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Abstract

Context: It is common belief that high impact research in software reuse re-
quires assessment in non-trivial, comparable, and reproducible settings. How-
ever, software artefacts and common representations are usually unavailable.
Also, establishing a representative ground truth is a challenging and debatable
subject. Feature location in the context of software families, which is key for
software product line adoption, is a research field that is becoming more mature
with a high proliferation of techniques.
Objective: We present EFLBench, a benchmark and a framework to provide
a common ground for the evaluation of feature location techniques in families
of systems.
Method: EFLBench leverages the efforts made by the Eclipse Community
which provides feature-based family artefacts and their plugin-based implemen-
tations. Eclipse is an active and non-trivial project and thus, it establishes an
unbiased ground truth which is realistic and challenging.
Results: EFLBench is publicly available and supports all tasks for feature
location techniques integration, benchmark construction and benchmark usage.
We demonstrate its usage, simplicity and reproducibility by comparing four
techniques in Eclipse releases. As an extension of our previously published work,
we consider a decade of Eclipse releases and we also contribute an approach to
automatically generate synthetic Eclipse variants to benchmark feature location
techniques in tailored settings. We present and discuss three strategies for this
automatic generation and we present the results using different settings.
Conclusion: EFLBench is a contribution to foster the research in feature loca-
tion in families of systems providing a common framework and a set of baseline
techniques and results.
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1. Introduction

Feature location focuses on mapping features to their concrete implemen-
tation elements in the software artefacts. This traceability recovery activity is
important during software maintenance and evolution of single systems [1, 2].
For instance, information retrieval techniques have been applied using bug re-
ports (or enhancement requests) for determining relevant elements for the mod-
ification task. Or, in architectural recovery [3], several automated techniques
based on structural analysis or information retrieval are proposed to locate and
distinguish components implementing features in a system.

Feature location represents also an essential activity of extractive processes
towards systematic reuse [4], notably in reengineering a set of legacy variants
for the adoption of a Software Product Line (SPL) [5, 6, 7] which can efficiently
manage the commonality and variability of a family of systems. According to
an industrial survey [8], around 50% of the companies adopting SPLs start from
a set of existing variants that they implemented to respond to different cus-
tomer needs. An SPL is formally defined as “a set of software-intensive systems
that share a common, managed set of features satisfying the specific needs of a
particular market segment or mission, and that are developed from a common
set of core assets in a prescribed way” [5]. In this context of reengineering a
family of variants to an SPL, feature location is a traceability recovery task
to identify the implementation elements associated to each feature among the
variants [9]. Then, the located features will be used in next phases of extractive
SPL adoption [10] such as the discovery of feature constraints, the creation of
the reusable assets associated to each feature, or the definition of a variability
model. This work focuses only in the feature location activity and, instead of
applying feature location in a single system, we focus on the case of locating
features in families of systems. Concrete techniques used in traceability recov-
ery for single systems could be reused in the scenario of families of systems,
however, the existence of variants represents new challenges and opportunities
for feature location research to respond to the needs of extractive SPL adoption.

Given the increasing interest by the research and industrial communities
on the feature location subject in families of systems [11, 12], the diversity of
techniques [11, 13] and the lack of a common case study [12], feature location
benchmarks are required to enable an intensive experimentation of these tech-
niques and a common foundation to compare them. This paper is an extension
of our benchmark framework [14] which elaborates further on the need to em-
pirically evaluate and compare the strengths and weakness of the techniques in
different scenarios. Concretely, comparing and experimenting with fea-
ture location techniques in families of systems is challenging because
of the following reasons:
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• Most of the research prototypes are either unavailable or hard to config-
ure. There exists a lack of accessibility to the tools implementing each
technique with its variants abstraction and feature location phases.

• Most of the tools are strongly dependent on specific artefact types that they
were designed for (e.g., a given type of model or programming language).

• Performance comparison requires common settings and environments. There
exist difficulties to reproduce the experimental settings to compare per-
formance.

