapps’)
based on smart contracts. However, since full-permissioned
blockchains have many similarities with classic shared
databases, there can be situations where such a complex
architecture is not indispensable.

Although the blockchain technology is covered by many
surveys so far, few ones analyze it in its entirety without
dwelling on the permissionless part rather than on the
permissioned one. Our article explores all the layers char-
acterizing the blockchain architecture (i.e., network layer,
data model layer, execution layer, consensus layer and,
application layer), particularly focusing on those that are
crucial for deciding (i) whether to adopt the technology or
not and, (ii) which of the available blockchain solution come
closest to a certain use-case.

The paper is organized as follows. Section II provides an
overview on blockchain and Distributed Ledger Technology
(DLT) – we focus on the basic features of the technologies

1With the term immutability we refer to the concept of “immutability
unless the adversary thresholds exceedance”: a permissionless blockchain
become mutable whenever the majority of the network efforts are devoted
for the purpose of replacing validated blocks, a permissioned one can be-
come mutable following an attack by 1

3 of the network (see Appendix C-D).

and their architecture. In Section III we present the journey
of a generic blockchain transaction; we go through creation,
propagation and validation steps. Section IV describes the
consensus problem, its history and the several existing
algorithms; this section is positioned before the tutorial
part to better provide details fundamental for the possible
blockchain platform choice. Section V starts our blockchain
vademecum, about When to use blockchain, Which solution
to use and How to use it, then developed in Sections VI
(When), VII (Which) and VIII (How). Section IX presents
research challenges. We conclude the article in Section X. In
the appendix we propose three technical digressions on (i)
the structure of a blockchain register and its features, (ii) the
journey of a blockchain transaction and (iii) the consensus
in blockchain and the most important protocols.

II. DISTRIBUTED LEDGER TECHNOLOGY (DLT)

Looking back to the last half century of computer tech-
nologies, architectures and related design practices, we can
observe a fluctuation trend between the centralization and
subsequent decentralization of computing resources such
as computing power, storage, infrastructure, protocols, and
code. Mainframe computers are largely centralized, housing
most of computing resources. Today, computational capabil-
ities are distributed on the clients, the clients facilities, and
on distant servers. This approach gave rise to the ‘client-
server’ architecture which supported the development of
the Internet and relational database systems. Massive data
sets, originally housed on mainframes, can move onto a
distributed architecture, with data replicated from node to
node, or server to server, and subsets of the data can be
accessed and processed on clients, and then, synced back to
one of the servers.

Over time, Internet and cloud computing architectures
enabled global access from a variety of computing devices;
whereas mainframes were largely designed to address the
needs of large corporations and governments. Even though
such an Internet/Cloud architecture is decentralized in terms
of hardware, it has given rise to application-level centraliza-
tion. Currently, we are witnessing the transition from cen-
tralized computing, storage, and processing to decentralized
architectures and systems. The DLT is the key innovation
making this shift possible. Some distributed systems (e.g.,
permissionless blockchains) aim to give the control of digital
assets to end users without the need for intermediate nodes.
Others (e.g., permissioned blockchains), attempt at main-
taining a logical centralization of some information while
adopting a decentralized architecture. Not all DLTs make

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 3

use of a block architecture and can therefore be defined as
‘blockchains’ (e.g., The Tangle and BigchainDB [14, 15]).
First, we familiarize the reader with the terminology. Af-
terwards, we focus on the blockchain participation modes
characterizing our vademecum.

A. Terminology

• A distributed ledger is a type of digital data structure
residing across multiple computer devices, generally at
geographically distinguished locations [16].

• Distributed Ledger Technology (DLT) designs a type of
technology enabling storing and updating a distributed
ledger in a decentralized manner. As shown in Fig. 1,
the blockchain and all its variations belong to the
spectrum of DLTs. While distributed ledgers existed
prior to Bitcoin, the Bitcoin blockchain was novel in
that since marking the convergence of a set of existing
technologies (including timestamping of transactions,
P2P networks, cryptography, and shared computational
power) and enabling data sharing and storage without
entrusting any central party for the ledger maintenance.
DLTs consist of three basic components:

1) a data model that captures the current ledger state;
2) a communication language defined by transactions

that change the ledger state;
3) a protocol used to build consensus among partici-

pants around which transactions are accepted by the
ledger and in which order.

• A blockchain is a P2P DLT structured as a chain of
blocks, forged by consensus, which can be combined
with a data model and a communication language en-
abling smart contracts and other assisting technologies.
Cryptography lets blockchains overcome former DLTs
by offering secure data-transmission and by enabling
records immutability, in a decentralized environment
(see Appendix A-C). Hence, a blockchain is an im-
mutable read-only data structure, where new entries
(blocks) get appended onto the end of the ledger by
linkage with the previous block’s ‘hash’ identifier.

The collection of these features can be used to build a
new generation of transactional applications that establish
trust, accountability, and transparency at their core, while
streamlining business processes and legal constraints. In all
DLTs, there is an initial record - in a blockchain it is called a
genesis block. Each block includes one or more transactions.
Connecting to a blockchain involves users connecting to
this distributed ledger via, typically, an application. The
blockchain ledger consists of digital transactions represent-
ing interactions between nodes of a P2P network.
• Transactions are individual and indivisible operations

that involve exchange or transfer of digital assets. The
latter can be information, goods, services, funds or set
of rules which can trigger another transaction.

• Blockchain nodes are computing device connected to
the blockchain that support the network by maintaining

a copy of the ledger. Records replicas are stored by
full nodes which verify blockchain data integrity. There
can be nodes that, when connecting to the blockchain,
do not download the whole ledger but just a subset
of it; these lightweight nodes – served by full nodes
allowing them to transmit their transactions to the
network – download the headers of all blocks on the
blockchain in order to verify only if a transaction has
been included in a block. Whenever blockchain nodes
exchange assets via transactions in the network they are
considered as blockchain users. In order to transact with
the network peers 2, they generate a cryptographic key-
pair (see Appendix A-B). If the private key is used to
sign transactions, the public key is the one identifying
the user(s) address storing exchangeable assets (e.g.,
addresses with tokens defined as accounts or wallets).

Blockchain transactions are grouped into blocks, and there
can be any number of transactions per block while respecting
a given block size limit. Nodes on a blockchain network
group up these transactions and send them throughout the
network. Eventually peers synchronize to an exact copy
of the blockchain throughout the network. The blockchain
updating procedure needs a consensus, i.e., an agreement
among the network peers.
• Consensus in the network refers to the process of

achieving agreement among the network participants as
to the correct state of data on the system. Consensus
leads to all nodes sharing the exact same data. Therefore
a consensus algorithm (i) ensures that the data on
the ledger is the same for all network nodes, and (ii)
prevents malicious actors from manipulating the data.

The consensus procedure varies with different blockchain
implementations. While the Bitcoin blockchain uses a PoW-
based consensus mechanism, other blockchains and dis-
tributed ledgers are deploying a variety of consensus algo-
rithms belonging to two main classes: (i) Proof-of-X-based
algorithms and (ii) Byzantine Fault Tolerant algorithms.
We elaborate about consensus algorithms used in DLT in
Section IV.

Early blockchain-based systems were meant for managing
digital currencies. However, a generic DLT can fit any
digital asset exchange requirement. Contractual aspects of
an exchange, involving nodes’ rights and obligations, can be
digitalized and controlled by proper digital (smart) contracts.
• A smart contract is a computer program that executes

predefined actions when certain conditions within the
system are met. Smart contracts provide the transactions
language allowing the ledger state to be modified. They
can facilitate the exchange and transfer of any asset (e.g.
shares, currency, content, property). They reside into
the blockchain structure and are triggered along with
transactions. Smart contracts can be imagined as digital

2The term “peer” denotes those blockchain nodes that are directly
connected. Nodes that are initially alone seek to establish new connections
with a certain number of peers (e.g., 8 for Bitcoin) in order to be part of
the network. The terms node and peer are therefore interchangeably used.

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 4

protocols used to facilitate and enforce the negotiation
of a legal contract. Actions carried out by trusted third-
parties during a trade are replaced by pieces of code.

Having acknowledged that blockchain ledgers fit within a
wider spectrum of technologies, our contribution focuses
on the analysis of blockchain systems characterized by a
permissionless or permissioned participation mode.

B. Permissionless and permissioned participation modes

In conventional central data storage systems, only a single
entity, the owner or the administrator, keeps a copy of the
database. Consequently, this entity controls what data is con-
tributed and what other entities are permitted to contribute.
With the advent of DLT this radically changes in favor of
distributed data storage where multiple entities hold a copy
of the underlying database and are naturally permitted to
contribute. Data is replicated for all entities participating in
a distributed ledger in a network of so-called peers. Due to
distributed data storage, the difficulty arises to ensure that all
nodes agree upon a common truth, i.e., the correctness of a
ledger, as changes made by one node have to be propagated
to all other peer nodes in the network. The result of arriving
at a common truth is referred to as consensus among nodes.

With respect to accessing the blockchain network, there
are two main modes of operation: permissionless and per-
missioned – it is worth noting that in the literature, these are
often referred to as public and private blockchains, respec-
tively, but we use in this article a more precise taxonomy as
explained hereafter. The same division is adopted regarding
the participation to the ledger maintenance procedures, i.e.,
the possibility to modify (update) the network state. In the
first mode, participation is public and open-access: anybody
is allowed to participate in the network and in the consensus
process [17]; this mode is the one adopted by first generation
blockchains (e.g., Bitcoin). On the other hand, if participa-
tion is permissioned, participants have either restrictions on
writing (validation) rights only, or on both reading (access)
and writing rights. In the first case, permissions concern
the participation to the phases of the transaction journey
(see Section III) amending the log; any modification of the
transaction ledger is entrusted to a selected set of nodes.
Instead, the so-called full-permissioned blockchains select
participants in advance and restrict any sort of activity in
the network to these only.

The participation mode differentiates between decentral-
ized blockchain-based ledgers and those that additionally
offer disintermediation namely, that cut out any middleman
(i.e., permissionless blockchains). It is worth stressing that
in permissionless blockchains anyone with an Internet con-
nection can join the network, as well as write and read trans-
actions; this is why permissionless, public and open-access
are terms used interchangeably to refer to such technologies.
Participants here are pseudonymous, which is not preventing
malicious nodes to act within the network. Contrariwise,
full-permissioned blockchains, reduces these security risks
by whitelisting authorizations to join the network. In this

way, rather than displaying the transactions record to the
entire Internet community, transactions remain visible only
to a private network of nodes.

The differentiating points in the previous two paragraphs
allow us to support what authors in [18] propose, i.e., differ-
entiating full-permissioned blockchains from those allowing
anyone to read the blockchain state, denoted in [18] and in
the following as open-permissioned blockchains.

With respect to the nature of participants, permissioned
blockchains can be further classified in ‘private’ blockchains
– where the participants are within the same organization
– and ‘consortium’ blockchains – where the permissioned
blockchain is deployed among several organizations (con-
sortium). A consortium blockchain represents a joint effort
of several entities sharing a common goal or business need.
Furthermore, ‘private’ and ‘consortium’ attributes can be
linked to the blockchain governance system. There are some
developed by a single enterprise, and others by a joint effort
of several contributors (e.g., Corda and Hyperledger [19,
20]). The latter, for instance, is a cross-industry project led
by the Linux Foundation to advance blockchain technology
by coming up with common standards. The participation
mode has a braking impact on the decentralization trend in
distributed consensus, as we develop in Section IV.

C. Related surveys and tutorials

The blockchain technology is surveyed in many articles
published after 2014. About DLT, a term coined in [21]
in 2016, many works also address the comparison between
blockchain and previous technologies.

Most of the articles focus on cryptocurrency blockchain-
based systems, with different focus on all their aspects.
Tschorsch and Scheuermann [22] present a complete work
covering all aspects of the Bitcoin protocols, addressing
security, network and privacy aspects. Conti et al. [7] sur-
vey security and privacy issues of the Bitcoin blockchain,
while Khalilov et al. [13] focus on surveying techniques
enhancing anonymity and privacy in blockchains based on
PoW consensus with an emphasize on Bitcoin. Network
aspects and related attacks are surveyed by Neudecker and
Hartenstein [23]. Mining procedures for cryptocurrency are
presented by Mukhopadhyay et al. [24]. Consensus mecha-
nisms constructed using the Bitcoin architecture are surveyed
by Sankar et al. [25] and Garay et al. [26].

Besides crypotocurrency-oriented works, general tech-
nology aspects are also covered by other articles pre-
senting differences among permissioned and permissionless
blockchains. Zheng et al. [27, 28] presented a key features
overview for blockchains, covering both public and private
modes. Consensus protocols in blockchains are surveyed
in [29] and [30], the latter focusing on consensus evolution
from the Bitcoin blockchains to the private ones. Wang et
al. [31] presented the design methodologies for consensus
incentive mechanisms in blockchain. Li et al. [32] surveyed
attacks against blockchain networks, while security issues
and challenges are briefly presented in [33].

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 5

Furthermore, a comprehensive overview of blockchain
applications and use-cases is provided by [34]. Generic IoT
(Internet of Things) blockchain applications are presented
by Ferrag in [35]. Recently published, two tutorials [36, 37]
present comparisons between permissionless and permis-
sioned blockchains relating them to technology use-cases.

Our article differs from the state of the art in that it
aims at exploring all DLT aspects with the purpose of
providing readers with all the instruments and key aspects
for deciding which technology to use for their business. The
evolution from permissionless to permissioned blockchains
is presented along with their consensus protocols, features
and properties, in order to let users choose the most suit-
able blockchain. Unlike the decision patterns proposed so
far [38, 39], our work is not only presenting a sequence of
direct decision points (i.e., nodes of a decision tree where
one decision excludes the other) leading to a final state. Our
work is also focusing on those decision points where the
reader has to make compromises between strongly related
features (i.e., trade-off points). Moreover, we confront the
technology with traditional database technology for the
purpose of highlighting those cases in which deploying such
a complex block architecture is not worth the effort.

III. JOURNEY OF A TRANSACTION

Generally, transactions in blockchain are not strictly fi-
nancial and do not just carry and store transaction data.
Hence, the usage of blockchain transactions is not limited to
the simple assets exchange, but it also covers the execution
of computing instructions such as storing, querying and
sharing. Every transaction, once validated, is placed in a new
block which is added in the transaction ledger and linked to
the previous one. This results in an update of the system
state and of users’ local copy of the blockchain.

Whenever a user aims at interacting with another one
in the network, one or multiple transactions are created,
propagated, validated and confirmed by the network. Each
blockchain-based system differs from the others by the way
in which the steps of the ‘transaction journey’ are performed.
This journey starts at the moment in which the transaction
is created and ends when the transaction is recorded in the
blockchain. Four crucial steps of the journey of a blockchain
transaction can be identified:
• Creation: each blockchain adopts a predefined data-

structure that determines certain benefits and draw-
backs. Some data models are designed for specific
blockchain applications, others are designed to be as
flexible as possible. The sender of a transaction must
define, according to the data model, the origin and
the destination of “the object of the transfer” (i.e.,
the digital asset). Transactions must specify as well
the conditions under which the transaction object can
be redeemed (i.e., the conditions to update the system
state). Depending on the model, redemption criteria can
be simple scripts or more generally actual contracts
(smart contracts).

• Propagation: the transaction (eventually in a block)
is propagated to the validating peers. An efficient
transaction broadcasting has an impact on the transac-
tions processing speed. The communication protocols
adopted by blockchains aim at optimizing the network
performance while being resistant to manipulations and
attacks.

• Validation: it is the most crucial step since it character-
izes all the existing blockchain-based systems. At this
step transactions, collected in blocks, must address the
different stages of the consensus mechanism envisaged
to be considered valid and therefore executable. After-
wards, the block of transactions can be attached to the
blockchain, updating its state.

• Propagation: the valid transactions block is propagated
throughout the network in order to let all nodes to
update their own replica.

• Confirmation: blocks of transactions give rise to a real
transfer of assets only if, once validated and eventually
published on the blockchain, they are confirmed in the
final version of the ledger from which they may no
longer be discarded. To become part of it, the consensus
procedure has to come to the end, i.e, nodes have to
agree on a single chain of blocks.

Transitions from one step to another characterize the
technology. Cryptography is involved with hashing and key-
generation techniques. Verification checks and block forma-
tion may connect the two first steps or the central ones. More
precisely,
• transactions are signed once created (i.e., the signing

phase in Appendix A-B),
• their signature authenticity is checked (i.e., the verifica-

tion phase in Appendix A-B) when collected in blocks;
this can be done before or after the propagation to the
validating nodes.

Signing and verification grant to blockchain the funda-
mental features of integrity, authenticity and non-repudiation
mentioned in Appendix A-C.

The block formation procedure can be an integral part
of the validation step or a separate one depending on the
blockchain nature. The validation process in blockchains is
the expression of the distributed consensus on the transac-
tions to be executed, and on their ordering. Hence, validators
are all the peers involved from the moment in which the
transaction is included in a block (or its outputs are collected
in a block) upon its publication on the ledger. Peers collect-
ing transactions (or transactions outputs) in blocks may not
enter the validation phase. Any node of the network can
build blocks to its liking. The possibility of subjecting the
built blocks to the validation process (i.e., provide a block-
proposal) can be entrusted to a restricted circle of peers (or
even to a single one) denoted as leader nodes. Leading nodes
election procedure can be interwoven with the validation
procedure or it can be completely separated. Permissioned
blockchains adopt direct voting-based consensus protocols
enabling a drastic separation between the leader election

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 6

Fig. 2: The Transaction Journey. Once created the transaction is signed by the data-sender. Verification checks are performed
upon block creation by the leading nodes. Transaction can be collected in a block either before being transmitted to the
validating nodes or afterwards. The block of transactions is then validated, propagated and confirmed.

and the validation phase. Incentive-based consensus mech-
anisms admit the degeneration of the leaders’ role into the
validators’ one – in order to be elected as leaders peers have
to do the effort to validate the block they have constructed.

Due to the decentralized nature of blockchain technology,
leading nodes, as validating ones, are likely changed once
the proposed block of transactions is validated (as in the
Bitcoin blockchain where leaders and validators are elected
in a random fashion).

Related works: Comparisons of blockchains data-models
can be found in [40, 41]. Authors survey in [42] the scripting
language in both the UTXO and the account model (for Bit-
coin and Ethereum). Regarding the transactions propagation,
authors present in [43, 44] weaknesses of the propagation
model adopted in Bitcoin-like networks and countermeasures
to adopt for preventing any type of attack. In [23] authors
present how the propagation model can be appropriately
modified on the basis of specific strategic decisions. A
list of the different block propagation mechanisms used in
existing blockchains can be found in [32]. Concerning the
different validation and consensus procedures adopted in
blockchains few comprehensive works exists [30, 45, 46];
one may find much more literature focusing respectively on
permissionless [22] and permissioned [29, 47] environments.
We report in Appendix B a detailed analysis on the four
crucial steps for a blockchain transaction. The following
section presents the blockchain actors encountered by every
blockchain transaction along the journey. Fig. 2 illustrates
the transaction journey in its entirety: the four crucial steps,
the intermediate steps and the key actors in the path. The
proposed classification of the blockchain roles nodes can
assume follows the logic proposed in [40] and surveys the
different classifications presented in the white-papers of the
major platforms (see Table I).

A. Blockchain actors and corresponding roles
We highlight in the following the key roles that blockchain

nodes (with at least reading permissions) can assume.
1) Transacting parties: A blockchain transaction involves

two different types of actors related to single or multiple
blockchain users: the data-sender and the data-receiver. In-
teractions take place at address level: the sending-address(es)
and the receiving-address(es) digitally track the data-flow
(i.e., the transfer of digital assets) between the parties.
• Data-Sender: The data-sender is the node transferring

data through an atomic operation (i.e, transaction) to

a receiving node. The data-sender is not necessarily
coinciding with (i) the transaction creator, (ii) the node
with the right of initiating a data-transfer or, (iii) the
data-holder [48]. Smart contracts involve the creation of
a ‘locked’ transactions sequence that can be triggered
by an authorized node (or even by a node outside the
network) that may not be the owner of the transferred
data. However, the data-sender is the one responsible
for signing transactions (with its private key) in order
to authenticate the origin of the object of the transfer
(i.e., digital asset).

• Data-Receiver: Any user receiving a signed transaction
that can: (i) recover the sender’s public-key from the
message and (ii) verify the transaction authenticity (i.e.,
transaction author and signature correspondence), is a
data-receiver. Any blockchain node (user or contract
account) can recover and verify the signature allowing
tamper-proof transfers in the network.

2) Leading nodes: Consensus can be established by the
election of a temporary leader node acting as a ‘dictator’.
The leader is responsible for both deciding which block to
propose as a candidate to be included in the blockchain
ledger and verifying the block proposal correctness. The
leader goes out of power immediately after the validation of
its block proposal. During its round (i.e., time interval where
the leader has decisional power), the peer has no certainty
that its block will be confirmed. Whenever a round expires,
a new leader election starts.

The leaders election procedure is inherent in the consensus
mechanism adopted by blockchain systems. Permissioned
and permissionless blockchains adopt different methods to
establish the peer in charge of proposing blocks to validators.

3) Validating nodes: As mentioned before, validating
actors run the consensus algorithm and are responsible for
establishing the agreement on the proposals made by the
leading nodes. The validation of a block corresponds to the
consensus among validating nodes on which block to publish
and in which order.

Based on the journey of the transaction presented so far,
it can be seen that it is nothing but the actors assuming the
roles just described to characterize it. At the first stage the
transaction meets (i) the transacting parties, namely data-
sender and data-receiver; the transaction is then transmitted
to the (ii) leading peers responsible for verifying the cor-
rectness of the transactions, collecting them in blocks and

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 7

proposing the block as a good candidate for the validation; at
the final stage, (iii) validating peers proceed with the validity
attribution.

In permissioned environments, each actor has a different
role with no overlap in the procedures of block proposal
and validation. This is due to the scalable voting-based
consensus procedure adopted in permissioned blockchains
(see Section IV). Instead, open-access blockchains foresee
overlapping roles for the mining nodes. Indeed, mining can
be interpreted as a simulation of the leader election in tradi-
tional consensus protocols. Table I shows the different actors
of the most prominent blockchain platforms (reviewed in
detail in Section VIII) assuming the relevant roles previously
presented.

A blockchain transaction is intended to meet these
three main actors, but not only them. Some permissioned
blockchains improve their scalability by designating to other
peers different tasks such as execution-verification checks,
leader election and ordering (e.g. Hyperledger endorsers and
ordering service nodes [49]).

TABLE I: Blockchain peers acting as ‘transacting parties’,
‘leaders’ and ‘validators’ in the different platforms.

Platform Senders-Receivers Leaders Validators
Bitcoin [6] Users/Clients Miners Miners

Ethereum [50] Accounts Miners Miners
Hyperledger
Fabric [51]

Clients Ordering
Services

Validating
Peers

Corda [52] Transacting parties Transaction(s) issuer(s) only
Tendermint [53] Accounts Virtual

miners
Committee

Chain
Core [54]

Users/Clients Block
Generators

Block
Signers

Quorum [55] Accounts ‘Makers’ ‘Voters’

IV. CONSENSUS MECHANISMS

The word “consensus” refers to a convergence to a
common interest. Consensus is the task of getting multi-
agent systems with interacting agents to achieve a common
goal. Agents must reach an agreement regarding a certain
interest (a value or an action, etc.) depending on their
state. An example of how consensus concerns systems that
we use every day is Wikipedia; in such a case consensus
is implicit, since every time an edit is submitted to the
community before being published, it must be accepted by
other editors; whenever an edit is revised by another editor
and the revision is accepted, the system moves to a new
consensus abandoning the previous one.

A. Consensus in distributed systems and blockchains

Agreement problems see abundant applications in com-
plex systems dynamics [56] as well as in computer science
and communications [57]. In such systems, consensus pro-
tocols must deal with dynamic agents that may fail during
the agreement process.

The two phase commit (2PC) protocol [58], proposed in
1978, enables transaction processing in a distributed envi-
ronment where nodes can atomically commit transactions
trough pre-commit and validation phases. However, with
2PC any node failure compromises the consensus procedure.
In this context, fault-tolerance (see Appendix C-D) is defined
as a property such that the system continues operating
properly in the event of both process and communication
failures caused by both honest nodes (i.e, crash failures) and
nodes that act maliciously (i.e, Byzantine failures).

The state machine replication (SMR) technique [59] en-
ables the construction of fault-resilient consensus protocols;
robust against crash failures in trusted environments (e.g.,
Paxos and RAFT [60, 61]) and additionally capable of
tolerating Byzantine failures in networks of untrusted par-
ties (e.g., BFT). Any computation is considered as a state
machine mutating its state through request receiving. In a
distributed environment, state machines are replicated and
executed across multiple nodes. Though they do not evolve
simultaneously, they have to agree on a common sequence
of requests (state transformations) they are going to accept
in order to have consistent replicas. A popular class of state-
machine replication protocol is the one of Byzantine Fault
Tolerant (BFT) protocols [62, 63].

We develop in Appendix C desirable consensus protocol
properties and behaviors with respect to asynchronous com-
munications and data consistency guarantees, while recalling
the strong relationship of these aspects with fault tolerance
and the fact that in blockchain the consensus needed is about
both on the elements of the ledger and their order.

The first approaches to consensus in distributed databases
(2PC, atomic broadcast, SMR, BFT) can be considered as
the predecessors of consensus solutions for DLTs. First
generation blockchains (e.g., Bitcoin, Litecoin, Ethereum)
establish consensus among millions of users in a proba-
bilistic manner [26] thus, eventual consistency [64] took
over from the initial need to maintain a coherent view
of the system among participants. Failure-resilience char-
acterize the systems as long as malicious nodes remain a
minority in the P2P network (see Appendix C-D). The idea
is to introduce computational costs – to find a proof-of-
work that validates a block of transactions – for charging
peers who deviate from the default behavior (e.g., Bitcoin
adopts previous approaches for fighting email spam [65]
and preventing Sybil attack [66]). With the increase in
popularity for cryptocurrencies, scalability and performance
requirements changed significantly. Weaknesses of first gen-
eration blockchains led to a deeper analysis of the underlying
technology through the lens of distributed computing. At
a closer look PoW consensus procedure with its limited
scalability and hight latency wastes too much computational
resources. Appropriate amendments to the PoW procedure
can guarantee challenging scalability levels without energy
waste.

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 8

B. Consensus Algorithms

Several alternatives to PoW were proposed in order to
compensate for its complexity and scalability issues. The
idea was to replace the wasteful computations characterizing
the PoW consensus with alternative proofs of a performed ef-
fort in validating transactions. PoW consensus together with
protocols characterized by an effort-based leader election
form the class of proof-of-X (PoX) consensus algorithms as
defined by Tschorsch and Scheuermann in [22].

