G. Aloisi, Covariation of metabolic rates and cell size in coccolithophores, Biogeosciences, vol.12, pp.4665-4692, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01176428

L. T. Bach, C. Bauke, K. J. Meier, U. Riebesell, and K. G. Schulz, Influence of changing carbonate chemistry on morphology and weight of coccoliths formed by Emiliania huxleyi, Biogeosciences, vol.9, pp.3449-3463, 2012.

L. Beaufort, Weight estimates of coccoliths using the optical properties (birefringence) of calcite, Micropaleontology, vol.51, pp.289-297, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01460378

L. Beaufort, N. Barbarin, and Y. Gally, Optical measurements to determine the thickness of calcite crystals and the mass of thin carbonate particles such as coccoliths, Nat. Protoc, vol.9, pp.633-642, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01458300

L. Beaufort, I. Probert, T. De-garidel-thoron, E. M. Bendif, D. Ruiz-pino et al., Sensitivity of coccolithophores to carbonate chemistry and ocean acidification, Nature, vol.476, pp.80-83, 2011.
DOI : 10.1038/nature10295

URL : https://hal.archives-ouvertes.fr/hal-00866853

S. Blanco-ameijeiras, M. Lebrato, H. M. Stoll, D. Iglesias-rodriguez, M. N. Müller et al., Phenotypic Variability in the Coccolithophore Emiliania huxleyi, PLoS One, vol.11, 2016.
DOI : 10.1371/journal.pone.0157697

URL : https://doi.org/10.1371/journal.pone.0157697

J. Bollmann, Technical Note: Weight approximation of coccoliths using a circular polarizer and interference colour derived retardation estimates (The CPR Method), Biogeosciences, vol.11, pp.1899-1910, 2014.

J. Bollmann, J. Henderiks, and B. Brabec, Global calibration of Gephyrocapsa coccolith abundance in Holocene sediments for paleotemperature assessment, Paleoceanography, vol.17, 2002.

J. Bollmann, C. Klaas, and L. E. Brand, Morphological and Physiological Characteristics of Gephyrocapsa oceanica var. typica Kamptner 1943 in Culture Experiments: Evidence for Genotypic Variability, Protist, vol.161, pp.78-90, 2010.
DOI : 10.1016/j.protis.2009.08.002

A. H. Borman, E. W. Jong, M. Huizinga, D. J. Kok, P. Westbroek et al., The Role in CaCO3 Crystallization of an Acid Ca 2+-Binding Polysaccharide Associated with Coccoliths of Emiliania huxleyi, Eur. J. Biochem, vol.129, pp.179-183, 1982.

A. H. Borman, E. W. Jong, R. Thierry, P. Westbroek, L. Bosch et al., Coccolith-associated polysaccharides from cells of Emiliania huxleyi (Haptophyceae), J. Phycol, vol.23, pp.118-123, 2007.
DOI : 10.1111/j.1529-8817.1987.tb04433.x

C. Brownlee and A. Taylor, Calcification in coccolithophores: A cellular perspective, Coccolithophores Springer Berlin Heidelberg, pp.31-49, 2004.
DOI : 10.1007/978-3-662-06278-4_2

C. Brownlee, G. L. Wheeler, and A. R. Taylor, Coccolithophore biomineralization: New questions, new answers, Semin. Cell Dev. Biol, vol.46, pp.11-16, 2016.
DOI : 10.1016/j.semcdb.2015.10.027

URL : https://manuscript.elsevier.com/S1084952115002244/pdf/S1084952115002244.pdf

S. C. Doney, V. J. Fabry, R. A. Feely, and J. A. Kleypas, Ocean Acidification: The Other CO2 Problem, Ann. Rev. Mar. Sci, vol.1, pp.169-192, 2009.

K. J. Flynn, D. R. Clark, and G. Wheeler, The role of coccolithophore calcification in bioengineering their environment, Proc. R. Soc. B, vol.283, 2016.

G. L. Foster, Seawater pH, pCO2 and [CO2?3] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera, Earth Planet. Sci. Lett, vol.271, pp.254-266, 2008.

M. A. Fuertes, J. A. Flores, and F. J. Sierro, The use of circularly polarized light for biometry, identification and estimation of mass of coccoliths, Mar. Micropaleontol, vol.113, pp.44-55, 2014.