1) Proof-of-X Consensus: PoX protocols are designed
for permissionless blockchains and relay on a probabilis-
tic leader election process. In permissionless environments
every node has the chance to become a leader simply
proving that it made some “effort”. The latter may have
a computational, a monetary, or a storage nature or it may
be an effort to assert itself on the blockchain network. The
elected leader maintains his voting role till the new election’s
results are available. In the following we list and briefly
introduce the most used PoX-based algorithms. A detailed
analysis is provided in Appendix C-E.

a) Proof-of-Work: The blockchain nodes aiming at
validating a block of transaction (i.e., miners) should find
an hash value of the block that meet a certain difficulty
requirement. The winner of this competition can validate the
created block of transactions. Hence, winning miners act as
both leading and validating nodes. PoW does not guarantee
consensus finality (see Appendix C-C); transactions can be
considered as confirmed only when included in the longest
chain (See Appendix C-E1).

b) Proof-of-Stake and Virtual Mining Alternatives:
The PoS mechanism resumes the PoW one while passing
from a real mining to a virtual mining (i.e., consumption-
free mining). The leader election in these mechanisms is
based on the stakes owned by the network users determining
the voting power in the consensus. The idea beyond the
mechanism is that users with more commitments would not
be likely to attack the blockchain. Several variations of the
PoS consensus exist in order to (i) avoid the centralization of
voting power in “rich” committees and, to (ii) overcome an
attack known as nothing-at-stake [67]; it consists in validat-
ing as many blocks as possible resulting convenient for the
low computational cost to validate blocks (i.e., the same cost
to cryptographically sign a block). These variations generally
require validators to (i) weight their coin/stake or to (ii)

allocate some resources during the validation phase (see
Appendix C-E2). Alternative performing implementations
such as PoET [68] and PoI [69] fight against centralization
trends (i.e.,coin/resources accumulation) by respectively (i)
relying on a random timer to chose the leader of the round
and, (ii) incentivizing the eligible leaders to increase their
transaction flow and volume in the network. Moreover, in
order to be more efficient the mechanism can work with
restricted elections i.e, delegated proof-of-stake (DPoS [70]).

2) BFT and Hybrid BFT-based Algorithms: BFT proto-
cols work well in blockchains with a limited number of
participants, therefore they do not fit for public systems but
for closed ones. BFT algorithms guarantee both liveness and
safety (see Appendix C-A) of a network given that at least
2/3 of the participant are honest (i.e., PBFT protocol [71]).
The different BFT-based variations (see Appendix C-F) work
with additional permissions on the validating nodes.

In order to scale up the protocol, hybrid algorithms have
been created. It is possible to combine PoX and BFT by
using the former to create committees (i.e., communities
of nodes) and the latter to come to an agreement (see
Appendix C-G). This class of algorithms decouples the block
generation phase from the block validation phase; the two
process are independent and managed by different actors
(that can be the same nodes but with different roles).

C. Comparison between blockchain consensus protocols

Previous sections presented the problem of reaching con-
sensus in a distributed system. Traditional consensus proto-
cols have opened the way to PoX-type mechanisms and then
reconsidered in permissioned blockchains fro their perfor-
mances. Vukolic [45] work is one of the first at addressing a
comparative analysis on the different consensus procedures
however, it focuses only on the PoW-based algorithm and
traditional BFT scheme. Recent works [28, 29, 30, 46, 72]
compare different agreement protocols in terms of (i) node
identity management, (ii) energy saving, (iii) tolerated power
of adversary, (iv) transaction finality, (v) communication
complexity, (vi) nodes scalability, (vii) throughput and, (viii)
latency level.

Table II summarizes these comparative studies. The
data shows the tendency to implement safer and high-
performance (1000 tps) blockchain-based systems with low

TABLE II: Summary about consensus mechanisms comparative analysis

Property PoW PoS DPoS PoET PoI PBFT-&-
variants

Consortium
BFT

Hybrid
BFT-based

Node identity
management

permission-
less

both
cases

both
cases

both
cases

both
cases permissioned permissioned both

cases

Energy saving no partial partial partial yes yes yes yes
Tolerated power
of the adversary

< 25%
power

< 51%
stake

< 51%
peers

TEE < 50%
importance

< 33.3%
replicas

variable
(20%-33.3%)

< 33.3%
replicas

Finality 7 7 7 7 7 X X X
Msg overhead O(1) O(1) O(1) −O(n) O(1) O(1) O(n2) O(n2) O(n) −O(n2)

Nodes scalability > 1000 > 1000 > 1000 > 1000 > 1000 < 100 100 − 1000 100 − 1000
Throughput (tps) 7-30 100-200 millions 1000 4000 up to 110k up to 10k 1000

Latency (s) up to 600 up to 600 unknown unknown unknown less than 1 less than 1 up to 20

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 9

energy impact and low latency, that reach a final agreement
with the guarantee that the validated blocks will not be
discarded. It can be deduced that further work needs to be
done regarding the message overhead between the consensus
participants (n in Table II).

V. BLOCKCHAIN VADEMECUM: INTRODUCTION

Leveraging on the important background presented in the
previous section, this section is meant to start our blockchain
vademecum 3, to give to the reader a comprehensive tutorial
about when to use blockchain, which solution to use, and
how to use it, based on use-case requirements.

During the past few years, research societies along with
industrial and governmental institutions intensively worked
on DLT and blockchain, trying to understand better this
paradigm and its place in today’s market. This resulted in
many publications and standardization activities as well.
In the following, we provide the reader with a decision
model to understand When to use the blockchain technol-
ogy (Section VI) and Which type of blockchain suits a
certain use case best (Section VII). The decision model
is characterized by two decision paths (When and Which
paths) that can be traversed either consecutively or inde-
pendently; the decision points can be both direct questions
or trade-off points 4. Once decided the type of blockchain,
we provide the reader with a complete list of the most
popular blockchain frameworks in the market accompanied
by details on their structure, operation and implementation
(see Sections VIII-B and VIII-F) allowing the reader to
find the one that comes closest to her business case. As
of our knowledge, our effort is unique in the purpose and
the style, tackling these important questions in a more
direct, expressive and thorough way than in existing works
reviewed in Section II-C focusing on specific usages, modes,
or blockchain use-cases.

The design of the current blockchain-based systems comes
as a response to market needs (i.e., good level of perfor-
mance and scalability). Closed blockchains, where the de-
centralization target is not met, may one wander whether the
new technology can bring benefits with respect to traditional
solutions.

In the following, we use Fig. 3 as a support for the
When and the Which questions in Sections VI and VII.
Then, we address the How question in Section VIII. We
start by analyzing the major available blockchain platforms
and their characterizing elements, following the information
provided in Sections III and IV. Afterwards, we differentiate

3‘Vademecum’ is a term that may not be well-known by the reader. It
derives from the latin expression ‘Vade Mecum’, literally meaning ‘go with
me’. It refers to a synthetic collection of information concerning a specific
field or technique (blockchain in our case), having the goal to provide the
reader with quick and concise responses on the different details of the
specific field or technique.

4Trade-off points represent situations that involve a choice between
two or more aspects, where the loss of value for one aspect constitutes
an increase in value for the other one(s). In the proposed decision tree
alternatives are (i) blockchain or traditional database features for Section VI
and, (ii) permissionless or permissioned blockchain features for Section VII.

platforms according to the representative features of the
different blockchain layers. In addition, we present relevant
blockchain use-cases, strongly advertised and tested at
industrial level, applying to them the proposed vademecum
logic.

General purpose reading list: In developing this tutorial
we made use of a broad spectrum of documents going
beyond academic literature, and including books, white-
papers, technical reports, blockchain forums, discussion pa-
pers, and online encyclopaedias. We concentrated on works
showing real applications of blockchain in the industry going
beyond the well-known digital payment systems proposed
by cryptocurrencies. The main investigated areas were: (i)
finance, (ii) security-and-privacy, (iii) public, (iv) Internet-
of-Things (IoT), (v) smart business. We report such ref-
erence works in Table III. Some of these blockchain ap-
plications are presented in Section VIII-F for the ways
in which the blockchain technology has been chosen. In
addition, our reading list includes works investigating when a
blockchain can revolutionize a business [38, 39, 73], benefits
and drawbacks of both permissioned and permissionless
blockchains [36, 45, 74, 75, 76], and links with traditional
solutions [3, 77, 78, 79, 80].

TABLE III: Reading list on blockchain application domains

(i) clearing, collateralization, real estate [81, 82, 83, 84, 85].
(ii) personal data-management [48, 86].
(iii) energy [87, 88, 89],

health-care [90, 91, 92, 93, 94, 95, 96, 97, 98].
(iv) storage, authentication, e-commerce [99, 100, 101, 102]

communications & networking [103, 104, 105].
(v) supply chain [106, 107, 108], transportation [109, 110].

VI. WHEN TO USE BLOCKCHAIN?

This section focuses on the first general question of the
vademecum: when to use blockchain as a technology? Our
use-case oriented answer to the When question is given
passing through the following direct questions and trade-
off points (see Fig. 3). The vademecum aims to provide an
answer for any use-case questioning whether the blockchain
represents a good business solution.

1) Do you need to store and share a ledger state?: We
start from a situation where a ledger database is required
i.e., data in transaction form needs to be stored and shared.
Data constitute the ledger state, which is subject to updates
that must be shared over the network. Whenever it is not
needed to share a stored state, complex cryptographically-
based architectures result unnecessary for simply letting
stored data to be accessible. Therefore, in the presence of
a negative answer blockchain is certainly not needed and
traditional solutions are preferable.

2) Are there multiple potential writers?: The adoption
of blockchains makes sense only when data need to be
stored by multiple users and shared among them. Indeed,
in a blockchain multiple users (not necessarily all network

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 10

users) are supposed to have writing access and permission
to participate in the procedure to establish consensus among
parties. Blockchain lets business move from hierarchical
client-server systems with locked writing rights to decentral-
ized P2P interactions with multiple (if not all) nodes able to
write to the distributed ledger.

3) Who do you entrust with the ledger maintenance?:
Blockchain enables interactions among trustless actors cir-
cumventing any intervention by a central authority. The
need for decentralized systems arises whenever network
participants lose their trust on a (alternative or pre-existing)
centralized system. However, the transition from a central-
ized to a decentralized system is not necessarily radical;
blockchains can decentralize some functions while keeping
others centralized. Blockchain has revolutionized the concept
of ‘trust’, which is no more related to the identity of the
actors in charge of the validation procedure, but it is related
to the protocol architecture. Clients trust the technology that
is forcing validators to follow the protocol punishing or
making unfeasible any possible deviation. For such a key
strategic question on the trust, we can spot three possible
types of answers:

a) An external third party: the system maintenance is en-
trusted to an external entity which in case of failure
could be switched. In such a case, designers should opt
for a centralized architecture that is easy to deploy and
maintain by the trusted third party.

b) A group of selected actors: nodes in charge of updating
the ledger participate to the system. Their identity
can be known or unknown, however, the methods
for selecting these nodes and the targeted activities
are important aspects. Indeed, the class of partially-
centralized systems includes a spectrum of possibilities
such as adopting private distributed ledger, creating
consensus committee [30], and structuring the commu-
nication with external trusted systems [111]. Instead of
providing open-access to anyone, blockchains can bind
certain of their functionalities (read and write) arrang-
ing permissions. We may therefore have an escalation
of permissions, from the single permission to read the
transaction log to the ability of validating transactions.
At first, permissioned blockchains select participants
with network access controls; their identity must be
known. Then, permissions are given to implement any
type of change to the data registry; different trust
levels can be associated with different nodes’ roles
(see Section I). Moreover, whenever the validation of a
transaction is linked to an external variable realization,
one may choose whether to trust or not the actor
designated to communicate with the outside.
Regardless of any restrictions on the node roles, once
decided to trust a restricted entourage for the validation
process, one may wander which actor to entrust the ver-
ification of the operation correctness. Let us recall that
block verification consists in a repeated check of both

the chained blocks integrity and authenticity – carried
out in most cases by the validators themselves – and the
chained blocks validity. Blockchain transparency allows
any network participant to verify whether a published
block was validated according to the protocol since all
network nodes have the same view on the log. On the
other hand, verification checks are entrusted to a central
authority whenever participants differ in the view they
have of the ledger. Thus, the next question at this point
is:

3.b) Do you need the ledger to be publicly verifiable?
Whenever a system requires public verifiability, one
may keep restrictions on writing rights but at the same
time leave the freedom to everyone to observe the
system state – as for open-permissioned blockchains.
For those cases in which verification checks may not
be in the public domain, the choice between a private
blockchain (full-permissioned) and a traditional solu-
tion is clearly linked to the nature of the verifier(s).
Verifying peers coincide with the so-called validating
peers in a private environment where transactions val-
idation is performed by trusted parties. The choice
now is between a centralized verifier – leading to
the adoption of a traditional central database where
the group of trusted nodes organize themselves in a
central authority (with both reading a writing rights)
representing however, a potential single point of failure
– and a distributed verifier – consisting in several
trusted validators known to the network operating in
a P2P framework where all the participants in the
system may connect to each other. The adoption of
a blockchain (permissioned in this case) rather than a
traditional solution is dominated by trade-offs regarding
mainly the impact on the throughput, the costs, the
presence of the basic blockchain features, the failure
resistance level and the adaptability to different business
cases.

Trade-off 3.b) performance, cost efficiency and adapt-
ability VS blockchain features and failure resistance
Traditional centralized databases are widely used both
for their simple architecture – easy to adapt to each
use case and often affordable as the data is stored
and maintained from a single central computing node
– and, for the speed and ease in updating the data
they manage – every change is managed by the central
authority and immediately communicated to users [2].
In fact, the central authority can easily modify data with
CRUD (Create, Read, Update, and Delete) commands.
Thus, the technology strengths consist in high levels of
performance (in terms of transaction processing rate),
low costs in adopting the technology (in terms of design
and management cost, as conventional softwares are
cheaper than blockchain solutions) and high degree of
adaptability in managing any type of data and its use.
Despite the countless advances made by blockchain

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 11

technologies to reach higher levels of scalability,
throughput and latency, blockchain will likely always
be less performing than a centralized database. This is
because processing any change in a distributed system
– through transactions – requires additional efforts
consisting in: (i) applying and verifying the digital
signature, (ii) agreeing on a unique vision of the data
ledger, (iii) replicating data across the network and,
(iv) updating the ledger only with write-operations.
In blockchain the idea is that the validating nodes
independently process transactions and then at a second
stage compare the obtained results with the rest of the
network until they come to an agreement. However,
blockchain offers, at the same time, the six important
features presented in Section A-C (decentralization,
immutability, confidentiality, integrity, authenticity and
transparency), that are absent (in their entirety) in
traditional databases. In addition, since blockchain is
first and foremost a distributed ledger, it is robust
against node failures 5. Adopting or not blockchain is
therefore a matter of which set of quality properties to
privilege between (i) performance, cost efficiency and
adaptability and, (ii) blockchain fundamental features
and failure resistance.

c) The public community: Whenever trust cannot be laid
on a set of network nodes, it is better to have confidence
in a protocol (i.e., a set of rules) that guarantees the
correct functioning of a system maintained by the
public community. Permissionless blockchains enable
untrusted parties to interact without relying on any
man-in-the-middle (i.e., disintermediation). Transaction
history is fully transparent to everyone. Validation and
verification are carried out in a fully open and dis-
tributed fashion; any network node can participate in
the process possibly remaining pseudonymous.

VII. WHICH BLOCKCHAIN TO USE?
Thanks to the attractive blockchain properties (Sec-

tion A-C), the development community has worked hard
to broaden its range of applicability. At this point, the
vademecum suggests to apply blockchain also to multi-
access shared ledger situation such that there is a circle
of trust, and concessions in terms of performance, cost
efficiency and adaptability can be acceptable.

Permissionless blockchains require users to direct their
trust towards cryptography and related mathematics, while
permissioned ones ask for confidence in few (or all) nodes
of the network. Therefore, given that blockchain is the right
technology after the When question, at this stage the first
question the designer may wander is in which of the two
categories falls its use-case. In addition, if directed to a
permissioned blockchain one may choose whether or not
to put restrictions on data ledger access.

5However, it should be noted that for permissioned blockchains any
centralized procedure (such as validation, verification or external commu-
nication) can be considered as a single point of failure.

The vademecum chart in Fig. 3 can now be read from the
bottom to the top.

4) Which is the blockchain primary adoption?: Blockchain
can be primarily adopted as (i) a system of records (SOR)
and as a (ii) platform. Polarization toward the former or
the latter application class is important to characterize the
blockchain nature.

A. Blockchain as a system of records

SOR’s principal goal is storing data and wisely process-
ing it in order to re-present to users the history of data.
Blockchain constitutes an innovative solution to track the
history of information modifications that is characterized by
interesting features, including its transparency. The question
now is which blockchain solution between a permissionless
and a permissioned one is best for a SOR. Firstly, one should
realize if there are disclosure issues. Once understood the de-
sired privacy level (between anonymity and confidentiality),
the choice is a matter of trade-offs; high performance comes
at a cost.

4.A) Is confidentiality6 required? Privacy and confidential-
ity within blockchains are controversial; what permissionless
blockchains can hide to the network is the users’ identity
only, conversely, every operation performed in the network
is in the public domain. Hence, permissionless blockchains
guarantee users some degree of anonymity (pseudonymity)
without offering any confidentiality in transacting on the
blockchain. On the other hand, private blockchains (with
restrictions on both writing and reading operations - and
where participants are known in the network) can ensure
that ‘what happens in the network remains in the network’.
Therefore, if operations are not to be disclosed to the public,
the most appropriate solution is a blockchain that is not
accessible to everyone, i.e., a full-permissioned blockchain;
otherwise, the following trade-off allows discriminating
among a permissionless blockchain and a permissioned one.

Trade-off 4.A) performance VS cost efficiency: In the
absence of confidentiality constraints, one should concern
about the importance of performance over cost efficiency. In
order to achieve a processing rate of the order of thousands
tps, the classical permissionless blockchain structure must
be abandoned. Blocks of transactions should no longer be
processed one at a time; blockchain needs to adopt an archi-
tecture favoring the processing of multiple blocks in parallel.
These result in a more complex technology structure with
high design costs. Permissioned blockchains (both open-
permissioned and full-permissioned) offer good performance
due to their restricted nature where data validation, verifi-
cation, replication and modification are faster with respect
to a public environment. Thus, whenever priority is given to
the throughput, the best choice is in favor of permissioned
solutions (both full-permissioned and open-permissioned).

4.A.i) Which is the performance level required? If it
is required to have performance comparable to that of a

6We mean by the term ‘confidentiality’ the non-disclosure to the public
of the operations performed by blockchain users.

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 12

Fig. 3: When to use blockchain, and which type, instead of adopting a traditional database system. Red circles represents
trade-off points between crucial aspects for the different blockchain use-case. The red arrows indicate the consequence of
giving priority to one aspect rather than the other, while black arrows report answers to all the questions – coming with
an order – of anyone interested in the blockchain technology. ‘tps’: transactions per second.

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 13

centralized system, a possible solution is to store data (i)
off-chain or (ii) on-chain via smart contracts. Blockchain
initial aim was to enable data-storing on-chain; however the
kind of data stored was the transaction history. In the Bitcoin
blockchain external data was initially stored on the ledger
through unofficial transaction manipulation (e.g., writing in
a coinbase transaction or using a fake account address) dis-
covered and disseminated by avid network users [112]. Due
to the limited space provided by the OP-RETURN, second-
generation blockchains proposed alternative solutions based
on smart contracts and off-chain solutions. Data can be
included in a smart contract at variable or event level directly
on-chain (on a blockchain – no matter the nature – support-
ing smart contracts), however performance (up to thousands
tps) is not still comparable with the one offered by traditional
databases (e.g. Multichain early versions [113]). Off-chains
solutions are the best in terms of performance; raw-data
are stored off-chain, while it is possible to handle meta-
data or hashed-data on-chain as a complementary storage
(e.g., Swarm [114] and Filecoin [115]). However, the ease
of communication between the two technologies heavily
depends on the type of blockchain and the corresponding
off-chain solution chosen. The ideal off-chain storage is
a private cloud attached to the corresponding blockchain,
thus a full-permissioned structure (e.g., Microsoft Cryptlet
Fabric [116]).

B. Blockchain as a platform

In general a blockchain-based system enables digital data-
sharing, digital data-storing and virtual interactions among
peers. The principal goal of a blockchain platform is to
form P2P digital relationships favoring digital exchanges and
business automatization.

4.B) Which is the platform primary purpose? The central
question relies on the platform primary purpose between the
following fundamental categories:

i) Asset digital exchange: Blockchain enables the sharing
of any valuable data (i.e., asset) among parties without
any geographical and timing constraint. Both the asset
nature and the size of the data-flow impact on the choice
of the blockchain nature and its architectural design.
4.B.i) Which is the asset nature? Assets could be
sensible data that have to be managed restricting ac-
cess to the record – full-permissioned blockchains. If
no disclosure issue occurs, the quest of adopting or
not permissions in writing rights merely depends on
trade-offs: for better performance than that offered by
Bitcoin-like blockchains one should pay the price of not
guaranteeing full transparency (auditability) and equal
rights of participation.
Trade-off 4.B.i) performance VS blockchain features:
The choice whether to give priority to the basic
blockchain features rather than to the performance is
strictly linked to the nature of the exchanged assets
in the network. To give the reader an idea, let us

take the case of tokens. Blockchain became popular
thanks to assets tokenization; the aim is to create a
trading system of items that cannot be duplicated.
Cryptocurrencies propose alternative payment methods
through their tokens that represent a currency, i.e., a
generic payment instrument. Other types of tokens such
as security tokens – representing a participation, in
terms of dividends, voting rights, interest rates and/or
percentage of the issuing entity’s profits – and utility
tokens – representing only the right to purchase goods
and services of the issuing entity – were created on
blockchain in order to digitally participate in a business
having easy access to digital services-goods [117]. In
the case of currencies, all blockchain properties (au-
ditability in particular) are fundamental in the system,
thus blockchain designers are forced to loose something
in terms of performance since usually currencies are
intended for the widest possible public. On the other
hand, security and utility tokens are considered as an
alternative investment method, therefore transparency
is not essential in this case and one may adopt per-
missioned blockchains profiting from higher processing
rate with respect to permissionless solutions.

ii) Business automatization: Blockchain platforms allow
smart contract deployment and execution with the aim
of letting any business automate its functionalities.
After questioning the sensitivity of the automatically
managed data (as in question A.1), it is important
to consider the ability to support world changing ap-
plications. There is no perfect blockchain for every
use-case. However, what a selection of participants is
affecting the most are: (i) the non functional properties
of security and robustness in terms of failures resistance
and, (ii) all the features related to blockchain appli-
cability – that is, the flexibility to adapt the designed
blockchain protocol to different business cases. There-
fore, the choice is a matter of trade-off; more flexible
architectures are usually less robust.
Trade-off 4.B.ii) flexibility VS robustness: Permission-
less blockchains suffer from limitations in data-storing,
computations, scalability and performance which does
not make it applicable to many business situations. On
the other hand, permissioned blockchains result more
flexible for configuration since governed and hosted by
a single central committee of trusted nodes; therefore,
any type of change is made faster than in a fully
open and trustless environment. A classic example is
off-chain storage that results more intuitive in private
networks that ease communications between the off-
chain storage system and the blockchain [118]. Con-
cerning security and robustness: is it better to adopt
a permissionless blockchain architecture or to build a
new structure on top of it. In fact, fully open-access
distributed ledgers are quite robust against any type
of failure as long as 50% of the system nodes are
honest (see Appendix C-D). In order to have robust

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 14

Fig. 4: Blockchain adoption is possible by both (i) building an own framework or, (ii) leveraging existing platforms that
can be open source and/or provided by cloud services. Here, the major blockchain platforms related to the three blockchain
participation modes, are listed.

but performing public blockchains, a possible solution
is to use side-chains [119]. With side-chains one may
move assets and functions from the principal blockchain
(main-chain) to a second one. Thus, it is possible to
have a private blockchain linked to a permissionless
one. [112] gives a detailed report on the levels of perfor-
mance and flexibility in permissioned, permissionless
and open-permissioned blockchains. With regard to
security and robustness in DLT we refer to the works
of Lin et al. [33] and Li et al. [32].

VIII. HOW TO USE BLOCKCHAIN?

It will be important to assess HOW one can use
blockchain, thus this section is meant to give suggestions
for accelerating the implementation of the blockchain. As-
suming that the reader has already decided to use blockchain
and the type of blockchain to adopt, the next step would be
the choice between developing her own solution, or using
one of the existing platforms (Fig. 4).

- Open-source platforms: Different blockchain frame-
works can follow different visions in terms of ap-
plication fields [120]. While ones have a versatile
architecture that can be deployed in several industries,
from banking to supply chains, others are driven by
very specific use-cases. Nevertheless, available ma-
jor blockchain platforms can be easily classified into
four groups as illustrated in Table IV [40]. After

TABLE IV: Classification of frameworks

(Group I) Group (II)
Permissionless

Transactions only
(Bitcoin)

Permissionless
With Smart Contracts

(Ethereum)
Group (III) Group (IV)

Permissioned
Transactions only

(Chain Core)

Permissioned
With Smart Contracts
(Hyperledger Fabric)

having understood which of the permissionless, open-
permissioned and full-permissioned blockchain imple-
mentations is the most suitable, one can exclude some
solutions of those just presented with respect to their
nature (Fig. 4). Considering that new blockchain frame-
works regularly appear on a weekly basis, we survey
in the following only the mostly used ones for proofs
of concepts and prototypes. The reviewed blockchain
frameworks are open source (Section VIII-B).

- Blockchain on Cloud: Blockchain as a Service (BaaS)
is an offering that allows customers to leverage cloud-
based solutions to build and host their own blockchains:
applications, smart contracts and different blockchain
functions. It is indeed similar to the concept of Soft-
ware As A Service (SaaS) model . External providers
manage all tasks to keep the infrastructure operational
(Section VIII-E).

We compare the most prominent blockchain frameworks
differentiating their layers, highlighting their architectural
limitations and functional properties hence, providing all the
information necessary to consider a platform solution. This
tutorial part, where the characterizing features are listed and
compared, may enable the reader to use one of the existing
frameworks as a possible solution or as a guideline for
developing their own framework. We discuss in the follow-
ing pages along with architectural limitations, performance
evaluation, and a review on Blockchain as a Service (BaaS)
offer. Finally, we highlight the underlying vademecum logic
of representative industrial blockchain applications.

A. Multi-layer abstraction of a blockchain framework

We depict in Fig. 5 the general abstraction of blockchain
frameworks with a multi-layer view, marginally revised with
respect to the layer division proposed by Croman et al. [121]
and Dinh et al. [41], based on the recent advances in
blockchain frameworks described hereafter.

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 15

Fig. 5: Abstraction of a blockchain framework as a multi-
layer system.

At the application level we find blockchain applications,
such as a crypto-money wallets, in charge of communi-
cation within the blockchain network via transactions; it
encompasses all APIs and application level communication
protocols. At the consensus level we have the consensus al-
gorithms in charge of ensuring a single valid chain of blocks
in the system; it can be a static or a dynamic plug-and-
play consensus system, and it directly determines a system
adversary model and different nodes roles. At the execution
level we have the smart contracts environments such as
compilers, VMs, containers; it determines the transactions
execution mode (CVM, EVM, TxVM) and the languages
(Turing-complete or not) for smart contract development.
Indeed, all blockchains have built-in smart contracts that
implement their transaction logics. Bitcoin for instance first
verifies transaction inputs by checking their signatures, then
it verifies that the balance of the output addresses matches
that of the input ones. As the built-in part of Bitcoin protocol,
these types of ‘smart contract’ are part of the framework
code base. When we speak about smart contract languages,
we only refer to smart contracts that can be defined by users.
At the data model or storage level we have the data structure,
contents and possible operations on data storage as well
as ledger maintenance; it defines all the parts colored in
blue in Fig. 5. At the network level we find the transaction
forwarding and dissemination strategies as implemented by
transport-layer and network-layer protocols. We present in
the following diverse protocols and technologies from all
levels adopted by different blockchain frameworks.

B. Major blockchain platforms available

Different blockchain frameworks can follow different
visions in terms of application fields [120]. While ones
have an expendable architecture that can be deployed in
several industries, from banking to supply chains, others
are driven by very specific use-cases. Nevertheless, available
major blockchain platforms can be easily classified into
four groups [40] as illustrated in Table IV. We present in
the following how one can use major blockchain frame-

works available, i.e., whose code is open sourced: Bitcoin,
Ethereum, Hyperledger, Corda, Tendermint, Chain Core,
Quorum. Whenever appropriate, we recall aspects described
in the previous sections (e.g., on consensus, journey of a
transaction, block structure, etc). Note that, while many
different cryptocurrencies exist today [22], cryptocurrencies
frameworks comparison is out of the scope of this article,
although it is an interesting subject. Moreover, minor or
very young Blockchain platforms that we omit mostly follow
the pattern of one of the major platforms described in the
following. Fig. 4 positions the presented platforms with
respect to the three blockchain natures (i.e., participation
modes).

1) Bitcoin blockchain: Bitcoin is a public, permissione-
less PoW-based blockchain network, giving an open access
to its transaction logs. Besides its already well described
primary lifecycle, the Bitcoin protocol actually does fa-
cilitate a weak version of smart contracts as well, using
the UTXO model B-A: UTXO in Bitcoin can be owned
not just by a public key, but also by a script expressed
in a simple stack-based programming language, requesting
within a transaction attending to spend that UTXO, the data
that satisfies the script. However, the scripting language as
implemented is not Turing-complete.

As the first blockchain network publicly used, Bitcoin can
be seen as a rigid predecessor of todays more enhanced
frameworks that have overcame some of its limitations. With
in mind possible re-use of the Bitcoin framework for other
goals than the cryptocurrency one (e.g., data storage), it is
important to notice that Bitcoin network was meant to serve
as a public payment system without centralized determi-
nation and was designed accordingly, making it unsuitable
for permissioned private systems. Participant nodes in a
Bitcoin-like network can choose to be clients or miners.
Clients (users) are capable of receiving and sending transac-
tions while miners are in charge of mining toward PoW.
In practice, four distinguish processes keep the network
running: (i) Network Discovery process, (ii) Transaction
Creation process, (iii) Block validation process and (iv)
Mining process (software details can be found in [40]).

The P2P protocol is such that, in order to initiate a
transaction, a sending peer transmits a signed transaction
to its neighboring peers. Neighbors forward it in the overlay
network only if they have verified its validity; if a transaction
is invalid, the propagation stops. Miners, as well as all nodes
in the network, receive those new transactions through the
P2P network. They verify and store them in an unverified
transaction pool. In case the miner discover from the network
that a given block has been mined, it stops mining, it
updates its pool of unverified transactions and starts all
over again. Once mined, a new block is transmitted over
the P2P network. Every full node (those with a ledger)
checks the block validity before adding it to the ledger
(block header, a hash, nonce, and all included transactions).
This ‘order-execute’ architecture [49] requires all full nodes
to sequentially execute every transaction, which causes low

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 16

throughput performance. Two basic P2P network operations
are used: an attachment strategy, which defines how clients
establish connections to other peers, and a communication
strategy, which defines how nodes communicate with their
neighbor. Peer discovery in Bitcoin is performed by querying
a hard-coded list of DNS seeds for bootstrapping. In case
of previous connections, node can discover other peers
also by requesting the IP list from neighbors; moreover,
information based on own observations maintain a blacklist
of misbehaving IP addresses. In addition, Bitcoin limits
the number of connections per IP address range; this way
nodes do not establish too many connections, enhancing
their DoS resistance. The default number of connections is 8
(nevertheless, it was proposed to increase this number [122]).

The Bitcoin code is released under a MIT license [123].

2) Ethereum blockchain: Ethereum [124, 125] is an
open platform designed to build and use decentralized appli-
cations that run smart contracts, i.e., a blockchain network
of distributed applications that mechanically execute tasks
when certain conditions are met. This can be done at a larger
degree than what possible with the UTXO model in Bitcoin.

A smart contract is intended to enable a blockchain
with a built-in fully-fledged Turing-complete programming
language (named Solidity) to create contracts, allowing users
to design own applications by writing up the logic in a
few lines of code. This was an innovation when firstly
proposed, but today, others platforms do also support smart
contracts. As Bitcoin, Ethereum is also cryptocurrency-
based, i.e., miners work to earn the crypto token called
Ether, which is also used to pay transaction fees and services
in the Ethereum network. To execute a smart contract, an
Ethereum virtual machine (EVM) [124] must be hosted at
every network node. Ethereum uses a PoW-based consensus
algorithm, called Ethash, specifically created for Ethereum,
despite there are recently efforts to switch to alternative PoS-
based implementations. On an average, a block mining with
PoW takes 15s. The way Ethash provides a PoW is by
emphasizing memory hardness, i.e., the fact that memory
access can also be a bottleneck, besides the computing
power. Ethash is designed to consume nearly the entire
available memory access bandwidth; the PoW function is
made to be sequential memory-hard, i.e., the nonce search
requires a lot of memory and memory access bandwidth,
so that the memory cannot be used in parallel to discover
multiple nonces simultaneously [124]. Here smart contracts
are visible to all users of the blockchain, hence also making
security holes and bugs visible to everyone.

In terms of framework customizability, Ethereum cannot
be seen as a modular framework: embedded functionalities
cannot be changed on demand, even though there is no ‘one
fits all’ solution. Moreover, Ethereum uses state-machine
replication by implementing active-replication [126], where
transactions are ordered at first and then broadcasted and
executed sequentially on all nodes. The ‘Order-execute’
architecture explained in [49] requires all transactions to

be deterministic: this type of architecture is largely adopted
by blockchain frameworks, but it comes with overloads
discussed in the Section VIII-D. Used ‘account based’ data
model enables actors in an Ethereum network to create
transactions, create contracts, send messages and mine Ether.
Network maintenance is done thorough four processes [40]:

i. Network discovery, enabling new nodes to join.
ii. Transaction creation, which allows users to create

transaction or contracts and allows contracts to create
transactions and messages.

iii. Block validation, done by every full node in the network
before they add the new block to their blockchain.

iv. Mining, in charge of Ether mining and broadcasting a
new block to the network.

As already anticipated, Ethereum supports three type of
accounts: (i) Contract Account (CA) that can set up a trans-
action with address internally stored within a contract, or
establish a transaction with another CA; (ii) EOA (Externally
Owned Accounts) that initiate transaction to transfer ether to
another EOA, or create a new contract, or call the function of
an existing CA; (iii) Miners that can collect new unverified
transactions and compute a valid state of a ledger, validate
transactions, verify signatures and transaction fees, execute
codes and checking they do not run out of gas (i.e., fail
since the transaction fee paid out is not adequate for the
transaction processing complexity). P2P communications in
Ethereum rely on the Virtual P2P (Vp2p) wire protocol:
nodes communicate using a cryptographic transport protocol
coined RLPx [127]. RLPx uses a node discovery process
with a 512-bit public key as node identifier, an encrypted
handshake to establish connections; a node can connect to
a known peer (a previously connected peer from which a
corresponding session token is available for authenticating
the requested connection), or to a new peer. Nodes find peers
through the RLPx discovery protocols distributed hash table
(DHT). Peer’s connections can also be initiated through a
client-specific RPC API. A new node aiming to connect
to the Ethereum network has to download the source code
which comes with the IP address of a bootstrap node
assumed always to be online and connected to other correct
nodes. Following connections are established directly with
other nodes via the DHT.

While the main Ethereum platform is a public blockchain
network, the software is open-source and allows one to
download and configure the network to be a local private
network (participants are those that are granted permission
only) using the proof-of-authority (PoA) consensus engine.
We refer to Ethereum as the network in a public setup, used
to transfer Ether between participants. Hence, Ethereum
network achieves roughly 15-40 transactions per second
(tps) with an estimated latency around 15s per block.
In private setup Ethereum can achieve roughly thousand
tps [75, 128]. The Ethereum code is open sourced under a
GPL license [129].

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 17

3) Hyperledger: Hyperledger is an umbrella open-source
project hosted by The Linux Foundation, created to favor
cross-industry blockchain technologies [51]. At the moment
of writing, Hyperledger consists of fourteen projects, six of
which are distributed ledgers and the other eight projects are
supporting modules [130]. There are more than 270 organi-
zations in official the Hyperledger member community [74].
Considering that parties that join the network must be
authenticated and authorized, Hyperledger frameworks are
designed for permissioned blockchain applications (except
the Sawtooth framework detailed hereafter).

The Hyperledger Architecture Working Group identifies
the following basic architectural components [130]:

i. Consensus Layer: responsible for verifying blocks of
transactions and agreeing on their order.

ii. Smart Contract Layer: responsible for transactions pro-
cessing 7 (proposal takeover, execution and validation).

iii. Communication Layer: responsible for P2P transport.
iv. Data Store Abstraction: responsible for different data-

stores which can be used by other modules.
v. Crypto Abstraction: responsible for crypto algorithms.

vi. Identity Service: enables the establishment of a root
of trust during setup of a blockchain instance, the
enrollment and registration of identities during network
operation, and authentication and authorization.

vii. Policy Service: responsible for policy management.
viii. APIs for interactions with applications.

ix. Inter-operation Service: in charge of supporting the
inter-operation between different blockchain instances.

A trusted application distribution via smart contract bears
a resemblance to well known state-machine replication tech-
niques. However, there was a need for new designs consider-
ing that within blockchains many distributed application can
run concurrently, deployed and run by anyone, potentially
even maliciously written [49]. Hence, system performance
with Hyperledger go significantly beyond the one of public
and PoW-based blockchain frameworks; in fact, a computa-
tionally demanding PoW is not required [49, 131].

To the best to our knowledge, Hyperledger frameworks
result from a first effort to make a modular blockchain plat-
forms following the ‘no one fits all’ ideology. We detailed
in the following the different Hyperledger frameworks.

a) Fabric [51] is the first proposal of hyperledger code-
base, combining previous work done by Digital As-
set Holdings, Blockstream’s libconsensus, and IBM’s
OpenBlockchain. It provides a modular architecture,
which allows components such as consensus and mem-
bership services to be plug-and-play. An important
feature introduced by Fabric is to allow nodes to
confidentially transact on the same network of peers.
Fabric adopts the following terminology related to
its work-flow; a blockchain ‘application’ handles the
interface with the user and with the network. Smart
contracts are called ‘chaincodes’ and are provided with

7Among all the hyperledger frameworks, Indy is the only one which does
not offer smart contracts.

a Node SDK, a Java SDK, and a command line interface
– as development tools. Reading or writing the ledger is
an operation referred to as a ‘proposal’; it is built by an
application via the SDK, and then sent to a blockchain
peer, which processes it through a application-specific
chaincode container. The chaincode then runs the trans-
action; if there are no issues, it endorses the transaction
and sends it back to the application. An application,
via the SDK, then sends the endorsed proposal to the
ordering service, which packages many proposals from
the whole network into a block that is then broadcast
to the network peers. Finally, each peer validates the
block and appends it to its ledger. The above de-
scribed work-flow is referred to as an ‘execute-order-
validate’ architecture [49] meant to go beyond more
common ‘execute-order’ approaches; it is such that
different groups of nodes have a different role in the
network: clients which are submitting proposals, peers
that validate transactions with a subset of them named
‘endorsers’ that execute all transaction proposals, and
Ordering Service Nodes (or, simply, ‘orderers’).
Chaincode is written in Golang within Fabric v1.0, and
is also available in Javascript in v1.1. Developers use
chaincode to develop business contracts, asset defini-
tions, and collectively-managed decentralized applica-
tions. Isolation between different chaincodes is guaran-
teed; assets created and updated by a specific chaincode
cannot be accessed by a second one. Therefore, the
chaincode needs to be installed on every peer endorsing
a transaction. To develop smart contracts with Fabric,
one can (i) code individual contracts into standalone
instances of chaincode, or (ii) use chaincode to create
decentralized applications that manage the life-cycle of
one or multiple types of business contracts, letting the
end users instantiate instances of contracts within these
applications. Interacting with the chaincode is done by
using gRPC [132]. A ledger is maintained using a local
‘key-value’ store (see Section A) implemented by a
LevelDB [133] (a key-value database implemented in
Go) or Apache CouchDB [134].
Isolation between chaincodes is granted by channels: a
channel can be seen as a completely separate instance
of the Fabric; each channel is completely independent
and never exchanges data with another channel, each of
them having a different set of rules and policies. Fabric
networks consist of peers unable to communicate unless
they are part of the same channel. Therefore, Fabric
enables nodes of the same network to independently
communicate with the predefined set of nodes in an
isolated manner with respect to agreed policies.
In terms of latency, authors in [131] show that Fabric
can achieve up to 10 000 tps and write a transaction
irrevocably in the blockchain in around 0.5s, even with
peers spread in different continents.

b) Iroha [135] is contributed by several companies such as
Soramitsu, Hitachi, NTT Data, and Colu. Its peculiarity

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 18

is the emphasis on mobile application development,
with client libraries for Android and iOS. Although
inspired by Fabric, Iroha aims to complement other
Hyperledger projects, while providing a development
environment for C++ along with the YAC consensus
algorithm [136]. Written in C++, Iroha is built for high
performance use-cases such as embedded systems.

c) Sawtooth [68] is mostly contributed by Intel. Unlike the
others Hyperledger frameworks, it comes with support
for both permissioned and permissionless deployments.
It can use different consensus algorithms. By default,
it uses a Proof of Elapsed Time (PoET) consensus
(see Appendix C-E2), with the aim to provide the
Bitcoin blockchain level of nodes scalability without
its high energy footprint; PoET is suitable for permis-
sionless blockchains and can be executed within the
Intel Software Guard Extensions (SGX) [137] avail-
able in the most of newer Intel CPUs. For permis-
sioned deployments, instead, BFT consensus is also
made available (considering its already discussed ad-
vantages over PoET), and it does not rely on a single
vendor hardware. Supporting deployments in which
the blockchain network dynamically changes in size
over time, Sawtooth was designed to enable on-the-fly
change of the consensus protocol.
Currently, any kind of EVM code can be compiled
and run on Sawtooth. Along with the possibility to
write smart contracts in Solidity, Sawtooth also pro-
vides a REST API and SDKs in several languages
including Python, C++, Go, Java, JavaScript, and Rust
for the development of applications which run on top
of the Sawtooth platform. Sawtooth is licensed under
an Apache License Version 2.0 software license [138].

d) Indy is still under incubation and not well documented
to date. It is meant to support independent identity
on distributed ledgers. The Indy code base, originally
developed by Evernym, was donated to the Sovrin
Foundation to establish a strong open source foundation
for the Sovrin Network [139]. A goal is to create
a global public utility for lifetime portable identity
dedicated to any person, organization, or thing that
does not depend on any centralized authority and can
never be taken away. As already mentioned, it does not
support smart contracts.

e) Burrow [140], formally known as eris-db, was released
in December 2014. Currently under incubation, Burrow
is a permissioned smart contract framework that pro-
vides a modular blockchain client with a permissioned
smart contract interpreter built-in as part of the EVM
specification. As of version 0.16, it has an Apache-
licensed EVM implementation, initially licensed under
GPLv3. It is functionally separated from the Ethereum
protocol or any of the code bases implementing it. Any
smart contract that is compiled by any EVM language
compiler can be run in users’ permissioned blockchain
environments.

The major components of Burrow are as follows:
• Gateway: it provides interfaces for systems integra-

tion and user interfaces.
• Consensus Engine: it serves to maintain the net-

working stack between the nodes and order trans-
actions. The Tendermint consensus engine provides
high transaction throughput over a set of known
validators and prevents a blockchain from forking,
hence it is currently used to implement consensus
and p2p protocols. It is important to be aware that the
Tendermint consensus engine comes from a separate
blockchain framework detailed hereafter.

• Application BlockChain Interface (ABCI): it provides
interface specification for the consensus engine and
smart contract application engine to connect.

• Smart contract application engine: it is the most im-
portant component, considering that it is in charge of
transaction validation and of applying transactions to
the application state according to an order provided
by the consensus engine over ABCI.

Burrow is under active development and has currently
released its version 0.27.0. The latest source code is
licensed under Apache 2.0 license (available at [141]).

f) Grid [142] intends to provide reference implementa-
tions of supply chain-centric data types, data models,
and smart contract logic based on industry best prac-
tices. Grid is an ecosystem of technologies, frame-
works, and libraries that work together, letting users
combine different components from the Hyperledger
stack (the most appropriate according to their use-case)
into a single solution.

The Hyperledger frameworks, examined so far, are used
to build blockchains. Hyperledger open-source project also
works on eight additional modules supporting these frame-
works.

g) Cello [143] contributed by IBM, with sponsors from
Soramitsu, Huawei, and Intel. It provides a toolkit that
fulfills deployment of Blockchain-as-a-Service, allow-
ing blockchains deployment to the cloud.

h) Explorer [144] contributed by DTCC, Intel, and IBM. It
is a tool for visualizing blockchain operations. Designed
to create a user-friendly web application, it can view,
invoke, deploy, or query:
• Blocks.
• Transactions and associated data.
• Network information (name, status, list of nodes).
• Smart contracts (chain codes, transaction families).
• Other relevant information stored in the ledger.
The ability to visualize data helps to extract the value
from it. Key components include a web server, a web
UI, web sockets, a database, a security repository.

i) Composer [145] is contributed by Oxchains and IBM
and is built in Javascript. It provides a set of tools for
building blockchain networks enabling to:

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 19

• Model your business blockchain network.
• Generate REST APIs for interacting with your

blockchain network.
• Generate a skeleton Angular application.

j) Caliper is a benchmark platform allowing users to
measure the performance of a specific blockchain im-
plementation with a set of predefined use-cases [146].

k) Quilt [147] is an implementation of the Interledger
Protocol (ILP) [148] responsible for ledger systems
interoperability by enabling transactions across ledgers.

l) Aries [149] extends the applicability of Indy technology
beyond its current community components from the
Hyperledger stack into a single solution. It provides
a shared cryptographic wallet for blockchain clients
rather than just an UI, and a communications protocol
for their off-ledger interactions. It is not a blokchain but
rather a shared infrastructure of tools that support peer-
to-peer messaging and interactions among different
DLTs. Note that the cryptographic support is provided
by a separate Hyperledger project (Ursa [150]).

m) Ursa [150] is a shared cryptographic library. It has
been created to allow all Hyperledger collaborators to
work on the same cryptographic code. This enables
many different projects to adopt the same code base
for open-source, secure, and pluggable cryptographic
implementations.

n) Transact [151], still in the incubation phase, aims
to provide a standard interface for executing smart
contracts that is separate from the distributed ledger
implementation by way of a shared software library.

4) Corda: Corda [19] is a permissioned blockchain
framework, created by the software company R3 that leads
a consortium of two hundred global financial institutions.
Unlike solutions we have examined so far that involve a
global availability of data across the network and several
validators, Corda only allows information access and vali-
dation functions to those parties actually involved in a given
transaction. It enables consensus at the level of individual
deals, instead of at the system level.

Nodes identities in Corda are attested by a X.509 cer-
tificate signed by a permissioning service called “Door-
man” that each Corda network has. Unlike most of the
other permissioned blockchain platforms, Corda does not
order all transactions as one single virtual execution that
forms the blockchain [52]. Instead, it defines states and
transactions, where every transaction consumes (multiple)
states and produces a new one. Only nodes affected by
a transaction store the new state. Seen across all users,
this transaction execution model produces a hashed directed
acyclic graph or Hash-DAG [152]. Transactions must be
valid – i.e., endorsed by the issuers and other affected nodes
– and correct according to the underlying smart contract
logic governing the state. Each state points to a notary
responsible for ensuring transaction uniqueness, i.e., each
state is consumed only once. The notary is a logical service
that can be provided jointly by multiple nodes. The type of

a state may designate an asset represented by the network,
such as a token or an obligation, or anything else controlled
by a smart contract.

A transaction in Corda consumes only states controlled by
the same notary; hence, one notary by itself can atomically
verify the transaction’s validity and uniqueness to decide
whether it is executed or not. To enable transactions that
operate across states governed by different notaries, there is
a specialized transaction that changes the notary. In view of
the fact that each node stores only a part of the Hash-DAG,
it is only aware of transactions and states that concern the
node. This contrasts with most other blockchain frameworks
and provides a mean for partitioning the data among the
nodes. As is the case for other smart contract platforms,
transactions refer to contracts that can be programmed in a
universal general-purpose language.

A notary service in Corda orders and timestamps transac-
tions that include states pointing to them. A notary service
needs to cryptographically sign its statements of transaction
uniqueness, such that other nodes in the network can rely on
its assertions without directly talking to the notary. Currently,
there is support for a notary service as a single node
(centralized), for a distributed crash-tolerant implementation
using RAFT [61], and for distributing it using the open-
source BFT-SMaRt toolkit [153], an open-source Java-based
library implementing robust BFT state machine replication.
When using RAFT deployed on n trusted nodes, a Corda
notary tolerates crashes of any t < n/2 of these nodes. With
BFT-SMaRt running on n nodes, the notary is resilient to
the subversion of f < n/3 nodes. Let us recall that RAFT
consists in a crash tolerant consensus algorithm while BFT-
SMaRt support also Byzantine failures. Corda runs in a JVM
with the support for Oracle JDK 8 implementation, other
are not actively supported. Applications on Corda called
CorDapps can be written in any language targeting the JVM.
However, Corda itself and most of the samples are written in
Kotlin language, with recommendation to use IntelliJ IDEA,
due to the strength of its Kotlin integration.

In Corda P2P network, each node is a JVM run-time envi-
ronment hosting Corda’s services and executing CorDapps.
Communication between nodes via TLS-encrypted messages
(sent over AMQP/1.0) enables the data sharing only on a
need-to-know basis without global broadcasts. A network
map service publishes the IP addresses through which every
node on the network can be reached, along with the identity
certificates of those nodes and the services they provide. The
data model used in Corda is UTXO+ (see Section B-A3).

From a transaction throughput perspective, experimentally
it was reached thousands tps, using RAFT consensus, with
3 cluster members and Kafka distributed log [154], even if
nominally it is meant to be around 120 tps.

The Corda code is licensed under Apache 2.0 [155].

5) Tendermint: Tendermint [156] is an application-
oriented framework that consists of two components:

i. A blockchain consensus engine called Tendermint Core,

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 20

which ensures that same transactions are recorded on
every machine in the same order.

ii. A generic application interface called the Application
BlockChain Interface (ABCI), which enables the trans-
actions to be processed in any programming language.

Unlike other solutions, which usually come with built-in
state machines, Tendermint can be used for BFT state ma-
chine replication of applications written in any programming
language. Originally, Tendermint had a simple currency
built-in, and to participate in consensus, users have to use
the currency for a security deposit that can be revoked if
they misbehave. Since then, Tendermint has evolved to be a
general purpose blockchain consensus engine that can host
arbitrary application states: it can be used as a plug-and-play
replacement for the consensus engines of other blockchain
frameworks. An example of a cryptocurrency application
built on Tendermint is the Cosmos network, a decentral-
ized network of independent parallel blockchains; the first
blockchain in the Cosmos network is the Cosmos hub using
Tendermint as an underlying consensus engine [53].

Tendermint-core blockchains offer strong consistency (no
forks) in an open system relying on two key ingredients: (i) a
set of validators that generate blocks via a PBFT variant, and
(ii) a rewarding mechanism that dynamically selects nodes
to be validators for the next block via PoS [157].

In contrast to basic PBFT, where the client sends a new
transaction directly to all nodes, the clients in Tendermint
disseminate their transactions to the validating nodes using
a gossip protocol. The biggest divergence is the technique
first used by the Spinning protocol [158]: rotation of the
leader after every block. The Tendermint Socket Protocol
(TMSP) defines the core interface by which the consensus
engine communicates with the application state machine:
separation between consensus and its actual execution in
the state-machine is achieved. First, consensus on the trans-
actions order is reached, then the ordered transactions are
executed, which improves the system’s fault tolerance [159].
Indeed, while we still need a two-thirds majority for ordering
(3 f + 1), we only need a one-half majority for execution, to
tolerate f Byzantine failures (2 f +1). However, applications
built using TMSP must be deterministic. A client connects
to a Tendermint consensus network through a proxy, which
may be hosted by provider or run locally. The proxy enables
client transactions to be broadcasted to the network via
the gossip layer. Note that Tenrdermint contains additional
mechanisms that prevent a livelock bug [160], pertaining to
locking and unlocking votes by validators.

As a peculiarity in terms of P2P communications, a Peer
Exchange (PEX) protocol gossip is used to enable dynamic
peer discovery. Each node broadcasts its current state every
time it changes, optimizing the gossiping of messages to
only needed information which they do not already have.

In terms of delay performance, Tendermint can achieve
thousands tps on dozens of nodes distributed around the
globe [160], with latencies of about one second, and per-
formance degrading moderately in the face of adversarial

attacks. Within a single local-area data-center deployment,
Tendermint is capable of tens of thousands tps.

At the moment of writing Tendermint is still subject to
several fixes. The source code is written in GO and licensed
under Apache 2.0 [161].

6) Chain Core: Chain Core [54] is a permissioned
blockchain framework, mostly focused on issuing and trans-
ferring financial assets within a consortium.

An asset is any type of value that can be issued on
a blockchain. Units of an asset are fungible and can be
transacted directly between parties without the involvement
of the issuer. Each asset has a globally unique asset ID
that is derived from an issuance program. In order to issue
new units of an asset, the issuance program defines a set
of possible signing keys and a threshold number of needed
signatures; the rules for spending them must comply with
the control program. Chain Core follows the UTXO model.
A program is written as a set of byte-code instructions for
the Chain Virtual Machine (CVM). The CVM is a stack
machine: each instruction performs operations on a data
stack, usually working on the items on top of the stack.
Cryptographic SHA256 and SHA3 instructions execute the
corresponding hash functions. The CVM instruction set is
Turing complete. In order to control the use of computational
resources, the protocol allows networks to set a run time
limit that a program is not allowed to exceed [54]. Simple
instructions consume less resources due to a lower cost,
while processing-intensive instructions, such as signature
checks, are more expensive.

Security against forks is enforced by the Federated Con-
sensus [54]; it guarantees safety as long as at least 2m−n−1
block signers obey the protocol. The latter guarantees live-
ness as long as the block generator and at least m block
signers follow the protocol. Due to the network need to
evolve, the set of participants and the number of required
block signatures can be configured differently for each
blockchain network. The aim is to provide takeoffs between
liveness, efficiency, and safety, giving the possibility to tune
those parameters in respect to the current situation. The
Federated Consensus protocol is executed by the n nodes
configuring one of them as statical ‘block generator’. It
periodically selects a number of new, non-executed transac-
tions, assembles them into blocks, and submits the block for
approval to ‘block signers’. Every signer validates the block
proposed for a given block height, checking the signature of
the generator, validating the transactions, and verifying some
real-time constraints and then signs an endorsement for the
block. Each signer endorses only one block at each height.
Once a node receives q such endorsements for a block, the
node appends the block to its chain.