A. J. Giuffre, L. M. Hamm, N. Han, J. J. Yoreo, . De et al., Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.9261-9266, 2013.
DOI : 10.1073/pnas.1222162110

URL : http://www.pnas.org/content/110/23/9261.full.pdf

K. Henriksen, S. L. Stipp, J. R. Young, and M. E. Marsh, Biological control on calcite crystallization: AFM investigation of coccolith polysaccharide function, Am. Mineral, vol.89, pp.1709-1716, 2004.
DOI : 10.2138/am-2004-11-1217

M. Hermoso, Control of ambient pH on growth and stable isotopes in phytoplanktonic calcifying algae, Paleoceanography, vol.30, p.2844, 2015.

M. Hermoso, Y. Candelier, T. J. Browning, and F. Minoletti, Environmental control of the isotopic composition of subfossil coccolith calcite: Are laboratory culture data transferable to the natural environment, GeoResJ, vol.7, pp.35-42, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01393486

M. Hermoso, F. Minoletti, G. Aloisi, M. Bonifacie, H. L. Mcclelland et al., An explanation for the 18 O excess in Noelaerhabdaceae coccolith calcite, Geochim. Cosmochim. Acta, vol.189, pp.132-142, 2016.
DOI : 10.1016/j.gca.2016.06.016

URL : https://hal.archives-ouvertes.fr/hal-01353225

C. J. Hoppe, G. Langer, and B. Rost, Emiliania huxleyi shows identical responses to elevated pCO2 in TA and DIC manipulations, J. Exp. Mar. Bio. Ecol, vol.406, pp.54-62, 2011.
DOI : 10.1016/j.jembe.2011.06.008

URL : http://epic.awi.de/24596/1/Hop2011b.pdf

M. D. Iglesias-rodriguez, P. R. Halloran, R. E. Rickaby, I. R. Hall, E. Colmenero-hidalgo et al., Phytoplankton calcification in a high-CO2 world, Science, vol.320, pp.336-340, 2008.
DOI : 10.1126/science.1154122

M. D. Keller, R. C. Selvin, W. Claus, and R. R. Guillard, Media for the culture of oceanic ultraphytoplankton, J. Phycol, vol.23, pp.633-638, 1987.
DOI : 10.1111/j.1529-8817.1987.tb04217.x

C. Koch and J. R. Young, A simple weighing and dilution technique for determining absolute abundances of coccoliths from sediment samples, J. Nannoplankt. Res, vol.29, pp.67-69, 2007.

G. Langer, I. Probert, and P. Ziveri, The morphological response of Emiliania huxleyi to seawater carbonate chemistry changes : an inter-strain comparison, J. Nannoplankt. Res, vol.32, pp.29-34, 2011.

R. B. Lee, D. A. Mavridou, G. Papadakos, H. L. Mcclelland, and R. E. Rickaby, The uronic acid content of coccolith-associated polysaccharides provides insight into coccolithogenesis and past climate, Nat. Commun, vol.7, p.13144, 2016.
DOI : 10.1038/ncomms13144

URL : http://www.nature.com/articles/ncomms13144.pdf

L. Johnsen, S. Bollmann, and J. , Interactive comment on "An empirical method for absolute calibration of coccolith thickness, Sau?l Gonza?lez-Lemos et al. Biogeosciences Discuss., C1-C10, 2017.

E. Marañón, Cell Size as a Key Determinant of Phytoplankton Metabolism and Community Structure, Ann. Rev. Mar. Sci, vol.7, pp.241-264, 2014.

E. Marañón, W. M. Balch, P. Cermeño, N. González, C. Sobrino et al., Coccolithophore calcification is independent of carbonate chemistry in the tropical ocean, Limnol. Oceanogr, vol.61, pp.1345-1357, 2016.

H. L. Mcclelland, N. Barbarin, L. Beaufort, M. Hermoso, P. Ferretti et al., Calcification response of a key phytoplankton family to millennial-scale environmental change, Sci. Rep, vol.6, p.34263, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01458290

M. N. Müller, T. W. Trull, and G. M. Hallegraeff, Independence of nutrient limitation and carbon dioxide impacts on the Southern Ocean coccolithophore Emiliania huxleyi, ISME J, vol.11, pp.1777-1787, 2017.