Federated Consensus is a special case of a standard BFT
protocol, operating with a fixed block generator. Indeed,
under assumption that the blockchain generator operates cor-
rectly, Federated Consensus reduces to an ordinary Byzan-
tine quorum system that tolerates f faulty signer nodes when

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 21

q = 2 f + 1 and n = 3 f + 1. However, the protocol cannot
prevent forks if the generator is malicious, e.g. by signing
two different blocks for the same block height, making it
single point of failure, which is not in scope with blockchain
ideology. Even if the generator simply crashes, the protocol
halts and requires manual intervention.

In the P2P overlay, in order to connect a user must know
blockchain IP access addresses and must have been granted
a network token from the Block Generator, which grants
access if the token is provided. A node can then download
the latest blockchain data from the Block Generator.

To the best of our knowledge, there is still a lack of
performance analysis in literature about Chain Core, leaving
a need for a formal and comprehensive evaluation.

Client libraries for Chain Core are available for the Java,
Node.js and Ruby platforms. Chain Core Developer Edition
is open source [162] and licensed under AGPL. A public
testbed is made available for experimenters, operated by
Chain, Microsoft and Cornell University 8.

It is worth noting that there is a new stack-based
called TxVM (transaction virtual machine) [164] recently
proposed as a new transaction model for Chain. It offers
Turing-complete virtual machine to execute transaction
programs. Each transaction is executed as a separated
TxVM isolated from the blockchain state, providing as an
output a deterministic log of proposed state changes. This
approach avoids unexpected side effects in other contracts,
even runs them in parallel. Its code is licensed under
Apache 2.0.

7) Quorum: Quorum [55] is a permissioned implemen-
tation of Ethereum. It includes a minimalistic fork of the
Go Ethereum client, leveraging the work done by Ethereum
community including the account-based data model.

The Ethereum P2P layer was modified to allow con-
nections only to a group of permissioned nodes. Thus,
the platform is designed to support both, ‘transaction-level
privacy’ and ‘network-wide transparency’ [29]. Although
Ethereum Gas remains, its pricing was removed.

Within Quorum, smart contract execution is done with
the EVM. Instead of a PoW-based mechanism, a voting-
based consensus algorithms is implemented to facilitate a
smart contract platform. Currently, it comes with two con-
sensus choices: QuorumChain and a RAFT-based one. Data
confidentiality is achieved within the network by allowing
data visibility on a ‘need-to-know’ basis. There are two
transaction’s types. A ‘public’ one readable by all nodes,
and a ‘private’ one, with transaction data encrypted by the
public key of a receiver, i.e., readable only by nodes which
participate in the transaction.

8Nevertheless, according to GitHub repository, development and support
have ended, encouraging a transition to Sequence, a new cloud blockchain
infrastructure [163] where ledgers are managed as a service, therewith all
transactions must be signed by the adequate keys controlled by the users
(that have particular authority, disabling Sequence to access them). SDKs
are available for Java, Node.js, and Ruby.

QuorumChain includes a group of ‘voter’ nodes – in
charge of transaction execution in order to validate blocks –
and, a certain number of ‘maker’ nodes (minimum is one).
Only ‘block-maker’ nodes, whose identities are known to
the whole nodes community, can propose a block. In order
to avoid simultaneous block creations by several ‘makers’ at
the same time, each maker node sets a random time slot and
will propose a new block after it expires, sign it and send
it to the rest of the network. ‘Voters’ validate transactions
and send their votes in favor of blocks that they ensure are
correct making an Ethereum transaction to ‘BlockVoting’
contracts distributed in all nodes. Hence, they are executing
transactions in the blockchain network and hence facilitate
consistency. Each block having more votes than a threshold
is added locally in the chain at all nodes. Since votes for
a given block are sent via standard Ethereum transactions,
they can only be counted when the next block is created.

In terms of P2P dissemination, Quorum originally lever-
ages on the Ethereum’s gossip layer. A network set up with
one ‘maker’ by default could lead to network inconsistencies
(chain forks) unless the network is perfectly synchronized.
This node can be seen as a single point of failure, and if this
node crashes, the protocol halts. Byzantine fault in a ‘maker’
or a ‘voter’ node can result in inconsistencies and protocols
disruption. Additionally, the protocol relies on synchronized
clocks for safety and liveness. Due to those facts, authors
in [29] states that the protocol cannot ensure consensus in
any realistic sense.

Eventually, QuorumChain was removed in Quorum 2.0,
with an impact on dissemination. Another consensus choice
was made available: a popular variant of Paxos [60], based
on the RAFT protocol [61]. Available in many open-source
tool-kits, Quorum uses the implementation in etcd [165].
RAFT is in charge of transactions replication to all partici-
pating nodes and to ensure that each node locally outputs the
same sequence of transactions, tolerating any t < n/2 of the
n nodes crash. Blocks are communicated over the HTTP
transport layer built into etcd RAFT instead of the P2P
protocol built-in to Ethereum. Quorum community argues
they found by testing the default etcd HTTP transport to be
more reliable than the P2P network (at least as implemented
in geth) under high load. The maximum number of peers is
configurable, with a default number set to be 25. One of the
medium term goal is a pluggable consensus feature as stated
in the project roadmap.

In terms of performances, there is definitely a gap to fill
in the literature. To the best of our knowledge, there is only
a vague estimation reported in the JPMorgan website stating
that network can process dozens to hundreds tps, depending
on how the network and smart contracts are configured,
leaving a space for more precise performance analysis.

Quorum is open sourced and maintained by JPM [166].

C. Frameworks discussion and related works

Table V compares the presented frameworks according to
(i) their features (analyzed in Sections III and IV) and, (ii)

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 22

TABLE V: Comparison of blockchain platforms.

Platform Bitcoin Ethereum Hyperledger
platforms Corda Tendermint Chain Core Quorum

Common Features

Data encription and hashing ⇒ data confidentiality and integrity
Digitial signature ⇒ data authenticity and non-repudiation

Auditability, immutability, open sourced code

General Features
Identity and
membership 7 7 X X X X X

Major usage
Public

payment
system

Generic
blockchain
platform

Modular
blockchain
platforms

Specialized
distributed ledger

platform for
financial industry

(digital assets)

blockchain
consensus engine

multi-assets
ledger designed

for assets trading

general
application
platform

Cryptocurrency Bitcoin

Ether
cryptocurrency

Tokens via
smart contract

Currency and
tokens possible
via chaincode

7
At first,

but now 7
7 7

Governance N/A Ethereum
developers

Linux
Foundation R3 Tendermint

developers
Chain,

Microsoft, IC3 JPMorgan

Architectural Features
Data model UTXO Account based Key-value UTXO+ various UTXO+ Account based

Smart
contracts
execution

native EVM Fabric: docker,
Sawtooth: native JVM various

Chain Virtual
Machine (CVM),

TxVM
EVM

Smart
contract
language

not Turing-
complete

Solidity,
Serpent,

LLL

Fabric: GO
& Javascript,

Sawtooth: Java,
Go, JavaScript,
Rust or Solidity

Kotlin, Java depends on
software choice

written in
bytecode

instructions
for the CVM

Go

Modularity 7 7
X(consensus,
membership

services)
X(consensus) 7 7 7

Consensus
protocol

Mining,
PoW ledger

level

PoW, POS
transaction

level
Various

RAFT (centralize),
BFT via

BFT-SMaRt
toolkit

BFT
BFT - The
Federated
Concensus

QuorumChain,
RAFT-based

Adversary
model 50% 50%

BFT: 33%,
PoET: Trusted

Hardware

RAFT: 50%,
BFT: 33% 33% 33%

RAFT based:
50%, Quorum

chain 33%

Execution sequentially
on all peers

sequentially
on all peers parallel sequentially

on all peers
sequentially
on all peers

sequentially
on all peers

sequentially
on all peers

Architecture order-execute order-execute execute -
order-validate order-execute order-execute order-execute order-execute

Node isolation 7 7 Fabric via
channels

7 7 7 7

Dissemination flooding gossip
(ÐΞVp2p) gossip gossip gossip gossip gossip–v.1.x

HTTPS–v.2.x

Throughput 7 tps
15-40 tps;

in private setup
∼ thousand tps

dozen of
thousands tps

[49, 131]
120-1000
tps [154]

tens of
thousands tps
within single

data-center [160]

N/A dozens to
hundreds of tps

Latency 600 sec ∼ 15 sec < 1 sec N/A < 1 sec N/A N/A

Source Code [123]. [129].

Sawtooth [138],
Fabric [167],
Indy [168],
Iroha [169],

Burrow [141].
Grid [170]

[155]. [161]. [162]. [166].

the characterizing aspects of the different abstraction levels
(Fig. 5). We summarize in the following, these interesting
aspects which may help the reader to choose the right
platform to consider.

1) Cryptocurrency: Build-in cryptocurrency is the main
ingredient within permissionless distributed payment sys-
tems (i.e., Bitcoin and Altcoins) and open-permissioned ones
(i.e., Stablecoins [12] and Libra [171]). Even though permis-

sioned blockchains do not require a build-in cryptocurrency,
Hyperledger Fabric still ensures the possibility for a native
currency or a digital token developed with ‘chaincode’.
Indeed, the common for all analyzed platform is that they
ensure ledger’s auditability and immutability.

2) Node roles: In different frameworks, nodes assume
different roles and tasks in the process of reaching consen-
sus. While in Ethereum and Bitcoin where roles and tasks

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 23

of nodes participating in reaching consensus are identical,
within Fabric, nodes are differentiated based on whether
they are clients, peers or orderers. The motivation was to
bypass architectural limitation with classical ‘order-execute’
architecture, considering that reaching consensus and state
synchronization across all nodes do not require that all smart
contracts are executed on all nodes. Instead, it is important
to propagate the same state to all nodes.

3) Execution: The limitation raised from a sequential ex-
ecution is a performance bottleneck. Indeed, authors in [49]
show that Hyperledger Fabric, overcoming the stated limita-
tion, achieves end-to-end throughput of more than 3500 tps
in certain deployment configurations.

4) Performance: While blockchains may appear similar
to legacy distributed storage systems, they provide some
specific differences. They are typically implemented to sup-
port large scale data repository. Within the blockchain, the
number of nodes increases the resilience of the system
in terms of integrity and availability, however with a loss
of performance. Such a trade-off can be complicated to
assess even when all nodes have the same role in the
system, and therefore can be even more difficult for those
blockchains that further specialize the roles of nodes (e.g.,
Hyperledger platforms). To help precisely and consistently
evaluate the unique performance attributes of blockchains, it
is necessary to define relevant terms and metrics. In terms
of performance comparison between platforms, the main
difficulty is to find a way to fairly compare them given
the fundamental differences touching to consensus, block
structure, P2P behaviors, etc. Some trials in this direction
exist. Authors in [128] describe the “BLOCKBENCH”,
an evaluation framework for analyzing private blockchains
with Turing-complete smart contracts, releasing it as open
source. BLOCKBENCH was used to conduct evaluation
of the following blockchains: (i) Ethereum, (ii) Parity and,
(iii) Hyperledger Fabric. They report the performance gaps
attributing them to specific design choices at different layers
of the blockchain’s software stack. The results published
in [75, 128] show that Hyperledger Fabric outperforms
Ethereum in terms of evaluation metrics such as execu-
tion time, latency and throughput. Yet, pertinent metrics to
measure performance of different blockchain projects are
to be designed. The Hyperledger Performance and Scale
Working Group (PSWG) published a white paper [172] with
the goal to ensure that the performance and scalability of
all blockchain projects are measured in a fair and equitable
manner using metrics that are defined, gathered, and reported
in a consistent way; it focuses on blockchain performance
associated metrics, rather than on benchmarking. Indeed,
benchmarking is more controlled than performance eval-
uation, thus [172] can be seen as a first step to guide
development of any formal benchmarks.

5) Smart contract language: About programming lan-
guage, Corda differentiates from the others in the semantic
of a smart contract: besides the code, additionally legal prose
can be found. The rationale behind this is to give the code

legitimacy that is rooted in the associated legal prose. Such
a construct is called a Ricardian Contract. Hence, meant to
be used by highly regulated environment of the financial
services industry, Corda was designed accordingly. Both,
Fabric and Ethereum do not possess this feature as they
rather aim to be a general purpose blockchain system.

6) Consensus: Permissioned blockchains mostly rely on
asynchronous BFT replication protocols while their perm-
sionless ancestors usually use PoX algorithms which are
more suitable for an open-access mode. Most of the plat-
forms come with a hard-coded consensus except the Hyper-
ledger. This implies that in case of different fault models, one
must switch on a different blockchain environment. Thus,
plug-and-play consensus such as one deployed by Hyper-
ledger is particularly interesting. What further makes Fabric
unique are the channels and related isolation; a consensus
can only be reached at transaction level and not at ledger
level as with the other platforms. Corda consensus is also
reached at the transaction level, by involving only parties that
participate in that transaction, deploying also a ‘pluggable’
consensus, while nodes store only the transactions they
participate to.

7) Security: With respect to physical security, some DLT
systems are leveraging trusted hardware as a trade-off be-
tween cost of security and performance [41]. Most overheads
of used algorithms arise from the assumption that nodes
could have Byzantine manners. In particular, Endorsement
key pair (EK) used for encryption, never visible outside
trusted platform modules, is burnt into each device during
manufacturing [173]. Nodes equipped with trusted hardware
can be verified for certain properties, which makes it possible
to use weaker trust model with the aim to improve perfor-
mance. Security of those systems particularly depends on a
trusted computing base that is running within specific hard-
ware such as Intel SGX [137] and ARM TrustZone [174].

D. Architectural limitations
Public blockchain platforms have been criticized more

than permissioned ones, in terms of architectural limita-
tions. Table VI summarizes the most evident limitations,
differentiating between those shared between permissionless
and permissioned systems and those specific for permis-
sionless systems. In the following we focus on the former,
as the latter were already covered by previous sections.
Architectural limitations for permissioned systems are fully
analyzed in [74] without considering, however, that some
limitations also characterize open blockchains. In fact, those
also apply to permissionless systems. Some of the presented
platforms include solutions for some architectural limitations
(e.g., Hyperledger parallel execution). Hence, flexibility and
limitations can be considered as selection criteria for a given
blockchain framework.

1) Sequential execution: The active SMR, used in the
majority of blockchain frameworks, requests an application
to be ordered at first by the consensus, and then executed
sequentially at all nodes. This can be addressed to both per-
missioned and permissioneless systems, such as Ethereum, a

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 24

TABLE VI: Architectural limitations of blockchain

Permisionless Permissioned
Limited capacity X
Transaction cost X
Irrelevant data X

Mining risk X
Lack of privacy X

Non-deterministic execution
Sequential execution on all nodes

Trust model flexibility
Hard-coded consensus

Trusted hardware

pioneer in this approach. One of its biggest limitation is the
throughput upper bound, since the throughput and latency
of execution are inversely proportional. Furthermore, smart
contracts, designed to take a very long time to execute, can
lead to a denial of service (DoS) attack on the network. Thus,
cryptocurrency based blockchains had to introduce solutions
such as gas or its own virtual machine like Ethereum, with
the aim to control all execution steps. Intentional crypto-
money fees and smart contract language limitation (due to
the specific VM environment) hold back its wide adoption.
Different approaches proposed by Ethereum, Hyperledger
and Chain Core aim at overcoming the drawbacks related to
sequential execution, such as multi-core computing, parallel
execution and sharding9, still under test.

2) Non-determinism: Smart contracts can revoke con-
sensus hence leading non controllable side effects such
as ledgers ‘forks’. Adding determinism-oriented features in
smart contract design is an unexplored research direction as
of our knowledge.

3) Execution on all nodes: The process consumes com-
putational resources that might be saved. In addition, many
use-cases require that a transaction logic is revealed only to
certain nodes. In order to reach consensus and synchronize
the network, it is sufficient to propagate the same state to all
nodes and execute smart contracts on a subset of them [74].
This leads to architectures such as Hyperledger Fabric,
which executes a smart contract on a specified subgroup
of nodes while ensuring propagation of the same state to all
of them. Yet, such approaches open questions about nodes
liability. How one can choose an adequate subset of trustful
nodes? And how many of them? How to attribute roles
to nodes? Such questions do not find clear answers in the
literature, yet.

4) Trust model flexibility: Modern blockchain architec-
tures should be designed to decouple application trust as-
sumption from underlying consensus protocols. Adversary
models such as ‘ f out of 3 f +1’ may not match the specific
application trust model.

5) Hard-coded consensus: It is not an optimal solution,
as there is no such consensus protocol that fits all scenar-
ios. Changing the hard-coded consensus protocol is very
difficult, so plug-and-play consensus engines seem to be an
adequate solution. This can give developers different options

9Method to partition a database in small pieces (i.e., shards) that can be
recomposed to regenerate the original database.

to adopt due to specific needs. Nevertheless, the security
consequences and related vulnerabilities due to automated
consensus mechanism swap are unknown to date.

6) Trusted hardware: It represents one possible way
to increase performances [175] while allowing a weaker
trust model, typical of permissioned implementation. Nev-
ertheless it may lead to specific vendor control. This is a
completely separate research space mixing computer science
and electrical engineering disciplines.

E. Blockchain as a Service

The reviewed blockchain frameworks are open source.
Nevertheless, commercial services make surface offering a
blockchain platform, or Blockchain as a Service (BaaS). A
BaaS is a service that allows customers to leverage cloud-
based solutions to build, host and use their own blockchain
apps, while the service provider is responsible to manage
the infrastructure and keep it agile and operational. A BaaS
is essentially a Software As A Service (SaaS) service,
helping the blockchain adoption across businesses used to
liability commercial chains. Table VII surveys existing BaaS
providers, related technology and corresponding references.

TABLE VII: Blockchain as a Service

Providers Supported frameworks

Microsoft [116] Hyperledger Fabric. Ethereum. Corda
Quorum, Chain. BlockAps.

IBM [176] Via Bluemix: Hyperledger Fabric.

SAP Cloud [177] MultiChain, Hyperledger (Leonardo program).

HP [178] Via HP Enteprise: Corda.
Oracle [179] Hyperledger Fabric.

Amazon [180] Via AWS: Ethereum; Hyperledger Fabric, Burow.

Huawei [181] Hyperledger Fabric.

BitSe [182] VeChain.
BLOCKO [183] Coinstack.

Baidu [184] Proprietary technology.

F. Use-case applications

After having explored the When and Which questions of
the vademecum, let us present some existing blockchain ap-
plications in the recent state of the art, applying the proposed
vademecum logic. We report three use-cases in (i) network-
ing, (ii) supply-chain and, (iii) communications respectively
adopting (i) permissionless, (ii) open-permissioned and, (iii)
fully permissioned blockchain implementations.

1) Decentralized Internet storage: Despite its high poten-
tial for decentralized communications, the current Internet
infrastructure management suffers from centralization of
control and data operations. The data is often stored on
big server farms usually controlled by a single entity. The
availability in data access can not be guaranteed to be high
due to several security, reliability and censorship issues.
Indeed, there is a need for a decentralized shared storage
in a trustless environment. Filecoin [115] is a blockchain-
based file system, built on top of the InterPlanetery File

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 25

System (IPFS) protocol [185] (a peer-to-peer protocol to
share hypermedia), which goes in this direction. Let us
develop the vademecum on the Filecoin use-case.
• Q1: Do you need to store and share a ledger state? Yes.

Filecoin is meant to be a blockchain-based cooperative
data storage and retrieval system thus, data needs to be
stored in a shared ledger and updated.

• Q2: Are there multiple potential writers? Yes. Nodes in
the network share files or proactively distribute them.
Content based addressing and decentralization make
data access resistant to censorship, failures, or attacks.

• Q3: Who do you entrust with the ledger maintenance?
The ledger maintenance is entrusted to the entire public
community. Filecoin is a fully open and decentralized
system to which all network users have both access and
permission, participating in the consensus procedures.

Therefore, according to the vademecum logic in Fig. 3,
decentralized data storage not requiring data confidential-
ity (question 4.A) such as the one served by Filecoin is
to be achieved via a permissionless blockchain. However,
in Filecoin, the scalability and performance limitation of
permissionless platforms (see Table V) lead to the choice of
recording in the blockchain the data hash only, with therefore
a dedicated platform developed for Filecoin. IPFS protocol
using content based addressing (i.e., one should know what
to search) stores original data off-chain (in multiple 256 KB
objects containing the links of each other). With data hash
in the blockchain one can fetch the data content from IPFS.

2) Industrial IoT-based supply-chain: Supply chain man-
agement (SCM) is the process involving the transitions
between the different actors characterizing the life cycle
of a product, from producers to end-consumers. Often the
communication between the different actors in supply-chain
results inefficient [186], because actors in the process do
not have access to products’ information in its entirety.
Moreover, detecting failures in the supply-chain proves to
be difficult and expensive. Blockchain transparency can help
to significantly improve the SCM procedures while at the
same time enabling actors (especially end-consumers) to
monitor and trace the products transitions via IoT devices.
Let us report the vademecum steps for the food supply chain
traceability systems proposed in [107, 108, 187] (for agri-
food products); the ‘from-farm-to-fork’ logic becomes reality
by leveraging blockchain and IoT’s technologies such as
RFID (Radio Frequency IDentification).
• Q1: Do you need to store and share a ledger state?

Yes. Supply chains are characterized by input-output
relationships among different actors transferring infor-
mation on the product. The latter need to be registered
(in a ledger) and communicated to the actors of the
product life-cycle.

• Q2: Are there multiple potential writers? Yes. SCM
is characterized by several interacting actors such as:
providers, producers, processors, distributors, retailers,
consumers, via IoT devices for some among them. All

the actors that interact with the product and change its
state record on the blockchain such a change.

• Q3: Who do you entrust with the ledger maintenance?
A group of selected actors, i.e., SCM actors that
maintain the ledger by recording information on it,
automatically verifying and validating what has been
declared by means of IoT devices.

Q3.b) Do you need the ledger to be publicly ver-
ifiable? Public verifiability guarantees the authenticity,
the integrity and the reliability of the shared information
in a trustless environment where SCM agents can
monitor, trace and manage the safety and the quality
of the product.

When-Which part end-state consists in an open-
permissioned blockchain implementation. According
to the How vademecum guidelines, both Hyperledger
and Quorum fit the SCM use-case for settings, data
structure and, performance level. More precisely, the IBM
Food chain [187] operates in Sawtooth while the other
contributions [107, 108], still at a PoC level, consider both
platforms.

3) Virtual machine and network orchestration: Recent
proposals at the state of the art investigate how blockchain
could be used as a way to secure the orchestration interface
between cloud orchestrators and computing elements [104,
105]. The idea could easily be extended to SDN switches
configuration from SDN controllers, knowing that a network
switching instruction likely requires a lower latency than a
virtual machine or container orchestration instruction. The
idea is to translate cloud/network orchestration instructions
sent from an orchestrator or a controller (i.e., virtual machine
or switching rule instructions) to transactions that ought to
be authentified in a decentralized way by a pool of agents
integrated with compute, orchestration, or network elements.
Applying the vademecum chart (Fig. 3) let us examine
systems proposed in [104] and [105] respectively:

• Q1: Do you need to store and share a ledger state? Yes.
In the envisioned cloud environment, the orchestrator
is an intermediate node in which one must have trust,
thus it can be seen as a single point of failure or attack
from a security standpoint. Orchestration instructions
are translated into transactions to be recorded and
authentified, hence need for a shared ledger state.

• Q2: Are there multiple potential writers? Yes. The
architecture accounts for frequent transactions to be
traded and shared by a pool of orchestrators, each
possible in charge of one or overlapping domains and
network elements, and network elements can also take
part to the orchestration environment.

• Q3: Who do you entrust with the ledger maintenance?
In a cloud infrastructure environment, network partici-
pants are whitelisted, thus a group of selected actors
(orchestrators, compute nodes, network switches) is
entrusted to maintain the ledger.

Q3.b) Do you need the ledger to be publicly
verifiable? The system consists of several validators

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 26

known to the network, hence there is no need to have
a system verificable by all the public community.

T3.b): According to Fig. 3 one comes to a trade-
off point. Despite the fact that legacy databases offer
better performances in terms of scalability, throughput
and latency, the proposed systems aims to enable ledger
replication across the network while benefiting from
data immutability. To reinforce security, orchestration
logic can be presented as a smart contracts logic,
and therefore instantiated multiple times without the
possibility to be rewritten. Since conventional databases
do not offer simple solution for the tamper resis-
tance [118], blockchain represents an adequate solution.

• Q4: Which is the blockchain primary adoption?: The
proposed system principal goal is to use blockchain as
a platform to support digital asset exchanges (where an
asset is a computing resource) and related orchestration

automatization.
Q4.B) Which is the platform primary purpose? The

goal of proposals in [104] and [105] is to leverage
on blockchain to secure the orchestration interface by
means of an abstraction making computing resources
an asset, while the outcome is not the asset exchange
itself rather the automatization of authentification that
is related to its usage.

Q4.B.ii) Is confidentiality required? Yes. Typically,
one would assume it is required in privately operated
cloud/network systems as in the common practice,
hence full-permissioned blockchains seems to be a
better fit as there is no need for a publicly available
ledger.

Use-case applications - how to use blockchain? Let us
further develop the When-Which vademecum logic applied
to the three use-cases (i.e., the decentralized Internet storage,

TABLE VIII: Selection process of the platform(s) that can be chosen as guideline(s) for developing the three use-cases:
(i) decentralized internet storage, (ii) IoT-based supply-chain and, (iii) virtual machine and network orchestration by both
following Fig. 4 and Table V.

Use case Decentralized Internet
storage

Industrial IoT-based
supply-chain

Virtual machine
and network orchestration

Mode Permissionless Open - permissioned Full - permissioned
Common Features

Data encription and hashing ⇒ data confidentiality and integrity
Digitial signature ⇒ data authenticity and non-repudiation

Auditability, immutability, open sourced code

General Features
Identity and
membership 7 7 X

Major usage
Filecoin works as an incentive

layer on top of IPFS as a
decentralized storage network

Automated
decentralized

platform

To secure the orchestration
interface between cloud

orchestrators and
computing elements.

Cryptocurrency Native token Filecoin
No native token

(Tokens possible via
smart contract)

No native token
(Tokens possible via

chaincode)

Governance Protocol Labs in colaboration
with Ethereum Foundation

Depending on
solution

Research
project

Architectural Features

Data model IPLD 10 (account based) Quorum: account based
Hyperledger: key-value Key-value

Smart
contracts
execution

VM EVM/Native within
Sawtooth

Fabric: docker,
Sawtooth: native

Smart
contract
language

Contracts system based
on Ethereum: Solidity,

Serpent, LLL

Solidity,
Serpent,

LLL
Sawtooth: Java,
Go, JavaScript,
Rust or Solidity

Fabric: GO
& Javascript

Modularity 7 7
X(consensus,
membership

services)
Consensus
protocol

Mining, Proof-of-Replication
& Proof-of-Spacetime

Hyperledger: various
QuorumChain,RAFT-based BFT like

Adversary
model

tolerates up to f faults
out of n total nodes (f < n/2) Depends on consensus BFT: 33%

Execution sequentially
on all peers

sequentially
on all peers parallel

Architecture order-execute order-execute execute -
order-validate

Node isolation 7 7 Fabric via channels

Dissemination libp2p: the networking layer
of IPFS (gossip)

gossip
(ÐΞVp2p) gossip

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 27

IoT-based supply-chain, and cloud orchestration ones) and
how it can lead to precise platform specifications (for
permissionless, open-permissioned, and fully permissioned
systems, respectively). According to the HOW vademecum
guidelines, the reader can put aside some platforms, ending
up with one or more choices as preferable platforms based
on the Fig. 4. Indeed, a chosen platform or set of platforms
can overcome some of the limitations specific to another
one, or may serve as reference and guideline to develop
its own framework. Table VIII details the variety of design
features according to the discussed use-cases: Table VIII is
the application of Fig. 4 logic and Table V feature guidelines
to the specific setting of the discussed use-cases, as proposed
in the related projects and papers.

IX. CHALLENGES AND STANDARDIZATION ACTIVITIES

With so many new different blockchain technology op-
tions, a large number of blockchain-based decentralized
applications (DAPPs) are being written at a fast pace.
There is a staggering number of blockchain use-cases, with
the impression that a customized blockchain system could
meet the need for almost every field today. According to
AngelList [193], more than two thousand startups have been
created to leverage on blockchain-related technologies since
the inception of the Bitcoin payment system. Many research
companies and dozens of governments and universities have
become actively involved in researching, testing, and pro-
totyping blockchain protocols, platforms, and applications.
There are a number of challenges, in particular related to
the widespread use of permissioned systems. Key challenges
are related to performance evaluation, standardization, reg-
ulations and, governance of blockchains and DLTs.

A. Performance evaluation and benchmarks

By performance evaluation we refer to the process of
testing systems throughput and scalability. Hence, we refer
to systems under test. Furthermore, benchmarking refers to
standardized measurements to compare different systems or
previous systems performance with new ones. Usually, Stan-
dard Performance Evaluation Corporation (SPEC) formalize
workloads used to test the system and performance measure-
ments to be made during the test phase. Without benchmarks,
comparisons between widely disparate environments are
not very meaningful, yet, to the best of our knowledge,
there is still no agreement on blockchain benchmarks. The
white paper [172] is the first effort towards standardization
of blockchain performance evaluation and the associated
metrics. Indeed, it represents a necessary first step for the
industry to develop formal benchmarks in order to make
different environments comparable.

B. Potential legal issues

Since we are still witnessing the early days of blockchain
technologies, there is no agreement on standards in the
developer and business community, as of our knowledge.

Standards are crucial in ensuring interoperability and avoid-
ing risks associated with a fragmented ecosystem. Standards
are critical not just for the distributed ledger itself, but
also for supporting services, like identity, privacy, and data
governance [194].

In 2016, ESMA (European Securities and Markets Au-
thority) noticed that despite investments in cryptocurrencies
are marginal “DLT have the potential to be used outside
the space of virtual currencies with possible disruptive
effects” [195]. The lack of regulation on the technology
adoption, in all commercial areas, creates an environment
of uncertainty for all actors from platform providers to
potential clients. The greatest efforts were concentrated on
DLT applications linked to the financial markets principally
focusing on market structure implications and payment sys-
tem security [196]. A significant amount of work has been
done to regulate Initial Coin Offerings (ICOs) and Security
Token Offerings (STOs) i.e., fund-rising methods selling
to investors crypto-tokens (wich in the case of STOs are
securities i.e., tradable financial assets); this sale takes place
via blockchain platforms. Currently, Stablecoins 11, consid-
ered as convertible virtual currencies, are deeply investigated
form a regulatory and tax perspective.

Similarly, there are no regulatory guidelines governing
smart contracts, causing much anxiety among several players
like lawyers, regulators, programmers, and businesses. The
lack of regulatory guidelines, along with a lack of industry
standards, exacerbates hindrances to rapid adoption of DLT
technologies. Indeed, the term ‘smart contract’ refers to a
coded contract, an agreement between parties on a mutual
benefit. Possible issues come in case this agreement is not
respected. One of the challenges is to evolve the current
legal system along with DLTs in order to adopt blockchains
and its smart contract as a legal act on a court, which up to
day seems not to be recognized.

C. Standardization activities

As the distributed ledger technology continues to grow
rapidly and finds a place in many differentiate fields, sev-
eral standardization organizations, academic and industrial
research projects, as well as vendors, are working in parallel
with diverse objectives. As a result, several standardization
bodies established working groups, as surveyed in Table IX,
to work on the technology’s standards. The ISO/TC 207 is
particularly structured with eight topical working groups.
The Internet Research Task Force (IRTF) Decentralized
Internet Research Group (DINRG) is in particular ex-
ploring applications of blockchains, investigating open is-
sues in decentralizing the Internet infrastructure. The W3C
Blockchain Community Group aims to establish standards
for a blockchain message format based on ISO20022. The

11Stablecoins are low-volatility cryptocurrencies collateralized by other
assets through decentralized and centralized platforms. Existing stablecoins
are pegged by fiat money (e.g., TrustTokens [197]), traded commodities
(e.g., HelloGold [198]), a set of alternative cryptocurrencies (e.g., Maker-
DAO [199]) or generally by a basket of traded assets (e.g., Libra [171])

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 28

OASIS/ISITC Europe Blockchain Working Group defines
and verifies technical blockchain standards, while ITU-T
activities aim to promote the establishment of trust-based
data management frameworks, investigating existing and
emerging technologies and addressing standardization gaps
and challenges.

X. CONCLUSION

For a new technology to realize its full potential, a lot of
circumstances need to co-exist before network effects can
be realized. In order for the technology to bring in systemic
efficiencies, a critical mass needs to be attained. As an infras-
tructure technology, all major players in the market need to
collaborate to define standards in a democratic manner. The
blockchain community is indeed witnessing unprecedented
levels of industry collaboration between players who are
otherwise competitors in the space. Because of the cost of
moving from one infrastructure technology to the next, an
open source collaborative approach is the most promising
way forward. This is the direction we insisted on in this
article, highlighting not only when and which blockchain
technologies should be chosen, but also how they can be
used and deployed.

From a societal perspective, while there has been an
exponential increase in the interest around blockchain tech-
nologies, there is a huge lack of technical experts. Currently,
blockchain engineers become one of the most payed and
required jobs, yet there are no officially recognized courses
to train engineers to fulfill the existing lack of blockchain
experts. Both industry and academia started to think in this
direction providing some online courses, but it seems there
is still a need for new and more comprehensive schooling
and literatures. As an illustration of the current societal
perspective on blockchain, due to ongoing innovation and
development in the blockchain space, there is still not a
consensus on a clear blockchain definition [200], despite
we tried in this manuscript to clarify key properties of
blockchain, somehow giving an axiomatic view on possible
different blockchain definitions.

APPENDIX A
BLOCKCHAIN STRUCTURE AND FEATURES

A fundamental element beyond the innovation brought by
blockchain to the DLT ecosystem is its intelligent mix of en-
cryption techniques [201] in data storage – preserving block

structure through timestamping [202] – and in transacting –
authenticating transfers with digital signatures. A blockchain
ledger consists of a history of validated digital transactions
collected in blocks; each block of transactions is linked
to the immediately previous one (known as parent block)
through a hash value; hence by traversing the transactions
ledger one can trace back the genesis block, which has no
parent block and contains the first processed transactions
in the blockchain history. Cryptography characterizes the
technology and attributes important properties to it.

A. Data structure

A block is the junction of (i) an outer header identifying
the blockchain and specifying the size of the block, (ii)
a block header – containing all the information on the
block validation and on its parent block – and (iii) a block
body – consisting in a list of transactions and a transaction
counter. While the precise structure of a block varies from
one blockchain to another, each blockchain is identified by
the magic number 12 which is included in any block of
transactions at the beginning together with the blocksize field
reporting the maximum number of bytes in a block. The
block header should include for every blockchain system,
as in Fig. 6, the following elements (whose order can vary
from one blockchain to another one):
• Block version number: it refers to the blockchain pro-

tocol and hence the used consensus algorithm followed
by the (majority of the) nodes at the moment of the
block validations.

• Parent-block hash: it is the output of the hashing
function with the previous block header as input.

• Nonce: it is a string of fixed length crucial in the
validation process (Section B-C).

• Timestamp: it indicates the time elapsed since a prede-
fined instant.

• Merkle tree root: it is the hash value descending from a
hash tree procedure (patented in 1989 [203]) applied to
the transactions present in the block body; transaction
informations are iteratively hashed in pairs as showed
in Fig. 7 (if the number of transactions is odd, the last
transaction, hashed or not, in the list is duplicated).

12The magic number consists in a data-structure identifier characterizing
the different blockchain protocols (i.e., 0xD9B4BEF9 is the magic number
identifying the Bitcoin blockchain)

TABLE IX: Summary of standardization activities on blockchain and DLT technologies

Organization Scope and Activities

ISO/TC 307 [188]

10 standards under development, 35 Participating members, and 13 Observing members. 8 Working groups:
(i) Convenors coordination group; (ii) Blockchain and distributed ledger technologies and IT Security techniques;

(iii) Use-cases. (iv) Governance of blockchain and DLT systems. (v) Interoperability of blockchain and DLT systems.
(vi) Foundations. (vii) Security, privacy and identity. (viii) Smart contracts and their applications.

.

IRTF/DINRG [189] DINRG investigates open issues in decentralizing the Internet infrastructure and its services such as: trust management,
identity management, routing locator and name resolution, resource/asset ownership management, resource discovery.

W3C [190] Its blockchain community group aims at standardizing blockchain message format based on ISO20022, and to give guidelines
for usage of storage, including torrent, public blockchain, private blockchain, side chain and CDN.

OASIS/ISITC [191] Definition and verification of technical standards related to: Resilience, Scalability, Security, Latency, Data, Governance,
Legal, Regulatory, Software and Network, based on both technology and operational requirements through industry engagement.

ITU-T [192] Focus Group on Application of Distributed Ledger Technology (FG DLT). Developing a standardization road-map for
interoperable DLT-based services, collecting best practices and requirements for the implementation of distributed applications.

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 29

Fig. 6: Representation of a blockchain structure.

The hash of the block header serves as a link to future
new blocks on top of it. The block body consists of all
the transactions involved in the Merkle root calculation
and of a transaction counter providing the total number of
transactions contained in the block. Note that the block size
limit has a direct effect on the number of transactions that
can be included in the block body.

B. Cryptography

Cryptography allows sending data trough trustless chan-
nels in a secure and verifiable way. Data hashing consists in
a basic cryptographic operation that not only compresses
data in a fixed-length format, but it does so irreversibly,
which is crucial for ensuring the integrity of digital assets
when transferred in the network. Asymmetric cryptography
authenticates the data source and ensures its reception by the
desired user. Blockchain combines asymmetric cryptography
with hashing and digital signature schemes in order to
provide fundamental security guarantees presented later on.

More precisely, a digital signature scheme consists of
three phases as depicted in Fig. 8:
• Key-pair generation phase: each blockchain user gener-

ates a private key to sign a transaction with and a public
key by which the receiver can verify the authenticity,
integrity and provenance of the received data.

• Signing phase: the sender hashes the data and generates
the digital signature with its private key; next, the
signed hash is sent together with the encoded original

Fig. 7: Merkle hash tree procedure example: duplicated
(hashed) transactions are marked in orange.

data to the receiver. Data hashing not only makes the
signature scheme more streamlined and efficient (data
are compressed and have the same format), it also
ensures the integrity of the transferred data (transactions
contents are protected against being modified).

• Verification phase: the signed data is decoded with the
sender’s public key and compared with the re-computed
hash value of the unsigned and uncompressed data.

Note that, in both the signing and verification phases the
hashing function used must be the same (e.g., SHA256 for
Bitcoin blockchain). Blockchain requires asymmetric algo-
rithms – generating both public and private key – that allow
for fast verification (the time taken for signing shall be the
same as for the last phase). Digital signature algorithms in
blockchains widely use elliptic curves (ECDSA [204, 205]).

Fig. 8: Phases of the digital signature protocol: (i) a pub-
lic/private key pair is created – the public key can be
recovered from the private one while the viceversa is not
possible, (ii) data are signed – the signature is the result of
encoding with the sender’s private key the hashed data – and
transferred. Once received (iii) the receiver decode data by
the usage of the sender’s public key and additionally verifies
its authenticity.

C. Blockchain features

Thanks to the explanations of the previous paragraphs,
we can now highlight six fundamental blockchain features,
which are obviously dependent upon each others:
• Decentralization: DLTs enables P2P data sharing and

storage without entrusting the ledger maintenance to
any central authority. It does not mean completely
cutting out intermediaries that validate transactions (dis-
intermediation) like permissionless blockchains do, but
rather decentralizing them along with their roles.

• Immutability: while shared ledgers allow data manipu-
lation by a central authority, distributed ledgers work-
ing with replicated information protect data from any
sort of tampering and falsification; except in situations
where the majority of the network’s efforts are devoted
to change the registry [206] (e.g, the Ethereum DAO
fork [207]) or where the adversary thresholds are ex-
ceeded (see Appendix C-D). Data immutability makes
data accessible and manageable by different entities that
do not trust each other.

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 30

• Integrity, Authenticity and Non-Repudiation: the data
hashing grants that data is not modified during its
transmission (i.e., integrity). Moreover, the origin of a
transaction can be ascertained by the senders’ public
key dissemination, while the evidence of the sending
action is represented by the data signing procedure
involving the private key (i.e., authenticity and non-
repudiation). Blockchain signing scheme combining
asymmetries cryptography and data hashing is pre-
sented in Appendix A-B.

• Auditability: Transactions in blockchain systems must
be validated and verified thus, each data transfer should
be visible to all blockchains participants in its entirety.
In this way, all blockchain operations are traceable via
audits. Users accessing the first generation blockchains
can see the data ledger in its entirety. Indeed, recent
implementations enable multiple ledger to be isolated
and maintained within the same blockchain system via
private channels. Nevertheless, ledgers data is visible to
all channel participants, thus the auditability is satisfied
at channel level.

The mix of the above features qualifies the technology at
a quite high level of dependability, differentiating it from
the classic distributed database. Blockchain features result
strictly correlated with the consensus mechanism in use.

APPENDIX B
JOURNEY OF A TRANSACTION

A. Transaction Creation

Whenever a user aims at interacting with another one
in the blockchain network, a transaction takes place. In
general, a transaction indicates to the network that a user
has authorized a data flow. Hence, it has to be properly
constructed for its purpose before its propagation.

Firstly, the sender user has to build a transaction proposal
specifying all the criteria according to which the informa-
tion can flow to the transaction receiver(s). All blockchain
transactions must specify the destination of the operation,
in most cases provided with a unique transaction identifier.
Moreover, a transaction field reporting the entity of the trans-
fer must exist; i.e., in the case of cryptocurrencies a certain
amount of tokens is specified in the amount field of the
transaction. Blockchain technology supports the presence of
both multiple origins and multiple destinations; a transaction
sender may have more receivers and vice-versa.

The transaction proposal must be signed by the sender(s)
to prove the ownership of the address(es) instantiating the
transaction. Blockchain-based systems use digital signatures
as authentication methods (as presented in Appendix A-B).
Once signed, the transaction can move on to be propagated
in the P2P network. Privacy-preserving blockchains – trying
to hide the source, the destination and the entity of a
transaction – can make use of temporary addresses and
special cartographic tool to sign and encrypt transactions
before the propagation [13].

The data model of a blockchain transaction differs de-
pending on the system implementation and its business
application. For instance, the Bitcoin protocol imposes the
transfer of Unspent Transaction Outputs (UTXOs [208]),
presented hereafter. Post-Bitcoin data models have evolved
in two different ways.

First, blockchains moved to the adoption of an account-
based model, making use of a completely new transaction
syntax (Turing complete) [125] and resulting more ‘smart
contract friendly’; Ethereum is one of the so-called ‘second
generation’ cryptocurrencies [209] adopting this record-
keeping model. Subsequently, blockchains’ intention was to
maintain the original Bitcoin data-structure along with its
improvement proposals [210] to which integrate the benefits
of an account-based model. General blockchains, going
beyond cryptocurrencies and digital assets, may adopt basic
models supporting smart contract execution. Offering more
and more general operations corresponds to a data model
supporting more and more complex logic, hence overcoming
both the account and the UTXO models. Blockchain-based
systems of this type adopt a key-value data model (also
called table-data model) where the blockchain registers its
state as data-tuples that can be updated. We present in the
following these different models in more details; benefits
and drawbacks are summarized in Table X.

1) UTXO model: This record-keeping model associates
value to users’ addresses as ‘unspent’ transaction outputs,
i.e., cryptocurrency amounts that may be spent in the future
through the construction of other transactions; UTXOs be-
come inputs of a ‘spending transaction’ transferring the value
previously received to another blockchain user. Transactions
outputs (TXOs) can only be spent (i.e., transferred) once.
Blockchain addresses keeps track of the received UTXOs;
their sum corresponds to the address balance.

A peculiarity of the UTXO model is that transactions
inputs and outputs must match; namely the entire value of
the TXOs received in a prior transaction has to be transferred
in order to be spent. More precisely, a user aiming at
transferring data to another one does nothing more than
‘endorsing’ a previous received UTXO. Users unlock an
output, appropriately transform it and generate a new one;
the procedure, resembling the “compare-and-swap” (CAS)
instruction in computer science, forces a synchronization in
data accessing [211]. The problem arises whenever a user
has no intention of spending the entire value of a TXO.
The issue is solved with the proper use of multiple outputs;
the system creates a transaction with two different outputs:
(i) one destined to the receiving user, transferring the aimed
value (lower in relation to the TXO) and, (ii) one transferring
the difference back to the sender in the form of a new
UTXO. In this way, the inputs value corresponds to outputs
value. The UTXO model is designed in such a way that each
UTXO has to be transferred/spent in its entirety as input of
another transaction. That is why operations on UTXO-based
blockchains are so reminiscent of exchanging cash. Fig. 9
shows how UTXO works in the Bitcoin blockchain marking

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 31

Fig. 9: An example of UTXO-based transfers in Bitcoin.

the difference between TXOs and UTXOs.
The state of the whole blockchain is represented by

the UTXOs state. Each transaction includes the state of
the new output and in order to be updated it has to be
included as input of a second transaction. This implies high
verification, duplication and transmission costs. Because of
these drawbacks, UTXO model forces blockchains to limit
the amount of operations impacting the system state.

Bitcoin adopts a transaction structure with three basic
fields: (i) the value to be transferred, (ii) a short script speci-
fying the conditions under which the value can be redeemed
(i.e., the Locking Script or Redeem Script [212]) and (iii) a
witness field to unlock the previous transaction output. The
script locks the transaction until spending conditions are met,
i.e., when a witness is provided. The approach works for
simple transactions (“Pay-to-PubKeyHash” [201]) or simple
contracts involving a small number of transactions locked
with proper locking scripts (“Pay-to-ScriptHash” [213]),
however it results not suitable for slightly more complex
operations contemplated with smart contracts. UTXO-based
applications in Bitcoin should limit the number of trans-
actions involved, because of both the cost in terms of
computations required to find a PoW (a golden nonce [214])
validating a transaction, and the scripting language supported
by the model which is Turing incomplete [215].

2) Account-balance model: This model results more in-
tuitive in keeping track of the balance of each account as a
global state of the blockchain. State replication completely
overcomes the concept of transaction input and output; more
precisely, the blockchain state is an outcome of a transaction.
Once a transaction is executed the states of the accounts
involved in the transferring are updated.

There are different options for creating a transaction
depending on the output and the finality; regular transac-
tions between users have to simply specify the receiving
account(s) and the entity of the transfer, while transactions
dealing with contracts present rather complex structures. In
terms of data model, a smart contract consists of a collection
of standard transactions presenting locking conditions: con-
tracts on the blockchain are created as transactions between
addresses and they can be executed thanks to triggering
transactions. For instance, Ethereum works with different
types of accounts: Externally Owned Accounts (EOAs) hold-
ing only its balance, and Contract Accounts (CAs) holding
the code of a smart contract and keeping an internal state.

Once a transaction in a contract or a regular one is executed,
the ledger is updated together with its state.

Contrary to UTXO-based blockchain, account-based sys-
tems have to deal with several security issues. First of all, the
account model is not not immune to double-spending prac-
tice. Hence, it is necessary to secure the blockchain adopting
this record-keeping model, preventing the same transaction
being submitted more than once. Moreover, an anonymity
issue arises when accounts are reused; the account model
gives preference to balance updates rather than new account
creation.

3) UTXO+: The idea beyond the UTXO+ model is to
maintain the UTXO structure, to which appropriate changes
are made in order to obtain the same benefits granted by the
account-based models. There is no notion of ‘account’ and
state is forced to be included in the transactions outputs.
Such operations still result quite unnatural and require a
deep-level of abstraction together with serious complexities.

Corda, Chain Core and Qtum [19, 54, 216] appropriately
mix the Bitcoin and the Ethereum data-structures in order
to have an UTXO-based model supporting complex contract
operations; both systems adopt powerful virtual machines
supporting operations written in Turing-complete code but
differently to Ethereum the EVM are stateless.

4) Key-value model: An evolution of the previous data
models consists in including in the state of a blockchain
more variables, presenting them as tuples or tables. Such
a general approach allows to adopt an UTXO-like or an
account-like structure depending on the business constructed
on top of the blockchain.

For instance, Hyperledger Fabric offers the possibility to
deploy Bitcoin-like currency systems (Fabric-Coin [49]),
digital assets exchange (i.e., a contract, liabilities, properties)
and tangible assets exchange (i.e., real estate and hardware).
Fabric represents general assets as collections of key-value
pairs (KVP) and it records state changes as transactions
outcomes [20]. Kadena [217] adopts a table-based data
model operating modification at a per-row level. That is, the
blockchain registers a columnar history and transactions,
both regular and smart contract ones, can update multiple
column values at once thanks to a proper object syntax.

Model Comparison: Major differences between the four
models are summarized in Table X (mentioned frameworks
are then detailed in Section VIII).

Transacting using a UTXO model is conceptually equiv-
alent to banknotes exchanging; the amount of paper bills
(UTXOs) in the purse is the balance of our wallet and,
whenever users spend money, they pay with a bill covering
the cost (existing UTXOs) and they receive a change back
consisting in other bills (new UTXOs). Thanks to the anal-
ogy, it is easy to note that this record-keeping model provides
higher levels of scalability and anonymity; multiple UTXOs
can be processed in parallel and whenever a new address is
receiving new UTXOs the identity of the user owning the
address is hidden.

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 32

The account data model is constructed to record each
account’s balance so as to allow the issue of valid trans-
actions. With accounts resembling traditional banks’ debit
cards, the blockchain structure results more intuitive and
efficient. Adopting a stateful approach, the balance of each
debit card is registered in the system and it is not included
in the transactions data as for the Bitcoin stateless model.

TABLE X: Blockchains data model comparison.
Data

model
Benefits in Drawbacks

in
Frameworks

UTXO
scalability,
security,

anonymity.

applicability,
efficiency,

intuitiveness.

Bitcoin, Litecoin [218],
Dodgecoin [219], ZCash
[220], MultiChain [76].

Account
intuitiveness,
applicability,

efficiency.

security,
anonymity.

Ethereum, Tezos [221],
IOTA [14], Ripple [222],

Stellar [223].

UTXO+
scalability,
efficiency,
security,

anonymity.

applicability,
intuitiveness,

model complexity.

Corda [19],
Chain Core [54],

Qtum [216].

Key-value as UTXO
and Account.

model
complexity.

Hyperledger Fabric
[20], Kadena [217],
Sawtooth Lake [68].

B. Transaction Propagation

This step results crucial for the correct functioning of the
consensus mechanism in the network. In order to establish
which transactions are valid or not, all the validating peers
must have complete knowledge of the information to be
agreed upon. Therefore, transactions must be propagated to
validators as fast as possible.

In order to optimize blockchain network performance and
scalability, flooding or gossip protocols [224] are used for the
propagation. Transaction propagation is carried out by means
of a message exchange amongst peers. Blockchains clients
connect only to a limited number of peers (neighbors); the
message is first propagated to the connecting peers that
then propagate it to their neighbors, and so on until it
reaches all network nodes. Data present in the messages can
be encrypted or not. Blockchain-based systems can require
sending peers’ authentication via exchange of a public key
that can be included in the message or communicated out of
band. Hence, receiving peers’ can verify the data integrity.

From a networking performance perspective, it is im-
portant to establish to which of its neighbors peers have
to relay a message. Flooding protocols include message
transmission to all neighbors, while according to gossip
protocols messages are relayed to a subset of randomly
selected neighbor nodes. Both approaches assure a fast
information dissemination but they differ in term of band-
width and delay performance. The design of the transmitted
message can impact the transmission delay. Delay-aware
or bandwidth-aware neighbor selection can obviously lead
to clear forwarding delay and bandwidth gains. A Bitcoin-
like announce-and-request signaling, adding two more steps
in peers communications (i.e., two more round-trip time,
RTT, latencies), can consume less network bandwidth at
the expense of delayed transmission. Such signaling can
also imply a more complex data model: the protocol has

to rule peers’ request mechanism, peers’ access to the data-
ledger and peers’ verification of the message originality (i.e.,
whether the information is new or not).

Apart from bandwidth and delay aspects, message propa-
gation has to deal with network privacy and security aspects:
multiple connections per node implies a large attack sur-
face, while a limited number of communications facilitates
interrupting and avoiding attacks (i.e., eclipse and DoS
attacks [122, 225]). Regarding the identity-privacy aspects
in permissionless blockchains, P2P protocols can reveal
information on nodes identity. Deanonymization practices
are related to the blockchain network topology built on top of
the P2P overlay network, which can be generally disclosed
if global-view P2P network traces are available or can be
collected from different peers.

Bitcoin and the first generation of Altcoins work with
flooding protocols using an announce-and-request signaling,
where information is first announced to the neighbors to be
sent afterwards, if not already possessed. Even if propaga-
tion costs with flooding do increase sub-linearly with the
number of neighbors, the dissemination protocol is prone
to deanonimization attempts [44] along with destabilizing
communication strategies [226]; starting from withholding
(relay-delay [227]), ending with net-split and gold-finger
attacks [7]. Moreover, even if the announce-and-request
signaling can be improved (e.g., compressing information by
announcing headers only) or appropriately mixed with the
classical push (e.g., Ethereum), the added latencies elapse
can be more or less significant.

Permissioned blockchains are superior to permissionless
ones also in the communication performance. In
permissioned environments where anonymity, message
encryption, Sybil attacks do not represent a major issue,
the communication security is concentrated on the faulty
nodes management, to which gossip dissemination is
more resistant with respect to flooding. The dissemination
protocol does not require fixed connectivity to work since
it operates with an unsolicited push propagation [228]
mechanism, providing a consistent data synchronization
tolerant to node crashes. Permissioned blockchains can
count on a fast propagation with low latency (due to the
direct push) and low bandwidth costs. In order to further
speed up the propagation, the push mechanism can be
improved reducing the size of the broadcasted messages
by disseminating the transactions ID instead of the whole
transactions.

Model Comparison: Table XI summarizes the differences.
First generation cryptocurrencies opt for flooding protocols
using announce-and-request signaling, leading to higher
bandwidth consumption and lower delay performance. Con-
cerning security, the level of attack resistance depends on
other factors (e.g., relay-delay). In this respect, Ethereum
represents a transition from flooding to gossip adopting a
“hybrid” design where some information is pushed and the
rest is sent selectively. The gossip protocol promises good

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 33

performances pushing messages; however, it results more
sensible to net-split attacks due to the fewer connections
involved in the propagation.

TABLE XI: Blockchains propagation mechanism compari-
son.

Communication protocol −→ Flooding Hybrid
Flooding

Gossip

bandwidth consumption ##
delay performance ## ##

net-split attack resistance # # ##
scalability # #

Basic protocol design −→ Announce-
Request

Hybrid Unsolicited
push

RTTs 3 2-3 1
delay performance ## #

examples Bitcoin Ethereum Hyperledger

High: , Medium: #, Low: ##.