V. E. Payne, R. E. Rickaby, L. G. Benning, and S. Shaw, Calcite crystal growth orientation: implications for trace metal uptake into coccoliths, Mineral. Mag, vol.72, pp.269-272, 2008.
DOI : 10.1180/minmag.2008.072.1.269

URL : http://homepages.see.leeds.ac.uk/%7Eearlgb/Publications/Payne%20et%20al%20GES8.pdf

R. E. Rickaby, J. Henderiks, and J. N. Young, Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species, Clim. Past, vol.6, pp.771-785, 2010.
DOI : 10.5194/cp-6-771-2010

URL : https://doi.org/10.5194/cp-6-771-2010

R. E. Rickaby, M. Hermoso, R. B. Lee, B. D. Rae, A. M. Heureux et al., Environmental carbonate chemistry selects for phenotype of recently isolated strains of Emiliania huxleyi, Deep. Res. Part II, vol.127, pp.28-40, 2016.

A. Ridgwell, A Mid Mesozoic Revolution in the regulation of ocean chemistry, Mar. Geol, vol.217, pp.339-357, 2005.

U. Riebesell, L. T. Bach, R. Bellerby, J. R. Monsalve, T. Boxhammer et al., Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification, Nat. Geosci, vol.10, pp.19-23, 2016.

U. Riebesell, I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe et al., No Title, Nature, vol.407, pp.364-367, 2000.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., an open-source platform for biologicalimage analysis, Nat. Methods, vol.9, pp.676-682, 2012.

S. Sett, L. T. Bach, K. G. Schulz, S. Koch-klavsen, M. Lebrato et al., Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2, PLoS One, vol.9, p.88308, 2014.
DOI : 10.1371/journal.pone.0088308

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0088308&type=printable

D. M. Sigman and E. A. Boyle, Glacial/interglacial variations in atmospheric carbon dioxide, Nature, vol.407, pp.859-869, 2000.
DOI : 10.1038/35038000

H. E. Smith, T. Tyrrell, A. Charalampopoulou, C. Dumousseaud, O. J. Legge et al., Predominance of heavily calcified coccolithophores at low CaCO3 saturation during winter in the Bay of Biscay, Proc. Natl. Acad. Sci, vol.109, pp.8845-8849, 2012.

K. Suffrian, K. G. Schulz, M. A. Gutowska, U. Riebesell, and M. Bleich, Cellular pH measurements in Emiliania huxleyi reveal pronounced membrane proton permeability, New Phytol, vol.190, pp.595-608, 2011.
DOI : 10.1111/j.1469-8137.2010.03633.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2010.03633.x/pdf

A. R. Taylor, C. Brownlee, and G. Wheeler, Coccolithophore Cell Biology: Chalking Up Progress, Ann. Rev. Mar. Sci, vol.9, pp.283-310, 2017.
DOI : 10.1146/annurev-marine-122414-034032

A. R. Taylor, A. Chrachri, G. Wheeler, H. Goddard, and C. Brownlee, A voltage-gated H + channel underlying pH homeostasis in calcifying coccolithophores, PLoS Biol, vol.9, p.1001085, 2011.
DOI : 10.1371/journal.pbio.1001085

URL : https://doi.org/10.1371/journal.pbio.1001085

P. Westbroek, E. W. De-jong, P. Van-der-wal, A. H. Borman, J. P. De-vrind et al., Mechanism of calcification in the marine alga Emiliania huxleyi, Philos. Trans. R. Soc. B Biol. Sci, vol.304, pp.435-444, 1984.

P. Westbroek, J. R. Young, K. Linschooten, P. Westbroeck, J. R. Young et al., Coccolith production (biomineralization) in the marine alga Emiliania huxleyi, J. Protozool, vol.36, pp.368-373, 1989.

J. R. Young, J. M. Didymus, P. R. Brown, B. Prins, and S. Mann, Crystal assembly and phylogenetic evolution in heterococcoliths, Nature, vol.356, pp.516-518, 1992.
DOI : 10.1038/356516a0

J. R. Young, A. J. Poulton, and T. Tyrrell, Morphology of Emiliania huxleyi coccoliths on the northwestern European shelf-is there an influence of carbonate chemistry?, Biogeosciences, vol.11, pp.4771-4782, 2014.