C. Transaction (Block) Validation

Before being collected in blocks, transactions must pass
the verification checks, i.e., they must have been created
in accordance with the network rules. Once verified and
inserted in the blocks, validators check whether the blocks
meet all the protocol requirements necessary to assign the
‘valid’ entry and to proceed with the publication. These
validation criteria must be deterministic and uniform across
the network. While the transactions verification consists in
a trivial cryptographic check, the block-validation phase
is considered a key passage since it attributes to every
blockchain-based system a distinctive character. After veri-
fying that the block proposal has been correctly carried out,
nodes have to find an agreement on the validity of the block.
More precisely, nodes in the network must agree on a unique
record of transactions following a collaborative consensus
protocol.

Transactions-ordering and consensus establishment can be
considered as separated phases, or can be combined as in
most of the existing consensus protocols. Bitcoin combined
the two processes in the consensus procedure proposed
in [6]. Validators in the Bitcoin network, known as miners,
have to agree on both the order and the validity of the blocks.
Some permissioned blockchains separate these steps (e.g.,
Hyperledger [20]): peers can agree on the ordering of the
transactions that are validated in a second moment, right
before their publication.

The agreement – on both publication and ordering of the
transactions in the ledger – is reached through a distributed
protocol executed by the nodes involved in the validation
procedure. The consensus protocol must solve the Byzantine
Generals (BG) problem [62], which consists in reaching con-
sensus among trustless nodes (i.e., generals can be traitors).
Since systems must accomplish this agreement state in a
distributed manner, protocols should provide a consistent
(or at least eventually consistent) view of the blockchain
in the whole network. Thus, protocols adopt data replica-
tion, meaning that nodes hold replicas of the transaction

ledger. Replicating data over nodes in the network makes
blockchains resilient.

Building a proper consensus protocol is a challenge, as we
develop in detail in Section IV. Since blockchain technology
has many different use-cases, consensus protocols have been
designed to meet specific system requirements. In permis-
sionless blockchain applications, everyone is allowed to
participate in the network, executing the consensus protocol
and maintaining the shared ledger. The availability of these
systems results in a substantial amount of computational
power (hence energy) for maintaining a distributed ledger at
a large scale (e.g., as in Bitcoin). Permissioned blockchains,
with the presence of restrictions on who is allowed to
participate in the network, adopt differently designed agree-
ment procedures. More specifically, since the participants
using blockchain are whitelisted, consensus protocols in
permissioned blockchains guarantee higher performances.

D. Transactions (Block) Confirmation

Block confirmation coincides with its inclusion in the
valid transactions history. Confirmation is the direct con-
sequence of consensus finality (i.e., an agreed transactions
never change or disappear) characterizing the so-called
“consensus-based” blockchains. In this case, confirmation
consists of a transaction predicate obtained when the major-
ity of nodes get to decide to validate, and then publish the
block containing the given transaction. However, in general,
decentralized distributed ledgers may ensure a probabilis-
tic and economic consensus finality – since they rely on
eventually consistent consensus algorithms [47] – referring
to cases in which the block-confirmation probability/cost
(depending on the type of consensus) is increasing with
the number of validated children blocks . In fact, despite
the robustness of permissionless blockchains against double
spending attempts (they need the involvement of the majority
of the network to be successful), reversals are very common
by means of forking attitudes that do not correspond neces-
sarily to malicious intents. Confirmed blocks that cannot be
discarded give way to the proposed exchange in the collected
transactions. Therefore, in this case block confirmation is not
a formal step explicitly notified to blockchain nodes, but it
is implicitly inferred by the actual presence of the validated
block in the blockchain branch where the majority of nodes
concentrate their efforts.

APPENDIX C
DIGRESSION ON CONSENSUS

A. Consensus protocol properties

Consensus ensures nodes’ agreement on a single request,
or a sequence of requests also referred to as atomic broadcast
[229]. Evidently, in any consensus protocol there are two
events: the proposal and the decision. What nodes propose
and decide is the interest they aim to agree upon, that in
applications is most of the time a numerical value.

Fault-tolerant protocols are designed to deal with a limited
number of faulty agents. According to [230, 231, 232],

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 34

consensus reliability to halting failures is ensured by the
following properties:

• Agreement: every correct/honest node must agree on the
same proposed value V.

• Validity: if all nodes propose the same value V, then all
correct nodes decide V.

• Termination: every correct node has to take a decision
on a value V.

Moreover, atomic broadcasts are reliable broadcasts satisfy-
ing the following property:

• Total order: if any correct node decides that value V1
comes before value V2, then every other correct node
must order V1 and V2 at the same way.

Therefore atomic broadcasts are also known as total order
broadcasts [233].

In [29, 234] authors grouped these properties in two
classes: liveness, grouping validity and termination, and
safety that incorporates the remaining properties. These
properties are analyzed in [29] for atomic broadcasts char-
acterized by a broadcast and a deliver event.

It is worth noting that blockchain applications may rise ad-
ditional properties that can appear more important than those
above to the designer. For instance, authors in [45] compare
protocols in terms of network identity management, energy
consumption and adversary tolerated power. Authors in [30]
make comparisons in terms of security and performance; in
particular, security is qualified in terms of agreement (i.e.,
the achievement of a consensus state) and the resistance
to transaction censorship (i.e., the malicious behavior of
suppressing transaction) and Denial of Service attacks [225];
and performance is qualified in terms of throughput (i.e.,
the transaction agreement rate), scalability (i.e., the system
capability to respond adequately to a growth in the num-
ber of nodes) and latency (i.e., the time elapsing between
proposal and decision phases during the consensus process).
In [29] we find a comparison based on liveness and safety,
while in [74] the comparison is limited to permissioned
blockchains. A complete contribution on BFT protocols for
replicated systems is provided in [235] where algorithm
performances are evaluated in terms of cryptography costs,
workloads, network conditions and faults.

Eventually, in order to satisfy the desirable set of proper-
ties, a consensus protocol consists in a set of rules that each
database transaction must respect. These rules, embedded in
each blockchain node behavior implementation, are therefore
application-dependent rules that can vary from system to
system [236]. Therefore, consensus in blockchains is crucial
since it characterizes the systems ensuring properties such as
resilience and security that can be summarized by a desirable
level of dependability [237, 238].

B. Dealing with asynchronous communications

Networks can be synchronous, asynchronous or partially
synchronous [239, 240]. Dealing with synchronous network

does not mean dealing with networks where nodes’ commu-
nications are not delayed in time; instead, it means consider-
ing message delays bounded by some value. In asynchronous
networks, this upper bound does not exist or is flexible,
as messages are supposed to be delayed arbitrarily. In
partially synchronous networks, or eventually synchronous
networks, asynchronous nodes present time windows where
they behave synchronously. Partial synchrony offers a good
adaptability to the real network behavior and, at the same
time, simplifies network modeling. Both liveness and safety
properties are guaranteed during synchronous periods. On
the other hand, during periods of asynchrony liveness cannot
be ensured as proven by the “impossibility theorem” [241]
stating that deterministic protocols do not reach consensus
in a fully asynchronous environment.

In order to overcome this limitation, fully synchronous
networks opt for relaxing the deterministic constraint; they
introduce randomness by requiring probabilistic termination
(i.e., it is improbable for non-terminating executions to
collectively occur) [242]. Authors in [243] proposed cryp-
tographic solutions with computational bounded adversary
(see Appendix C-D) to overcome it. In partially synchronous
networks, protocols correctly terminate during synchronous
phases while they may stall during asynchronous ones,
however termination is guaranteed under proper trust as-
sumptions. More precisely, in order to preserve safety and
liveness properties, this kind of protocols have to meet
specific assumptions on the type and the number of faulty
nodes in the network. In particular, fault-tolerant protocols
typically work with a number n of nodes (replicas) exceeding
twice the number of crashing nodes t and three times the
number of Byzantine nodes b.

C. Dealing with data consistency and consensus finality

An important impact on consensus has the “CAP” (Con-
sistency, Availability, Partitioning) theorem [244, 245] stat-
ing that fault-tolerant distributed systems cannot guarantee
at the same time full data consistency (i.e., the ability to
have nodes storing the latest data version at the same time)
and, complete failure independence (or high availability) in
presence of a partition.

It is worth recalling that consensus implementation is
a means for transaction validation and systems’ resilience
to failures. However, availability comes at the expense of
consistency [34] whenever a network partition or failure
happens. Thus, in general blockchain based systems aim
at maintaining eventual consistency, i.e., consistency with
time lags: all nodes get eventually a consistent view on the
shared data, and in the convergence period upon each given
change intermediate decisions may be taken, but eventually
corrected based on the consistent store. Eventually consis-
tent systems provide probabilistic consensus finality while
consistent systems guarantee absolute finality.

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 35

D. Integrating failure conditions

Summing up, each consensus protocol is characterized
both by a communication model and a failure model which in
turn is characterized by trust assumptions. Communications
among nodes can be synchronous, asynchronous or can lie
between the two cases. Failures may be of two types (crash
and byzantine) and can characterize a certain number of
nodes. Crash failures – where honest nodes may fail – must
be distinguished from Byzantine failures – where nodes may
act maliciously. Of the two types of failures, the Byzantine
class involves several failure subtypes [246, 247, 248], which
are far more disruptive than classical crash failures. More
precisely, protocols in partially synchronous environments
tolerate a number t < n/2 of crashing nodes and a
number b < n/3 of byzantine nodes. Liveness and safety
in synchronous or partially synchronous environments are
guaranteed for those protocols working with n ≥ 3 f + 1
replicas, where f denotes the number of faulty nodes in
general. In blockchains, properties and features result from
a clever choice and implementation of a consensus protocol.

Consensus protocols, aiming at reaching an agreement
state in the networks, satisfy their desired features and
properties (such as liveness and safety) under some con-
ditions. These are the so called trust assumptions char-
acterizing the failure model of a protocol. These models
are typically presenting bounds/threshold on the gap be-
tween two parameters referring to honest and malicious
nodes respectively. Therefore, they are known in literature
as “threshold adversary models” [234, 249]. The typical
failure model foresees a threshold on the total number of
nodes an adversary can control (f) with respect to the total
number of nodes in the network (n). The threshold choice
depends on the failure type and is between the half and
a third (as previously met). However, this failure model
presupposes knowledge of the number of parties involved in
the network. Therefore, this classical adversary model works
for permissioned networks where parties joining the system
follows a specific membership protocol.

Bitcoin and other PoW-based cryptocurrencies consider
an alternative failure model bounding no more the number
of nodes but the work they may do. More precisely, the
computational threshold adversary model limits the total
amount of computational power that the adversary control
(fc) with respect to the total computational power (nc).
In order to guarantee double-spending resilience Bitcoin
selects a threshold of a minority nc > 2 fc , namely the
adversary can control a minority of computational power.
Bounding computational power does not require knowledge
on participating parties, therefore the model well adapts to
PoW-based permissionless networks, where anyone can join
the system.

Further adversary models can be found in literature; a
new approach is the one of bounding the adversary stake
(i.e., participation in a finite limited resource) [250], another
option may be to adopt a game theoretical approach and
therefore bounding adversary utility [251, 252].

E. Proof-of-X Consensus

In the following we detail the PoW consensus, the PoS
algorithm and, the PoS variations involving virtual mining.

1) Proof-of-Work: The idea behind a PoW protocol is
to make validation tasks difficult to perform, but trivial
to verify. This idea was first presented as a solution to
the email-spamming issue [253] and applied in a system
called Hashcash [65]. The email sender should solve a
cryptopuzzle finding the hash of a string, containing all the
necessary information of the receiver, which has to meet
a certain target. The usage of the Secure Hash Algorithm
(SHA) [254], mapping data of arbitrary length to data of
a fixed length in a non-invertible way, ensures a costly
procedure to find a valid hash. B-money [252] suggested,
in 1998, a PoW procedure where the computational effort
can be easily quantified in terms of commodities baskets. At
the same time, a PoW-based decentralized digital currency
called Bit Gold was proposed [255] such that nodes should
generate strings of bits using one-way functions with a cost
expressed in number of compute cycles. The last Bitcoin’s
precursor, RPOW [256], incorporates the hashcash scheme
creating Reusable PoW (RPoW) tokens. Bitcoin, as its
precursors, uses a computational hard validation procedure
to create rare and valuable goods. The real contribution
brought by the system is the combination of decentralization,
double-spending resistance, Sybil resistance and trustless
node management with the “block-chain” architecture.

The PoW protocol consists in a race among nodes to be
the winner and therefore gaining a reward of new minted
tokens. The competition takes place among particular nodes,
called miners, aiming at producing a valid PoW consisting
in the hash value computation of a previous block header. In
order to validate a block, the computed hash should meet a
precise difficulty requirement. The nature of the problem
relates the mining procedure to a lottery race where the
validation process is completely aleatory and the probability
of finding a valid hash is proportional to miners’ computing
power. Once the winner is found it acts as a leader node
attaching to the blockchain its selected block of transactions.
Its epoch expires with a new valid block, thus a new winner
of the mining race. Bitcoin consensus provides for the
coincidence of both validator and leader roles in a single
node. In general, PoW blockchains may separate the leader
election (mining/transaction validation) form the transaction
ordering procedure (i.e., Bitcoin-NG [9]).

Strong consistency would ensure a single chain of valid
blocks published on the ledger. A PoW mechanism, however,
guarantees consistency on a probabilistic form (forms of
eventual consistency [6, 234, 257, 258]) since forks may
occur. Whenever two blocks are validated approximately
at the same time, or the network latency is delaying the
transmission of a valid solution to the network, the result is
the presence of two valid chains with the same block number.
This inconsistent situation is solved with the validation of
a new block through the longest chain rule: the chain with
the most blocks is considered as the valid one, noting that

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 36

the chain related to the greatest PoW effort may not be the
longest chain [259]. The rule is proposed as a probabilistic
solution to the Byzantine Generals problem [62]. Other
variants of the longest chain rule were proposed in order to
scale PoW blockchains: GHOST [260] proposed the heaviest
chain rule that is confirming the block in the chain with
the highest aggregate difficulty level, i.e., with the greatest
computational load involved.

The economic incentives [261] resulting from the mining
procedure induce miners to reduce the validation costs in
order to maximize their earnings. Over the years the demo-
cratic idea pushed by Bitcoin of one-CPU-one-vote has left
room for a centralizing trend in the validation process with
a decreasing number of active solo miners and the formation
of powerful coalitions of miners, mining pool, showing
practical advantages but also motivating opportunistic pool-
hopping behaviors [262]. Centralization in a permissionless
environment results in increased vulnerability to double-
spending attack. Decentralization is a characterizing fea-
ture for blockchain based cryptocurrency, one may argue
that pool formation is nothing more than a converging
trend to the original banking system [263]. An approach
to face this monopoly trend is the inclusion of memory-
access operations in the PoW computations accompanied by
memory-bound functions. However, these schemes cannot
make this centralization trend disappear since it requires
specialized mining equipment and thus benefits from miners
cooperation, as the original PoW (i.e., Litecoin [264, 265]).

Mining devices are constructed to compute hash values
as fast as possible. The Bitcoin system was conceived for a
CPU mining that was quickly replaced by a GPU (Graphic
Processing Unit) mining. GPUs can perform hash computa-
tions in a more efficient way with respect to classical CPUs,
therefore general Altcoins started adopting GPU mining at
the end of 2010. This results in faster operations, due to oper-
ations parallelizing [266] and in energy savings [267]. When
hardware based mining solutions took over the computing
power dedicated in mining activities experienced, despite
strong fluctuations, an exponential growth [268]. It worth
nothing that alternative PoW-schemes try to compensate the
incredible waste of energy with useful work at an academic
level; Primecoin [269] searches for prime numbers chains
(Cunningham chain [270]), NooShare [271] executes Monte-
Carlo simulations, Shoker [272] proposes matrix-product
problems to solve while in [273] authors propose to replace
PoW hashing function with alternative one-way functions
satisfying additional properties.

Pseudo-random leader elections based on PoW
schemes [274] are generally prone to grinding attacks.
The practice consists in testing several candidate blocks
improving in this way the possibility of being a leader in the
following round. Hence the need of unbiased unpredictable
random elections as those adopted in [275, 276]. The need
of alternative PoX schemes (i) motivating the proof of
“useful” efforts and (ii) improving performance [277] in
terms of security, scalability and eco-friendliness is evident.

2) Proof-of-Stake and Virtual Mining Alternatives: The
Proof-of-Stake (PoS) approach replaces the PoW leader
election based on mining, with an alternative approach
depending on users’ investments in the blockchain, i.e.,
their stake: the amount of virtual tokens held by a user;
in other words, the mining race costs are replaced by shares
in the consensus. The probability of becoming a leader is
proportional to one’s stake; once a leader is selected among
stake-holders, it has the right of validating the preferred
block. As for PoW, consensus finality is not met and the
“richest chain” rule breaks deadlock points – the valid chain
is the one with the highest total amount of stake involved.
Hence PoS could avoid the centralization trends observed
with Bitcoin. PoS-type algorithms differ in the (i) estimate of
users’ holding and, in the (ii) adopted incentive mechanisms.

Users’ stake can be estimated as an amount of coins stored
in an account. However, security and fairness issues [157]
arise when considering this consensus configuration: leader
election components are quite predictable, and a selection
based solely on the amount of tokens held by users is
unfair (“rich-get-richer”). Hence, alternative solutions were
proposed to elect the leader taking into account its stake.

One of the first PoS variations consists in weighting a
coin stake by its “age” (i.e., the time elapsing between the
last movement of the coin). In PeerCoin [278] the coin
age has the same role of the computational power for the
classical PoW scheme. However, the real difference is to
give all participants the chance to be elected, thus solving
monopoly-like situations. Despite stake-based coins (e.g.,
PeerCoin and Nextcoin [279]) prevent centralization trends,
their underlying protocols encourage amassing coins and
stay inactive in the network – that exposes the network to
Sybil and DoS attacks [226]. Thus, the ideas to punish coins
accumulation trends (proof-of-stake-velocity [280]) and to
assign the reward for the validated blocks only to the active
users (proof-of-activity [274]). Active peers are the ones that
solve a crypto-puzzle with a difficulty target depending on
the users’ stake, thus hash computing improves network
security. Leading stake-holders, responsible for block val-
idation, are therefore picked in a pseudo-random fashion.

In both Ouroboros [276] and Snow White [275] partic-
ipants use pseudo-random function to predict the block-
generator however, while the former takes into account only
the stake distribution in the network, the latter additionally
relies on a pre-image (nonce) calculation. More precisely,
Snow White is an “hybrid” protocol cleverly mixing PoW
(computing only one hash per round) and PoS (the hash
should meet a target depending on user’s stake). Black-
coin [281] and Nova Coin [282] are the first applications
using this type of hybrid schemes (i.e. mixing different
consensus mechanisms).

One of the latest variants of the PoS scheme was recently
proposed by Ethereum. This is Casper [283] that is to be
incorporated into the “Serenity” [284] version of the plat-
form. Casper brings the PoS scheme closer to the traditional

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 37

BFT model – more precisely, it combines the concepts of
security deposits with voting in order to reach agreement.
Peers have to make a security deposit in order to be elected
as validating peers. The pseudo-random election takes into
account the deposit entity made by the candidates and elect
a set of validators. That is, Casper cannot be considered as
an hybrid algorithm mixing PoS and BFT (see Section C-G)
since election and validation are not independent processes.

Concerning rewards distribution, PoS protocols originally
distributed rewards among all peers regardless the elections
results [275, 276] with the result of incentivizing the famous
nothing-at-stake [67] attack. Today these naive implementa-
tions are overcame by valid alternatives: some [283, 285]
asking validators to lock an amount of coins (proof-of-
deposit), some [278] asking to destroy it (proof-of-burn),
and some [286, 287, 288] asking to allocate a significant
amount of memory/disk-space (proof-of-capacity) or to pro-
vide wireless network coverage (proof-of-coverage).

Efficient PoS alternatives based on virtual mining working
for open-access blockchains with random leader election
within untrusted nodes are the PoET (proof-of-elapsed-time)
and the PoI (proof-of-importance) consensus schemes. The
former adopts a trusted execution environment (TEE) in
Intel SGX for the results verification [68] for guaranteeing
both safety and randomness of the leader election. Peers
make a request of wait time for processing the election
procedure; the winner of the lottery is the validator with
the shortest waiting. Correctness of the election can be
publicly verified within the TEE: leaders generate a proof
testifying they had the shortest wait time and additionally,
they prove that the block broadcast happened right after
the waiting expiration. The platform NEM (New Economic
Movement [69]) proposes a blockchain based on a peculiar
block validation process (i.e., harvesting) and a PoI [34]
consensus algorithm determining the user that create and
append transactions block (i.e., harvester). NEM works with
an underlying cryptocurrency (i.e., XEM) that characterizing
the balance of each account on the network that is split in
a vested and an unvested part. Eligible validating peers are
evaluated according to the amount of vested XEM and the
support their accounts give to the network (i.e., number of
transaction partners and number and size of transactions in
the last 30 days). Contrary to previous mechanisms, PoI does
not incentivize peers to save their coins/resources increasing
their voting power. Harvester candidates are incentivezed to
be ‘active’ in the network.

PoS enables both public and private leader election thus,
the consensus protocol is applicable by both blockchain
with and without permissions. Restricted elections result in
DoS resilience since leader in the epoch become known to
the stake-holder community at first and then to th public.
Moreover, permissions on block validation may be assigned
in order to improve the efficiency of the system. That
is, stakeholders privately delegate a representative set of
validating peers (delegated proof-of-stake DPoS [70]). The
list of witnesses is shuffled at the end of each round in such

a way that each validator can produce block according to a
certain rate. Witnesses are paid out for each produced block.

F. BFT Algorithms

Traditional BFT protocols – resilient to both byzantine
and crash failures – generally work under partial synchrony
assumptions, bounded communication latency and a classical
client-server architecture. Due to their nature (state machine
replication protocols) properties of liveness and safety are
guaranteed. Moreover, in BFT, both consensus proposal
and consensus decision events are separated. The downside
in these agreement protocol class is the communication
complexity [289]. Hence, the necessity for closed-system
adoption (i.e., permissioned blockchains).

The Practical Byzantine Fault Tolerant (PBFT) proto-
col [71] is a BFT variant that addresses the consensus
problems for small systems, since agreement among n nodes
is reached through the transmission of O(n2) messages;
it does so relying on a three phase round division where
in each round a block is validated passing through a pre-
prepared, prepared and commit steps. Each peer proposal
access to the next phase only with the 2/3 network approval.
Therefore, the algorithm requires at least 3 f + 1 honest
replicas to tolerate f failing nodes. Recent PBFT variant
SIEVE [290] introduce non-determinism in the chaincode
execution handling transactions with occasionally different
outputs. Moreover, an alternative PBFT-based consensus
protocol recently proposed simplifies the traditional failure
model for better efficiency levels. The idea behind XFT
protocol [291] is to exploit the following assumption: adver-
saries cannot control the majority of the nodes n > 2 f . In
this way the crash fault tolerant protocol avoids considering
byzantine failures.

With the arrival of consortium blockchains, the BFT
protocol (popular in the financial sector) was amended to
support open reading rights (public). Stellar Consensus Pro-
tocol (SCP [223]) is a BFT-variant based on permissions to
choose a pool of known participants to trust. Participation to
this pool (quorum) is open and global consensus is reached
intersecting all the chosen quorums. In the same way, in
delegated BFT protocols [292] only a class of representative
peers comes to vote. The most popular BFT-open protocol
adopting trusted subnetwork in the block validation process
is Ripple [222]. It make use of unique node lists (UNLs)
playing the same role as the Stellar quorums. The main
characteristic of the protocol is that agreement is reached
when the 80% of the nodes vote for the same candidate
block, this result in low adversary power tolerance. The
recent BFT variant, proof-of-authority (PoA) [293], relies
on a set of trusted nodes (authorities) with a rotating leader.
PoA algorithms [294, 295] ensure better performance with
respect to PBFT consensus since working with less message
exchanges (i.e., 1-2 message rounds to commit a block).

Classical BFT scalability drawbacks, regarding the num-
ber of nodes participating in the consensus, have been solved
with hybrid consensus protocols appropriately mixing PoX

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 38

with BFT algorithms used in permissioned environments.
This mix results in committee formation driving the con-
sensus process replacing the original leader role. Hybrid
models contemplate the usage of two different consensus
procedures; one to form the committee and another one to
establish consensus among the nodes inside the community.
Note that, however, by “hybrid” we do not mean any
committee-based consensus procedures (e.g., Hyperledger
utilizes PBFT); hybrid algorithms are the ones mixing two
different consensus schemes. In order to differentiate those
hybrid schemes running classical BFT protocol – to the ones
that make use only of PoX procedures – we denote them as
hybrid BFT-based algorithms.

Nowadays, it is possible to find blockchains not requiring
global consensus where each node has its own hash chain
containing only the transactions where a user is involved.
Cong proposed in [296] a system where agreement is estab-
lished on special blocks representing a set of transactions.
These systems can reach full horizontal scalability (i.e., scal-
ability in the number of nodes) at the expense of robustness.

G. Hybrid BFT-based Algorithms

Hybrid consensus mechanisms are born with the intent
of preserving permissionless consensus but overcoming the
trade-off between scalability and performance. Standard PoX
consensus has to be improved by combining it with parts
of BFT-based permissioned consensus mechanism. The idea
of dividing the agreement process into different parts (see
Section III), initially proposed by private blockchains such
as Hyperledger, is the key to built scalable permissionless
protocols providing consensus finality. The assignment of
tasks to the nodes is carried out by means of a committee-
formation; consensus is driven by a community of nodes that
build blocks at a first stage and then come to vote for their
validity.

At first, the committee is formed, which then will agree
on the validation of a block. Membership of the committee
is open to all nodes in the blockchain; they acquire voting
rights for the second phase through a PoX scheme. Existing
hybrid algorithms involve PoW and PoS procedures to
establish the leading nodes in the committee responsible
for validating blocks. The idea of joining a committee
through a PoW procedure is to assign voting power to each
participant in proportion to their computational strength;
this is the case of ByzCoin [297] and PeerCensus [298]
where Bitcoin meet strong-consistency. Committee forma-
tion through PoX schemes is a dynamic process; participants
receive a share of the committee through real or virtual
mining. Tendermint [160] is the most popular protocol where
Bitcoin PoW protocol is replaced with a PoS scheme that
is, virtual mining. For Tendermint and other less known
protocols [299, 300, 301] random committee selection is
(can be) replaced by an assessment of the amount of tokens
held by the blockchain nodes.

The right combination of PoX and BFT algorithms sig-
nificantly improves the blockchain performance; however,

scalability and throughput are not positively affected with
a huge single-committee. Therefore, blockchains may adopt
a consensus procedure based on multiple committee, also
known as sharding [30]. In this way transactions can be
processed in parallel by different shards (i.e., committees)
of few nodes since their size is inversely proportional to the
achieved performance level.

Classic
consensus

(predecessors)

Crash fault tolerant: 2PC, Atomic broadcast,
SMR (Paxos [60], RAFT [61])
Byzantine fault tolerant: PBFT [71]

Proof-of-X
(permissionless)

PoW (Bitcoin [6]), PoS (Peercoin [278]), PoI
(NEM [69]), PoC(Permacoin [286]), PoB
(Slimcoin [302]), PoD (Ethereum [283]),
PoET (Intel SawtoothLake protocol [68])

Hybrid
consensus

Pseudo-random leader election mixing PoW and PoS
(Blackcoin [281], Novacoin [282], Casper [283])

Consortium
BFT

consensus

Trusted validators set: Qourum (SCP [223]);
representative nodes (Neo, dBFT [292]); uniqe

node list (Ripple [222]); authorities (PoA [293])

Hybrid
BFT-based
consensus

Committee formation: PoW: Byzcoin and
PeerCensus [297, 298]), PoS: Tendermint [160]
Consensus in the committee: BFT, PBFT

Fig. 10: Evolutionary route of consensus protocols in five
classes from pre-blockchain to post-blockchain protocols

H. Summary of consensus mechanisms and their evolution

The diagram in Fig. 10 summarizes the evolution of
the procedures to reach consensus in distributed systems,
starting from the classic pre-blockchain algorithms - (i)
Classic consensus - passing through the early blockchain
consensus - (ii) Proof-of-X and (iii) Hybrid consensus -
and, ending with the consortium solutions widely used today
- (iv) Consortium BFT consensus and (v) Hybrid BFT-
based. We have highlighted five main classes of consensus
and characterized (where possible) the different variants.
We consistently cite the main algorithms representing the
consensus classes, encountered in the previous discussion.

ACKNOWLEDGMENT

The authors would like to thank Eric Gressier-Soudan for
his valuable feedback on the article as well the anonymous
Reviewers for the constructive comments that significantly
improved the original manuscript.

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 39

REFERENCES

[1] R. Davenport, “Distributed database technology−a
survey,” Computer Networks, vol. 2, no. 3, pp. 155–
167, 1978.

[2] R. Schollmeier, “A definition of peer-to-peer network-
ing for the classification of peer-to-peer architectures
and applications,” in P2P’01, 2001.

[3] S. Goyal, “Centralized vs Decentralized vs Dis-
tributed,” accessed: 2019-07-01. [online]: https://
medium.com.

[4] “Codementor,” accessed: 2019-07-01. [online]: https:
//www.codementor.io.

[5] Appinventive, “Blockchain App Development Cost,”
accessed: 2019-07-01. [online]: https://appinventiv.
com/blockchain-app-development-cost.

[6] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” Oct. 2008, accessed: 2019-07-01. [online]:
https://bitcoin.org/bitcoin.pdf.

[7] M. Conti et al., “A Survey on Security and Privacy
Issues of Bitcoin,” IEEE Communications Surveys
Tutorials, pp. 1–1, 2018.

[8] D. Bradbury, “The problem with Bitcoin,” Computer
Fraud & Security, vol. 2013, no. 11, pp. 5–8, 2013.

[9] I. Eyal et al., “Bitcoin-NG: A Scalable Blockchain
Protocol.” in USENIX NSDI 2016.

[10] “What to Mine,” accessed: 2019-07-01. [online]:
https://whattomine.com/coins.

[11] A. Wisniewska, “Altcoins,” institute of Economic Re-
search, Working Paper. Accessed: 2019-07-01. [on-
line]: https://ideas.repec.org/p/pes/wpaper/2016no14.
html.

[12] U. Chohan, “Are stable coins stable?” Notes on the
21st Century (CBRi), 2019.

[13] M. Khalilov and A. Levi, “A Survey on Anonymity
and Privacy in Bitcoin-like Digital Cash Systems,”
IEEE Communications Surveys & Tutorials, 2018.

[14] S. Popov, “The Tangle,” iOTA White paper. Accessed:
2019-07-01. [online]: https://www.iota.org/research/
academic-papers.

[15] “BigchainDB: a scalable blockchain database (White
paper),” 2016, accessed: 2018-12-02. [online]: https:
//www.bigchaindb.com/whitepaper.

[16] K. Saur et al., “Technology for secure partitioning and
updating of a distributed digital ledger,” uS Patent Ap-
plication Publication, Intel Corporation, CA (USA),
2016-11-18, US20180145836A1.

[17] V. Buterin, “On public and private blockchains,” ac-
cessed: 2019-07-01. [online]: https://blog.ethereum.
org/2015/08/07/on-public-and-private-blockchains.

[18] K. Wüst and A. Gervais, “Do you need a blockchain?”
IACR Cryptology ePrint Archive, vol. 2017, p. 375,
2017.

[19] R. Brown et al., “Corda: An Introduction, White
paper,” accessed: 2019-07-01. [online]: https://docs.
corda.net/head/_static/corda-introductory-whitepaper.
pdf.

[20] “Hyperledger Architecture Vol.1, Introduction to Hyp-
erledger Business Blockchain Design Philosophy and
Consensus,” accessed: 2019-07-01. [online]: https://
www.hyperledger.org/wp-content/uploads/2017/08/H
yperledger_Arch_WG_Paper_1_Consensus.pdf.

[21] M. Walport, “Distributed ledger technology: beyond
blockchain,” UK Government Office for Science,
Tech. Rep., 2016, accessed: 2019-07-01. [online]:
https://assets.publishing.service.gov.uk/government/
uploads/system/uploads/attachment_data/file/492972/
gs-16-1-distributed-ledger-technology.pdf.

[22] F. Tschorsch and B. Scheuermann, “Bitcoin and Be-
yond: A Technical Survey on Decentralized Digital
Currencies,” IEEE Communications Surveys & Tuto-
rials, vol. 18, no. 3, pp. 2084–2123, 2016.

[23] T. Neudecker and H. Hartenstein, “Network layer
aspects of permissionless blockchains,” IEEE Com-
munications Surveys & Tutorials, 2018.

[24] U. Mukhopadhyay et al., “A brief survey of Cryp-
tocurrency systems,” in PST 2016.

[25] L. Sankar, M. Sindhu, and M. Sethumadhavan, “Sur-
vey of consensus protocols on blockchain applica-
tions,” in ICACCS 2017.

[26] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin
backbone protocol: Analysis and applications,” in
EUROCRYPT 2015.

[27] Z. Zheng et al., “Blockchain challenges and opportu-
nities: A survey,” Working Paper, 2016.

[28] ——, “An Overview of Blockchain Technology: Ar-
chitecture, Consensus, and Future Trends,” in IEEE
BigData Congress, 2017.

[29] C. Cachin and M. Vukolić, “Blockchains Consensus
Protocols in the Wild,” arXiv preprint arXiv:1707.01
873, 2017.

[30] S. Bano et al., “Consensus in the Age of Blockch-
ains,” arXiv preprint arXiv:1711.03936, 2017.

[31] W. Wang et al., “A survey on consensus mechanisms
and mining management in blockchain networks,”
arXiv preprint arXiv:1805.02707, 2018.

[32] X. Li et al., “A survey on the security of blockchain
systems,” Future Generation ComputerSystems, 2017.

[33] I. Lin and T. Liao, “A Survey of Blockchain Security
Issues and Challenges.” IJ Network Security, vol. 19,
no. 5, pp. 653–659, 2017.

[34] “Survey on Blockchain Technologies and Related Ser-
vices,” FY2015 Technical report – Nomura Research
Institute, accessed: 2019-07-01. [online]: http://www.
meti.go.jp/english/press/2016/pdf/0531_01f.pdf.

[35] M. A. Ferrag et al., “Blockchain Technologies for the
Internet of Things: Research Issues and Challenges,”
arXiv preprint arXiv:1806.09099, 2018.

[36] N. Bozic, G. Pujolle, and S. Secci, “A tutorial on
blockchain and applications to secure network control
-planes,” in SCNS 2016, pp. 1–8.

[37] W. Stallings, “A Blockchain Tutorial,” The Internet
Protocol Journal, vol. 20, no. 3, pp. 2–24, 2017.

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 40

[38] T. Koens and E. Poll, “What blockchain alternative
do you need?” in Data Privacy Management, Cryp-
tocurrencies and Blockchain Technology. Springer
International Publishing, 2018, pp. 113–129.

[39] D. Yaga et al., “Blockchain technology overview,”
Draft NISTIR, vol. 8202, 2018.

[40] A. Ellervee, R. Matulevicius, and N. Mayer, “A Com-
prehensive Reference Model for Blockchain-based
Distributed Ledger Technology,” in ER Forum 2017.

[41] T. Dinh et al., “Untangling Blockchain: A Data Pro-
cessing View of Blockchain Systems,” arXiv preprint
arXiv:1708.05665, 2017.

[42] P. Seijas, S. Thompson, and D. McAdams, “Scripting
smart contracts for distributed ledger technology,”
IACR Cryptology ePrint Archive, vol. 2016, p. 1156,
2016.

[43] T. Neudecker, P. Andelfinger, and H. Hartenstein,
“Timing analysis for inferring the topology of the bit-
coin peer-to-peer network,” in Intl IEEE Conferences
UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld, 2016,
pp. 358–367.

[44] G. Fanti and P. Viswanath, “Deanonymization in the
Bitcoin P2P Network,” in NIPS 2017, pp. 1364–
1373. [Online]. Available: http://papers.nips.cc/paper/
6735-deanonymization-in-the-bitcoin-p2p-network.
pdf

[45] M. Vukolić, “The quest for scalable blockchain fabric:
Proof-of-work vs. bft replication,” in Int. Workshop on
Open Problems in Network Security, 2015.

[46] A. Baliga, “Understanding Blockchain Consen-
sus Models,” Persistent Systems – White paper,
2017, accessed: 2019-07-01. [online]: https://pdfs.
semanticscholar.org/da8a/37b10bc1521a4d3de925d7e
bc44bb606d740.pdf.

[47] T. Swanson, “Consensus-as-a-service: a brief re-
port on the emergence of permissioned, distributed
ledger systems,” R3 Technical Report, Apr. 2015,
accessed: 2019-07-01. [online]: https://allquantor.at/
blockchainbib/pdf/swanson2015consensus.pdf.

[48] S. Kiyomoto, M. Rahman, and A. Basu, “On
blockchain-based anonymized dataset distribution
platform,” in IEEE SERA 2017, June, pp. 85–92.

[49] E. Androulaki et al., “Hyperledger fabric: A
distributed operating system for permissioned
blockchains,” arXiv preprint arXiv:1801.10228,
2018.

[50] “A Next-Generation Smart Contract and Decentral-
ized Application Platform, Ethereum white paper,”
2014, [online] https://github.com/ethereum/wiki/wiki/
White-Paper.

[51] C. Cachin, “Architecture of the Hyperledger blockch–
ain Fabric,” in DCCL 2016.

[52] M. Hearn, “Corda: A distributed ledger,” white Paper,
Accessed: 2019-07-01. [online]: https://docs.corda.
net/head/_static/corda-technical-whitepaper.pdf.

[53] “Cosmos: A Network of Distributed Ledgers,” ac-

cessed: 2019-07-01. [online]: https://cosmos.network/
cosmos-whitepaper.pdf.

[54] “Chain Protocol - White Paper,” accessed: 2019-
07-01. [online]: https://chain.com/docs/1.2/protocol/
papers/whitepaper.

[55] “Quorum White paper,” accessed: 2019-07-01. [on-
line]: https://github.com/jpmorganchase/quorum-docs
/blob/master/Quorum%20Whitepaper%20v0.1.pdf.

[56] W. Ren, R. Beard, and E. Atkins, “A survey of
consensus problems in multi-agent coordination,” in
ACC 2005, vol. 3, June, pp. 1859–1864.

[57] N. Lynch, Distributed Algorithms. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1996.

[58] J. Gray, Notes on data base operating systems.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1978,
pp. 393–481.

[59] F. Schneider, “Implementing Fault-tolerant Services
Using the State Machine Approach: A Tutorial,” ACM
Comput. Surv., vol. 22, no. 4, pp. 299–319, 1990.

[60] L. Lamport et al., “Paxos made simple,” ACM Sigact
News, vol. 32, no. 4, pp. 18–25, 2001.

[61] D. Ongaro and J. Ousterhout, “In search of an under-
standable consensus algorithm,” in USENIX Annual
Technical Conference.

[62] L. Lamport, R. Shostak, and M. Pease, “The byzantine
generals problem,” ACM Transactions on Program-
ming Languages and Systems, vol. 4, no. 3, pp. 382–
401, 1982.

[63] M. Pease, R. Shostak, and L. Lamport, “Reaching
Agreement in the Presence of Faults,” J. ACM, vol. 27,
no. 2, pp. 228–234, 1980.

[64] R. Baldoni et al., “Unconscious Eventual Consistency
with Gossips,” in Symposium on Self-Stabilizing Sys-
tems, 2006, pp. 65–81.

[65] B. Wiki, “Hashcash,” accessed: 2019-07-01. [online]:
https://en.bitcoin.it/wiki/Hashcash.

[66] J. Aspnes, C. Jackson, and A. Krishnamurthy, “Expos-
ing computationally-challenged Byzantine impostors,”
TYALEU/DCS/TR-1332, Yale University, Tech. Rep.,
2005, accessed: 2019-07-01. [online]: http://www.cs.
yale.edu/homes/aspnes/papers/tr1332.pdf.

[67] W. Li et al., “Securing proof-of-stake blockchain
protocols,” in Data Privacy Management, Cryptocur-
rencies and Blockchain Technology. Springer, 2017,
pp. 297–315.

[68] K. Olson et al., “Sawtooth: An Introduction – White
paper,” accessed: 2019-07-01. [online]: https://www.
hyperledger.org/wp-content/uploads/2018/01/Hyperle
dger_Sawtooth_WhitePaper.pdf.

[69] “NEM - Technical Reference, NEM, Version 1.2.1,”
Tech. Rep., Feb 2018, accessed: 2019-07-01. [online]:
https://nem.io/wp-content/themes/nem/files/NEM_
techRef.pdf.

[70] D. Larimer, “Delegated proof-of-stake white paper,”
accessed: 2019-07-01. [online]: https://steemit.com/dp
os/@dantheman/dpos-consensus-algorithm-this-miss

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 41

ing-white-paper.
[71] M. Castro and B. Liskov, “Practical byzantine fault

tolerance,” in OSDI 1999.
[72] L. Bach, B. Mihaljevic, and M. Zagar, “Comparative

analysis of blockchain consensus algorithms,” in IEEE
MIPRO 2018.

[73] K. Wüst and A. Gervais, “Do you need a blockchain?”
in 2018 Crypto Valley Conference on Blockchain
Technology (CVCBT). IEEE, 2018, pp. 45–54.

[74] M. Vukolić, “Rethinking Permissioned Blockchains,”
in ACM Workshop on Blockchain, Cryptocurrencies
and Contracts, 2017, pp. 3–7.

[75] S. Pongnumkul et al., “Performance Analysis of Pri-
vate Blockchain Platforms in Varying Workloads,” in
ICCCN 2017, July, pp. 1–6.

[76] G. Greenspan, ““MultiChain” Private Blockchain –
White Paper,” accessed: 2019-07-01. [online]: https://
www.multichain.com/download/MultiChain-White-P
aper.pdf.

[77] ——, “Blockchains vs centralized databases,” ac-
cessed: 2019-07-01. [online]: http://www.multichai
n.com/blog/2016/03/blockchains-vs-centralized-datab
ases.

[78] ——, “Private blockchains are more than just shared
databases,” accessed: 2019-07-01. [online]: https://w
ww.multichain.com/blog/2015/10/private-blockchains
-shared-databases.

[79] S. Ray, “Blockchains versus traditional databases,” ac-
cessed: 2019-07-01. [online]: https://hackernoon.com/
blockchains-versus-traditional-databases-c1a728
159f79.

[80] A. Narayanan, “Private blockchain is just a confus-
ing name for a shared database,” accessed: 2019-07-
01. [online]: https://freedom-to-tinker.com/2015/09/
18/private-blockchain-is-just-a-confusing-name-for-a
-shared-database.

[81] Y. Guo and C. Liang, “Blockchain application and
outlook in the banking industry,” Financial Innova-
tion, vol. 2, no. 1, p. 24, Dec. 2016. [Online]. Avail-
able: https://doi.org/10.1186/s40854-016-0034-9

[82] K. Fanning and D. Centers, “Blockchain and its
coming impact on financial services,” Journal of Cor-
porate Accounting & Finance, vol. 27, no. 5, pp. 53–
57, 2016.

[83] B. Maurer, “Re-risking in realtime: on possible futures
for finance after the blockchain,” BEHEMOTH – A
Journal on Civilisation, vol. 9, no. 2, pp. 82–96, 2016.

[84] O. Bussmann, “The future of finance: Fintech, tech
disruption, and orchestrating innovation,” in Equity
Markets in Transition. Springer, 2017, pp. 473–486.

[85] A. Spielman, “Blockchain: digitally rebuilding the
real estate industry,” Ph.D. dissertation, Massachusetts
Institute of Technology, 2016.

[86] G. Zyskind et al., “Decentralizing privacy: Using
blockchain to protect personal data,” in 2015 IEEE
– Security and Privacy Workshops, pp. 180–184.

[87] J. Mattila et al., “Industrial Blockchain Platforms:
An Exercise in Use Case Development in the Energy
Industry,” ETLA Working Papers, no. 43, 2016.

[88] F. Imbault et al., “The green blockchain: Managing
decentralized energy production and consumption,” in
IEEE EEEIC/ICPS 2017, June, pp. 1–5.

[89] E. Münsing, J. Mather, and S. Moura, “Blockchains
for decentralized optimization of energy resources in
microgrid networks,” in IEEE CCTA 2017, Aug, pp.
2164–2171.

[90] N. Witchey, “Healthcare transaction validation via
blockchain proof-of-work, systems and methods,”
May 13, 2015, uS Patent App. 14/711,740.

[91] X. Yue et al., “Healthcare Data Gateways: Found
Healthcare Intelligence on Blockchain with Novel
Privacy Risk Control,” Journal of Medical Systems,
vol. 40, no. 10, p. 218, Aug. 2016.

[92] L. Linn and M. Koo, “Blockchain for health data
and its potential use in health it and health care
related research,” in ONC/NIST Use of Blockchain for
Healthcare and Research Workshop, 2016.

[93] A. Ekblaw et al., “A Case Study for Blockchain in
Healthcare: “MedRec” prototype for electronic health
records and medical research data,” in IEEE Open &
Big Data Conference, 2016.

[94] M. Mettler, “Blockchain technology in healthcare:
The revolution starts here,” in IEEE Healthcom 2016,
pp. 1–3.

[95] C. Broderson et al., “Blockchain: Securing a New
Health Interoperability Experience,” Accenture, Work-
ing paper, 2016.

[96] K. Peterson et al., “A Blockchain-Based Approach
to Health Information Exchange Networks,” Working
paper, 2016.

[97] U. Sharma, “Blockchain in healthcare: Patient benefits
and more,” accessed: 2019-07-01. [online]: https://
www.ibm.com/blogs/blockchain/2017/10/blockchain-
in-healthcare-patient-benefits-and-more.

[98] M. Orcutt, “Who Will Build the Health-Care Block–
chain?” MIT Technology Review. Accessed: 2019-
07-01. [online]: https://www.technologyreview.com/s/
60882/who-will-build-the-health-care-blockchain.

[99] S. Huh et al., “Managing iot devices using blockchain
platform,” in ICACT 2017.

[100] M. Samaniego and R. Deters, “Blockchain as a service
for iot,” in IEEE iThings/GreenCom/CPSCom/Smart
Data 2016.

[101] D. Kravitz and J. Cooper, “Securing user identity and
transactions symbiotically: IoT meets blockchain,” in
GIoTS 2017, June, pp. 1–6.

[102] K. Özyilmaz and A. Yurdakul, “Work-in-progress:
integrating low-power iot devices to a blockchain-
based infrastructure,” in EMSOFT 2017.

[103] A. Hari and T. Lakshman, “The Internet Blockchain:
A Distributed, Tamper-Resistant Transaction Frame-
work for the Internet,” in ACM HotNets, 2016, pp.

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 42

204–210.
[104] N. Bozic, G. Pujolle, and S. Secci, “Securing virtual

machine orchestration with blockchains,” in CSNet
2017, Oct, pp. 1–8.

[105] I. D. Alvarenga, G. A. F. Rebello, and O. C.
M. B. Duarte, “Securing configuration management
and migration of virtual network functions using
blockchain,” in NOMS 2018 - 2018 IEEE/IFIP Net-
work Operations and Management Symposium, April
2018, pp. 1–9.

[106] D. Tse et al., “Blockchain application in food supply
information security,” in IEEE IEEM 2017.

[107] F. Tian, “An agri-food supply chain traceability sys-
tem for china based on rfid blockchain technology,”
ICSSSM, 2016.

[108] M. Caro et al., “Blockchain-based traceability in agri-
food supply chain management: A practical imple-
mentation,” in IoT Vertical and Topical Summit on
Agriculture-Tuscany. IEEE, 2018.

[109] Y. Yuan and F. Wang, “Towards blockchain-based in-
telligent transportation systems,” in IEEE ITSC 2016.

[110] L. Li et al., “Creditcoin: A privacy-preserving
blockchain-based incentive announcement network
for communications of smart vehicles,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 19,
no. 7, pp. 2204–2220, 2018.

[111] C. Clack, V. Bakshi, and L. Braine, “Smart contract
templates: foundations, design landscape and research
directions,” arXiv preprint arXiv:1608.00771, 2016.

[112] X. Xu et al., “A taxonomy of blockchain-based sys-
tems for architecture design,” in IEEE ICSA 2017, pp.
243–252.

[113] “MultiChain: open platform for building blockchains,”
accessed: 2019-07-01. [online]: https://www.multich
ain.com.

[114] “Swarm,” accessed: 2019-07-01. [online]: https://swa
rm-guide.readthedocs.io/en/latest/introduction.html.

[115] P. Labs, “Filecoin: A Decentralized Storage Network
(White paper),” 2016, accessed: 2019-01-22. [online]:
https://filecoin.io/filecoin.pdf.

[116] “Microsoft BaaS,” accessed: 2019-07-01. [online]:
https://azure.microsoft.com/en/solutions/blockchain.

[117] “Types of tokens: the four mistakes beginner crypto-
investors make,” ICO Scoring, Accessed: 2019-07-01.
[online]: https://medium.com/swlh/types-of-tokens-th
e-four-mistakes-beginner-crypto-investors-make-a76b
53be5406.

[118] X. Xu et al., “The blockchain as a software connec-
tor,” in IEEE/IFIP WICSA 2016.

[119] A. Back et al., “Enabling blockchain innovations with
pegged sidechains,” accessed: 2019-07-01. [online]:
http://opensciencereview.com/papers/123/enablingblo
ckchain-innovations-with-pegged-sidechains.

[120] M. Valenta and P. Sandner, “Comparison of Ethereum,
Hyperledger Fabric and Corda,” FSBC Working Pa-
per, 2017, accessed: 2019-07-01. [online]: http://

explore-
ip.com/2017_Comparison-of-Ethereum-Hyperledger-
Corda.pdf.

[121] K. Croman et al., “On scaling decentralized blockch-
ains,” in FC 2016, pp. 106–125.

[122] E. Heilman et al., “Eclipse Attacks on Bitcoin’s Peer-
to-Peer Network,” in USENIX Security Symposium,
2015.

[123] “Bitcoin source code,” accessed: 2019-07-01. [on-
line]: https://github.com/bitcoin/bitcoin.

[124] G. Wood, “Ethereum: A secure decentralised gener-
alised transaction ledger,” Technical report, accessed:
2019-07-01. [online]: https://ethereum.github.io/yello
wpaper/paper.pdf.

[125] V. Buterin, “Ethereum White-paper,” accessed: 2019-
07-01. [online]: https:github.com/ethereum/wiki/wiki/
White-Paper.

[126] B. Charron-Bost, F. Pedone, and A. Schiper, “Repli-
cation: Theory and Practice,” Lecture Notes in Com-
puter Science, 978-3-642-11294-2, Springer.

[127] “The RLPx Transport Protocol,” accessed: 2019-
07-01. [online]: https://github.com/ethereum/devp2p/
blob/master/rlpx.md.

[128] T. Dinh et al., “Blockbench: A framework for analyz-
ing private blockchains,” in ACM SIGMODS/PODS
2017.

[129] “Ethereum source code,” accessed: 2019-07-01. [on-
line]: https://github.com/ethereum.

[130] “Hyperledger Architecture, Vol. 2,” accessed:
2019-07-01. [online]: https://www.hyperledger.org/
wp-content/
uploads/2018/04/Hyperledger_Arch_WG_Paper_2_S
martContracts.pdf.

[131] J. Sousa, A. Bessani, and M. Vukolić, “A byzan-
tine fault-tolerant ordering service for the hyper-
ledger fabric blockchain platform,” arXiv preprint
arXiv:1709.06921, 2017.

[132] “What is gRPC,” accessed: 2019-07-01. [online]:
https://grpc.io/docs/guides.

[133] “LevelDB key/value database in Go,” accessed: 2019-
07-01. [online]: https://github.com/syndtr/goleveldb.

[134] “Apache couchdb,” accessed: 2019-07-01. [online]:
http://couchdb.apache.org.

[135] V. Dhillon, D. Metcalf, and M. Hooper, “The Hyper-
ledger Project,” in Blockchain Enabled Applications.
Springer, 2017, pp. 139–149.

[136] F. Muratov et al., “YAC: BFT Consensus Algorithm
for Blockchain,” arXiv preprint arXiv:1809.00554,
2018.

[137] F. McKeen et al., “Intel® software guard extensions
(Intel® sgx) support for dynamic memory manage-
ment inside an enclave,” in ACM HASP 2016, p. 10.

[138] “Hyperledger Sawtooth source code,” accessed: 2018-
08-02. [online]: https://github.com/hyperledger/sawto
oth-core.

[139] “Sovrin: A Protocol and Token for Self-Sovereign

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 43

Identity and Decentralized Trust,” White Paper, Sovrin
Foundation, Version 1.0. Accessed: 2019-07-01. [on-
line]: https:sovrin.org/library/sovrin-protocol-and-tok
en-white-paper.

[140] “Hyperledger Improvement Proposal - Hyperledger
Burrow,” Accessed: 2019-07-01. [online]: https://ww
w.hyperledger.org/wp-content/uploads/2017/06/HIP_
Burrowv2.pdf.

[141] “Hyperledger Burrow source code,” accessed:
2019-07-01. [online]: https://github.com/hyperledger/
burrow.

[142] “Hyperledger Grid,” accessed: 2019-07-01. [online]:
https://www.hyperledger.org/projects/grid.

[143] “Welcome to Hyperledger Cello,” accessed: 2019-07-
01. [online]: http://hyperledger-cello.readthedocs.io/e
n/latest.

[144] “Hyperledger Explorer,” accessed: 2019-07-01. [on-
line]: https://www.hyperledger.org/projects/explorer.

[145] “Hyperledger Composer - An Overview,” Accessed:
2019-07-01. [online]: https://www.hyperledger.org/
wp-content/uploads/2017/05/Hyperledger-Composer-
Overview.pdf.

[146] “Hyperledger CALIPER,” accessed: 2019-07-01. [on-
line]: https://www.hyperledger.org/projects/caliper.

[147] “Hyperledger QUILT,” accessed: 2019-07-01. [on-
line]: https://www.hyperledger.org/projects/quilt.

[148] “Interledger Protocol (ILP),” accessed: 2019-07-01.
[online]: https://interledger.org/rfcs/0003-interledger-
protocol.

[149] “Hyperledger Aries,” accessed: 2019-07-01. [online]:
https://www.hyperledger.org/projects/aries.

[150] “Hyperledger Ursa,” accessed: 2019-07-01. [online]:
https://www.hyperledger.org/projects/ursa.

[151] “Transact Hyperledger project,” accessed: 2019-
07-01. [online]: https://www.hyperledger.org/projects/
transact.

[152] A. Kundu and E. Bertino, “On Hashing Graphs,”
IACR Cryptology ePrint Archive, vol. 2012, p. 352,
2012.

[153] A. Bessani, J. Sousa, and E. Alchieri, “State Machine
Replication for the Masses with BFT-SMART,” in
IEEE/IFIP DSN 2014, June, pp. 355–362.

[154] J. Carlyle, “Corda Performance To infinity and be-
yond,” Technical report, accessed: 2019-07-01. [on-
line]: https://www.r3.com/wp-content/uploads/2018/
04/Corda-Performance-ENG.pdf.

[155] “Corda source code,” accessed: 2019-07-01. [online]:
https://github.com/corda.

[156] J. Kwon, “Tendermint: Consensus without mining,”
techical report Accessed: 2019-07-01. [online]: https:
//cdn.relayto.com/media/files/LPgoWO18TCeMIggJ
Vakt_tendermint.pdf.

[157] Y. Amoussou-Guenou et al., “Correctness and Fair-
ness of Tendermint-core Blockchains,” arXiv preprint
arXiv:1805.08429, 2018.

[158] G. Veronese et al., “Spin one’s wheels? Byzantine

fault tolerance with a spinning primary,” in IEEE
SRDS 2009, pp. 135–144.

[159] J. Yin et al., “Separating agreement from execution
for byzantine fault tolerant services,” ACM SIGOPS
Operating Systems Review, vol. 37, no. 5, pp. 253–
267, 2003.

[160] E. Buchman, “Tendermint: Byzantine fault tolerance
in the age of blockchains,” Ph.D. dissertation, Univer-
sity of Guelph, 2016.

[161] “Tendermint source code,” accessed: 2019-07-01. [on-
line]: https://github.com/tendermint.

[162] “Chain Core source code,” accessed: 2019-07-01.
[online]: https://github.com/chain/chain.

[163] “Chain news – Introducing Sequence,” accessed:
2019-07-01. [online]: https://blog.chain.com/introduc
ing-sequence-e14ff70b730.

[164] B. Glickstein et al., TxVM White paper. A New Design
for Blockchain Transactions, accessed: 2019-07-01.
[online]: https://github.com/chain/txvm.

[165] “Raft etcd,” accessed: 2019-07-01. [online]: https://
github.com/coreos/etcd/tree/master/raft.

[166] “Quorum source code,” accessed: 2019-07-01. [on-
line]: https://github.com/jpmorganchase/quorum.

[167] “Hyperledger Fabric source code,” accessed: 2019-07-
01. [online]: https://github.com/hyperledger/fabric.

[168] “Hyperledger Indy source code,” accessed: 2019-07-
01. [online]: https://github.com/hyperledger/indy-sdk.

[169] “Hyperledger Iroha source code,” accessed: 2019-07-
01. [online]: https://github.com/hyperledger/iroha.

[170] “Hyperledger Grid Source Code,” accessed: 2019-07-
01. [online]: https://github.com/hyperledger/grid.

[171] “Libra White Paper,” accessed: 2019-07-01. [online]:
https://libra.org/en-US/white-paper.

[172] “Hyperledger Blockchain Performance Metrics
(White paper),” 2018, accessed: 2018-12-02. [online]:
https://www.hyperledger.org/wp-content/uploads/
2018/10/HL_Whitepaper_Metrics_PDF_V1.01.pdf.

[173] T. Dinh et al., “M2R: Enabling Stronger Privacy
in MapReduce Computation,” in USENIX Security
Symposium, 2015, pp. 447–462.

[174] J. Winter, “Trusted computing building blocks for
embedded linux-based ARM trustzone platforms,” in
ACM STC 2008, pp. 21–30.

[175] H. Dang et al., “Chain of Trust: Can Trusted Hard-
ware Help Scaling Blockchains?” arXiv preprint
arXiv:1804.00399, 2018.

[176] “IBM BaaS,” accessed: 2019-07-01. [online]: https:
//www.ibm.com/blockchain.

[177] “SAP BaaS,” accessed: 2019-07-01. [online]: https:
//www.sap.com/products/leonardo/blockchain.html.

[178] “HPE BaaS,” accessed: 2019-07-01. [online]: https://
www.hpe.com/us/en/solutions/blockchain.html.

[179] “Oracle Blockchain Cloud service,” accessed: 2018-
08-02. [online]: https://cloud.oracle.com/opc/paas/
ebooks/Oracle_Blockchain_Cloud_Service.pdf.

[180] “Amazon BaaS,” accessed: 2019-07-01. [online]:

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 44

https://aws.amazon.com/partners/blockchain.
[181] “Huawei Blockchain Whitepaper,” accessed: 2019-07-

01. [online]: https://static.huaweicloud.com/upload/fi
les/pdf/20180416/20180416142450_61761.pdf.

[182] “Vechain Whitepaper,” accessed: 2019-07-01. [on-
line]: https://cdn.vechain.com/vechainthor_developme
nt_plan_and_whitepaper_en_v1.0.pdf.

[183] “Blocko,” accessed: 2019-07-01. [online]: https://
www.blocko.io.

[184] “Baidu,” accessed: 2019-07-01. [online]: https://chain.
baidu.com.

[185] J. Benet, “IPFS - Content Addressed, Versioned, P2P
File System (DRAFT 3),” accessed: 2019-07-01. [on-
line]: https://ipfs.io/.

[186] M. Deimel et al., “Transparency in food supply
chains: empirical results from german pig and dairy
production,” Journal on Chain and Network Science,
2008.

[187] “IBM Food Trust,” accessed: 2019-07-01. [online]:
https://www.ibm.com/blockchain/solutions/food-trust.

[188] “ISO/TC 307 Blockchain and distributed ledger tech-
nologies,” accessed: 2019-07-01. [online]: https://ww
w.iso.org/committee/6266604.html.

[189] “IRTF: Decentralized Internet Infrastructure Research
Group,” accessed: 2019-07-01. [online]: https://trac.
ietf.org/trac/irtf/wiki/blockchain-federation.

[190] “The World Wide Web Consortium (W3C) Blockch-
ain Initiative,” accessed: 2019-07-01. [online]: https:
//www.w3.org/community/blockchain.

[191] “ISITC Europe Blockchain Working Group,” ac-
cessed: 2019-07-01. [online]: https://isitc-europe.com/
isitc-europe-blockchain-working-group.

[192] “ITU: Focus Group on Application of Distributed
Ledger Technology,” accessed: 2019-07-01. [online]:
https://itu.int/en/ITU-T/focusgroups/dlt/Pages/default.
aspx.

[193] “AngelList,” accessed: 2019-07-01. [online]: https://
angel.co/blockchains.

[194] A. Deshpande et al., “Distributed Ledger Technolo-
gies/Blockchain: Challenges, opportunities and the
prospects for standards,” Technical report, The British
Standards Institution (BSI), 2017, accessed: 2019-07-
01. [online]: https://www.bsigroup.com/LocalFiles/zh
-tw/InfoSec-newsletter/No201706/download/BSI_Blo
ckchain_DLT_Web.pdf.

[195] E. Securities and M. Authority, “The Distributed
Ledger Technology Applied to Securities Markets
(Discussion Paper),” 2016, accessed: 2019-07-01. [on-
line]: https://www.esma.europa.eu/sites/default/files/
library/2016-773_dp_dlt.pdf.

[196] D. Mills and others (Bank for International Settle-
ments), “Distributed ledger technology in payments,
clearing, and settlement,” 2016.

[197] “TrustToken,” accessed: 2019-07-01. [online]: https:
//www.trusttoken.com.

[198] “HelloGold Foundation-Technical Whitepaper,” ac-

cessed: 2019-07-01. [online]: https://static.coinpapri
ka.com/storage/cdn/whitepapers/763.pdf.

[199] “The Dai Stablecoin System,” accessed: 2019-07-01.
[online]: https://makerdao.com/en/whitepaper.

[200] S. Takagi et al., “Blockchain-Based Digital Curren-
cies for Community Building,” discussion paper No.6
(17-
004). Accessed: 2019-07-01. [online]: http://www.
glocom.ac.jp/discussionpaper/dp06.

[201] A. M. Antonopoulos, Mastering Bitcoin, unlocking
digital cryptocurrencies. O’reilly Media, 2014.

[202] S. Haber and W. Stornetta, “How to time-stamp a
digital document,” in Conference on the Theory and
Application of Cryptography. Springer, 1990, pp.
437–455.

[203] R. Merkle, “Digital signature system and method
based on a conventional encryption function,”
Nov. 14, 1989, uS Patent 4,881,264.

[204] D. Johnson and A. Menezes, “Elliptic curve DSA
(ECDSA): an enhanced DSA,” in USENIX Security
Symposium, vol. 7, 1998.

[205] D. Johnson, A. Menezes, and S. Vanstone, “The
elliptic curve digital signature algorithm (ECDSA),”
Int. Journal of Information Security, vol. 1, no. 1, pp.
36–63, 2001.

[206] D. Conte de Leon et al., “Blockchain: properties and
misconceptions,” Asia Pacific Journal of Innovation
and Entrepreneurship, vol. 11, no. 3, pp. 286–300,
2017.

[207] Q. DuPont, “Experiments in algorithmic governance:
A history and ethnography of “the dao”, a failed
decentralized autonomous organization,” in Bitcoin
and Beyond. Routledge, 2017, pp. 157–177.

[208] “Bitcoin Wiki. Transaction,” accessed: 2019-07-01.
[online]: https://en.bitcoin.it/wiki/Transaction.

[209] J. Willet, “The Second Bitcoin Whitepaper, V. 0.5,”
[online]: https://bravenewcoin.com/insights/the-secon
d-bitcoin-whitepaper-vs--0-5.

[210] J. Bonneau et al., “Perspectives on Bitcoin and
second-generation cryptocurrencies,” working Pa-
per. Accessed: 2019-07-01. [online]: https://www.
semanticscholar.org/paper/perspectives-on-Bitcoin-an
d-second-generation-Bonneau-Miller/3cf586a2bbdcb
9bf9860b6ddf952e3a038d51811.

[211] D. MacGregor, D. Mothersole, and J. Zolnowsky,
“Method and apparatus for a compare and swap
instruction,” Apr. 22, 1986, uS Patent number
4,584,640, NXP USA Inc.

[212] N. Atzei et al., “SoK: unraveling Bitcoin smart con-
tracts,” in POST 2018. Springer.

[213] G. Andresen, “BIP 16: Pay to script hash,” 2012,
accessed: 2019-07-01. [online]: https://github.com/
bitcoin/bips/blob/master/bip-0016.mediawiki.

[214] “Bitcoin Wiki. Nonce,” accessed: 2019-07-01. [on-
line]: https://en.bitcoin.it/wiki/Nonce.

[215] “Bitcoin Wiki. Script,” accessed: 2019-07-01. [on-

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 45

line]: https://en.bitcoin.it/wiki/Script.
[216] P. Dai et al., “Smart-Contract Value-Transfer Proto-

cols on a Distributed Mobile Application Platform -
White paper,” 2017.

[217] S. Popejoy, “The Pact Smart-Contract Language.
White paper,” accessed: 2019-07-01. [online]: http:
//kadena.io/docs/Kadena-PactWhitepaper.pdf.

[218] C. Lee, “Litecoin-open source p2p digital currency,”
accessed: 2019-07-01. [online]: https://github.com/
coblee.

[219] D. Kuhnert, “The Dogecoin survival guide,” accessed:
2019-07-01. [online]: https://imgur.com/a/Sgyox.

[220] M. Green and I. Miers, “Bolt: Anonymous payment
channels for decentralized currencies,” in ACM CCS
2017.

[221] L. Goodman, “Tezos – A self-amending crypto-ledger,
White paper,” accessed: 2019-07-01. [online]: https:
//tezos.com/static/papers/white_paper.pdf.

[222] D. Schwartz et al., “The Ripple protocol consensus
algorithm – White Paper,” accessed: 2019-07-01. [on-
line]: https://ripple.com/files/ripple_consensus_wh
itepaper.pdf.

[223] D. Mazieres, “The stellar consensus protocol: A fede-
rated model for internet-level consensus - White
paper,” accessed: 2019-07-01. [online]: https://www.
stellar.org/papers/stellar-consensus-protocol.pdf.

[224] A. Demers et al., “Epidemic algorithms for replicated
database maintenance,” in ACM PODC 1987, pp. 1–
12.

[225] B. Wiki, “Weaknesses-Denial of Service (DoS),”
accessed: 2019-07-01. [online]: https://en.bitcoin.it/
wiki/Weaknesses.

[226] M. Babaioff et al., “On bitcoin and red balloons,” in
ACM EC 2012.

[227] J. Göbel et al., “Bitcoin blockchain dynamics: The
selfish-mine strategy in the presence of propagation
delay,” Performance Evaluation, vol. 104, pp. 23–41,
2016.

[228] A. Gervais et al., “On the security and performance
of proof of work blockchains,” in ACM CCS 2016,
pp. 3–16.

[229] S. Luan and V. Gligor, “A fault-tolerant protocol for
atomic broadcast,” IEEE Transactions on Parallel and
Distributed Systems, vol. 1, no. 3, pp. 271–285, 1990.

[230] V. Hadzilacos and S. Toueg, “Fault-tolerant
Broadcasts and Related Problems,” in Dis-
tributed Systems (2Nd Ed.). New York, NY,
USA: ACM Press/Addison-Wesley Publishing
Co., 1993, pp. 97–145. [Online]. Available:
http://dl.acm.org/citation.cfm?id=302430.302435

[231] T. Chandra and S. Toueg, “Unreliable Failure De-
tectors for Reliable Distributed Systems,” J. ACM,
vol. 43, no. 2, pp. 225–267, 1996.

[232] G. Coulouris, J. Dollimore, and T. Kindberg, Dis-
tributed systems: concepts and design. Pearson
education, 2005.

[233] X. Défago, A. Schiper, and P. Urbán, “Total Order
Broadcast and Multicast Algorithms: Taxonomy and
Survey,” ACM Comput. Surv., vol. 36, no. 4, pp. 372–
421, 2004.

[234] I. Abraham et al., “The Blockchain Consensus Layer
and BFT,” Bulletin of EATCS, vol. 3, no. 123, 2017.

[235] A. Singh et al., “BFT Protocols Under Fire,” in
USENIX NSDI 2008, vol. 8, pp. 189–204.

[236] K. Christidis and M. Devetsikiotis, “Blockchains and
Smart Contracts for the Internet of Things,” IEEE
Access, vol. 4, pp. 2292–2303, 2016.

[237] D. Kreutz et al., “Software-Defined Networking: A
Comprehensive Survey,” Proceedings of the IEEE,
vol. 103, no. 1, pp. 14–76, 2015.

[238] F. Cristian, “Understanding Fault-tolerant Distributed
Systems,” Communications of the ACM, vol. 34, no. 2,
pp. 56–78, 1991.

[239] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus
in the presence of partial synchrony (preliminary
version),” in ACM PODC 1984.

[240] ——, “Consensus in the presence of partial syn-
chrony,” Journal of the ACM (JACM), vol. 35, no. 2,
pp. 288–323, 1988.

[241] M. Fischer, N. Lynch, and M. Paterson, “Impossibility
of Distributed Consensus with One Faulty Process,”
J. ACM, vol. 32, no. 2, pp. 374–382, 1985.

[242] J. Aspnes, “Randomized protocols for asynchronous
consensus,” Distributed Computing, vol. 16, no. 2-3,
pp. 165–175, 2003.

[243] C. Cachin, K. Kursawe, and V. Shoup, “Random Ora-
cles in Constantipole: Practical Asynchronous Byzan-
tine Agreement Using Cryptography,” Journal of Cry-
ptology, vol. 18, no. 3, pp. 219–246, 2005.

[244] E. Brewer, “Towards robust distributed systems,” in
ACM PODC, vol. 7, 2000.

[245] S. Gilbert and N. Lynch, “Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
web services,” SIGACT News, vol. 33, no. 2, pp. 51–
59, 2002.

[246] N. Lynch, M. Fischer, and R. Fowler, “A Simple and
Efficient Byzantine Generals Algorithm,” Georgia Inst
of Tech school od information and computer science,
Tech. Rep., 1982.

[247] M. Fischer and N. Lynch, “A lower bound for the
time to assure interactive consistency,” Information
processing letters, vol. 14, no. 4, pp. 183–186, 1982.

[248] D. Dolev et al., “An efficient algorithm for byzantine
agreement without authentication,” Information and
Control, vol. 52, no. 3, pp. 257–274, 1982.

[249] I. Askoxylakis et al., Computer Security - ESORICS.
Springer, 2016.

[250] V. Buterin, “Ethereum News: On Stake,” accessed:
2019-07-01. [online]: https://blog.ethereum.org/2014/
07/05/stake.

[251] I. Abraham et al., “Distributed computing meets game
theory: robust mechanisms for rational secret sharing

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 46

and multiparty computation,” in ACM PODC 2006,
pp. 53–62.

[252] W. Dai, “B-money (Blockchain),” [online:]: http://
www.weidai.com/bmoney.txt .

[253] C. Dwork and M. Naor, “Pricing via processing or
combatting junk mail,” in CRYPTO 1992, pp. 139–
147.

[254] D. Eastlake and P. Jones, “US secure hash algorithm 1
(SHA1),” RFC 3174, DOI 10.17487/RFC3174, 2001.

[255] N. Szabo, “Bit Gold, 2008,” accessed: 2019-07-
01. [online]: http://unenumerated.blogspot.de/2005/
12/bit-gold.html.

[256] H. Finney, “RPOW - Reusable PoW,” accessed: 2019-
07-01. [online]: http://cryptome.org/rpow.htm.

[257] I. Eyal, “The miner’s dilemma,” in IEEE SP 2015, pp.
89–103.

[258] L. Luu et al., “Demystifying incentives in the consen-
sus computer,” in ACM CCS 2015, pp. 706–719.

[259] B. Wiki, “Testnet,” accessed: 2019-07-01. [online]:
https://en.bitcoin.it/wiki/Testnet.

[260] Y. Sompolinsky and A. Zohar, “Accelerating Bitcoin’s
Transaction Processing Fast Money Grows on Trees,
Not Chains,” accessed: 2019-07-01. [online]: https:
//pdfs.semanticscholar.org/4016/80ef12c04c247c5073
7b9114c169c660aab9.pdf.

[261] H. Okada, S. Yamasaki, and V. Bracamonte, “Pro-
posed classification of blockchains based on authority
and incentive dimensions,” in ICACT 2017, Feb, pp.
593–597.

[262] M. Belotti, S. Kirati, and S. Secci, “Bitcoin pool-
hopping detection,” in IEEE RTSI 2018.

[263] A. Gervais et al., “Is Bitcoin a Decentralized Cur-
rency?” IEEE Security Privacy, vol. 12, no. 3, pp.
54–60, 2014.

[264] B. Wiki, “Scrypt proof of work,” accessed: 2019-07-
01. [online]: https://en.bitcoin.it/wiki/Scrypt_proof
_of_work.

[265] C. Percival, “Stronger key derivation via sequential
memory-hard functions,” Self-published, 2009, [Onli–
ne]: http://www.bsdcan.org/2009/schedule/attachment
s/87_scrypt.pdf.

[266] J. Zhou, K. Yu, and B. Wu, “Parallel frequent patterns
mining algorithm on GPU,” in IEEE ICSMC 2010, pp.
435–440.

[267] G. Pinto, F. Castor, and Y. Liu, “Mining questions ab-
out software energy consumption,” in ACM MSR
2014, pp. 22–31.

[268] M. B. Taylor, “The Evolution of Bitcoin Hardware,”
Computer, vol. 50, no. 9, pp. 58–66, 2017.

[269] S. King, “Primecoin: Cryptocurrency with prime
number proof-of-work,” Working paper, 2013, ac-
cessed: 2019-07-01. [online]: http://primecoin.io/bin/
primecoin-paper.pdf.

[270] J. Andersen and E. Weisstein, “Cunningham chain.
from mathworld–a wolfram web resource,” 2005.

[271] A. Coventry, “NooShare: A decentralized ledger of

shared computational resources,” Technical report,
Apr. 2012, accessed: 2019-07-01. [online]: http://web.
mit.edu/alex_c/www/noosharepdf.

[272] A. Shoker, “Sustainable blockchain through proof of
exercise,” in IEEE NCA 2017, pp. 1–9.

[273] B. Marshall et al., “Proofs of Work from Worst-
Case Assumptions,” Cryptology ePrint Archive, Re-
port 2018/559, 2018, accessed: 2019-07-01. [online]:
https://eprint.iacr.org/2018/559.

[274] I. Bentov et al., “Proof of Activity: Extending Bit-
coin’s Proof of Work via Proof of Stake,” Cryptology
ePrint Archive, Report 2014/452, 2014, accessed:
2019-07-01. [online]: https://eprint.iacr.org/2014/452.

[275] I. Bentov, R. Pass, and E. Shi, “Snow white: Prov-
ably secure proofs of stake.” IACR Cryptology ePrint
Archive, vol. 2016, p. 919, 2016.

[276] A. Kiayias et al., “Ouroboros: A provably se-
cure proof-of-stake blockchain protocol,” in CRYPTO
2017, pp. 357–388.

[277] P. Singh et al., “Performance Comparison of Exe-
cuting Fast Transactions in Bitcoin Network Using
Verifiable Code Execution,” in ADCONS 2013, Dec.

[278] S. King and S. Nadal, “Peercoin–secure & sustainable
cryptocoin,” accessed: 2019-07-01. [online]: https://
peercoin.net/whitepaper.

[279] A. Penzl et al., “SNAPSHOT-Nxt unsurpassable
blockchain solutions,” accessed: 2019-07-01. [online]:
https://www.nxter.org/snapshot-nxt-unsurpassable-bl
ockchain-solutions.

[280] L. Ren, “Proof of stake velocity: Building the social
currency of the digital age,” Technical report, 2014,
accessed: 2019-07-01. [online]: https://www.reddcoin.
com/papers/PoSV.pdf.

[281] P. Vasin, “Blackcoin’s proof-of-stake protocol v2,”
accessed: 2019-07-01. [online]: https://blackcoin.co/
blackcoin-pos-protocolv2-whitepaper.pdf,.

[282] “Novacoin,” accessed: 2019-07-01. [online]: https//:al
tcoinwiki.org/en/Novacoin.

[283] V. Buterin and V. Griffith, “Casper the friendly finality
gadget,” arXiv preprint arXiv:1710.09437, 2017.

[284] V. Buterin, “Understanding Serenity, part I: Abstrac-
tion,” accessed: 2019-07-01. [online]: https://blog.ethe
reum.org/2015/12/24/understanding-serenity-part-i-a
bstraction.

[285] “Tendermint Byzantine-fault tolerant state machine
replication,” accessed: 2019-07-01. [online]: http://te
ndermint.com.

[286] A. Miller et al., “Permacoin: Repurposing Bitcoin
Work for Data Preservation,” in IEEE SP 2014, pp.
475–490.

[287] S. P. et al., “SpaceMint: A Cryptocurrency Based
on Proofs of Space,” Cryptology ePrint Archive –
Report, 2015/528, accessed: 2019-07-01. [online]:
https://eprint.iacr.org/2015/528.

[288] A. Haleem et al., “Helium: A Decentralized Machine
Network,” white Paper, Accessed: 2019-07-01. [on-

SUBMISSION TO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 47

line]: http://whitepaper.helium.com/.
[289] C. Cachin, “Yet another visit to Paxos,” IBM Re-

search, Zurich, Switzerland, Tech. Rep. RZ3754, 2009.
[290] C. Cachin, S. Schubert, and M. Vukolić, “Non-

determinism in byzantine fault-tolerant replication,”
arXiv preprint arXiv:1603.07351, 2016.

[291] S. Liu et al., “XFT: Practical Fault Tolerance beyond
Crashes,” in OSDI 2016.

[292] “NEO White Paper,” accessed: 2019-07-01. [online]:
http://docs.neo.org/en-us.

[293] “Proof of Authority,” accessed: 2019-07-01. [online]:
https://wiki.parity.io/Proof-of-Authority-Chains.

[294] “Aura-Authority Round,” accessed: 2019-07-01. [on-
line]: https://wiki.parity.io/Aura.html.

[295] “Clique PoA protocol,” accessed: 2019-07-01. [on-
line]: https://github.com/ethereum/EIPs/issues/225.

[296] K. Cong, “A Blockchain Consensus Protocol With
Horizontal Scalability,” Master Thesis, Delft Uni-
versity of Technology, 2017, accessed: 2019-07-01.
[online]: https://infoscience.epfl.ch/record/232895.

[297] E. Kogias et al., “Enhancing bitcoin security and
performance with strong consistency via collective
signing,” in USENIX Security 2016, pp. 279–296.

[298] C. Decker, J. Seidel, and R. Wattenhofer, “Bitcoin
meets strong consistency,” in ACM ICDCN 2016,
p. 13.

[299] I. Abraham et al., “Solidus: An incentive-compatible
cryptocurrency based on permissionless byzantine
consensus,” arXiv preprint arXiv:1612.02916, 2016.

[300] E. Kokoris et al., “OmniLedger: A Secure, Scale-
Out, Decentralized Ledger via Sharding,” Cryptol-
ogy ePrint Archive, Technical Report 2017/406, ac-
cessed: 2019-07-01. [online]: //https:eprint.iacr.//org/
2017/406.

[301] Y. Gilad et al., “Algorand: Scaling byzantine agree-
ments for cryptocurrencies,” in ACM SOSP 2017, pp.
51–68.

[302] “Slimcoin: A Peer-to-Peer Crypto-Currency with
Proof-of-Burn,” Technical report, 2014, accessed:
2019-07-01. [online]: http://www.doc.ic.ac.uk/~ids/
realdotdot/crypto_papers_etc_worth_reading/proof_
of_burn/slimcoin_whitepaper.pdf.

Marianna Belotti holds a M.Sc. degree in math-
ematical engineering from Politecnico di Milano,
Italy. She worked on Bitcoin during her master
internship at Dauphine University, France, and
then after graduation she was hired as a research
engineer at the Computer Science departement
(LIP6) of Sorbonne University, Paris, France,
working on blockchain analytics. Currently, she
is a Ph.D. candidate at Cnam, Paris, France, in
collaboration with Caisse des Dépôts.

Nikola Božić acquired the M.Sc. of Telecommu-
nications from the University of Belgrade, School
of Electrical Engineering, and a Master of Re-
search in Radio communication from Centrale-
Supelec, France. Currently, he is a Ph.D. candi-
date at Sorbonne University in collaboration with
Squad, a company specialized in cybersecurity.
His research is oriented towards blockchains and
security of the network control plane.

Guy Pujolle is a Professor at Sorbonne Uni-
versity. Guy Pujolle is a pioneer in high-speed
networking. He was at the origin of several in-
ventions and important patents in the area of net-
work security, wireless networking and network
virtualization.

Stefano Secci is Professor at Cnam, Cedric, Paris,
France, since 2018, and was Associate Profes-
sor at LIP6, Sorbonne University, from 2010
to 2018. He holds a Ph.D. in networking from
Telecom ParisTech, France, and Politecnico di
Milano, Italy, and a M.Sc. in telecommunications
engineering from Politecnico di Milano. More
information: http:/cedric.cnam.fr/~seccis.