Given that common case study subjects and frameworks are in need to foster
the research activity [15], we identified two requirements for such frameworks
in feature location:

• A standard case study subject: Subjects that are non-trivial and easy
to use are needed. This includes: 1) A list of existing features, 2) for
each feature, a group of elements implementing it and 3) a set of product
variants accompanied by the information of the included features.

• A benchmarking framework: In addition to the standard subjects, a full
implementation allowing a common, quick and intensive evaluation is
needed. This includes: 1) An available implementation with a common
abstraction for the product variants to be considered by the case studies,
2) easy and extensible mechanisms to integrate feature location techniques
to support the experimentation, and 3) predefined evaluation metrics to
draw comparable results.

The contributions of this paper are:

• We present the Eclipse Feature Location Benchmark (EFLBench)
and examples of its usage. We propose a standard case study for feature
location and a benchmark framework using Eclipse variants, their fea-
tures and their associated plugins. We implemented EFLBench within the
Bottom-Up Technologies for Reuse framework (BUT4Reuse) [16] which al-
lows a quick integration of feature location techniques. By integrating a
feature location technique in this generic and extensible framework [10],
the technique could be applied in other artefact types beyond the experi-
mentation with Eclipse variants within EFLBench.

• We present the automatic generation of Eclipse variants as a ca-
pability of EFLBench to construct tailored benchmarks. This enables
the evaluation of techniques in different synthetic scenarios to show their
strengths and weaknesses. This is the significant increment from our pre-
vious work [14]. The new contribution extends the use of the benchmark
beyond the official Eclipse releases providing three strategies to tailor the
settings of the benchmark. We further present and discuss examples of
their usage.

• EFLBench, BUT4Reuse and the used feature location techniques are avail-
able at http://github.com/but4reuse/but4reuse/wiki/Benchmarks.

This paper is structured as follows: Section 2 introduces background infor-
mation on feature location. Section 3 presents Eclipse as a case study subject
and Section 4 motivates and presents the EFLBench framework. Section 5 intro-
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duces different feature location techniques and the results of EFLBench usage
in the official Eclipse releases. Section 6 presents the strategies for automatic
generation of Eclipse variants and examples of their usage. Section 8 presents
related work and finally, Section 9 concludes and outlines future work.

2. Background on feature location in feature-based variants

Features are the entities used to distinguish the variants of an SPL. In this
context, a feature is defined as “a prominent or distinctive user-visible aspect,
quality, or characteristic of a software system or systems” [17]. This defini-
tion is very general and open to interpretation so one recurrent challenge in
implementing SPLs is deciding the granularity that the features will have at
the implementation level [18]. Coarse granularity (e.g., components or plugins
[19, 20, 21, 22, 23, 24]) makes easier the maintenance of the SPL while fine gran-
ularity (e.g., source code classes or code fragments [25, 26]) might complicate
the development and maintenance of the SPL. This way, there are very diverse
scenarios regarding the granularity of the reusable assets in the SPLs.

Depending on the granularity, feature location can focus on code fragments
in the case of source code [27, 28, 29, 30], model fragments in the context of
models [31] or software components in software architectures [19, 20, 21, 22, 23,
24]. Therefore, existing techniques are composed of two phases: An abstraction
phase, where the different artefact variants are abstracted, and the location
phase where algorithms analyse or compare the different product variants to
obtain the implementation elements associated to each feature. Despite these
two phases, the existing works differ in:

• The way the product variants are abstracted and represented. Indeed, each
approach uses a specific formalism to represent product variants. For
example, AST nodes for source code [28], model elements to represent
model variants [13] or plugins in software architectures [20]. Some use fine
granularity using AST nodes that cover all source code statements while
others use purposely a bigger granularity using object-oriented building
elements [30], like Salman et al. that only consider classes [32].

• The proposed algorithms. Each approach proposes its own algorithm to
analyse product variants and identify the groups of elements that are
related to features. Rubin et al. [13] and Wesley et al. [11] conducted
surveys about the state-of-the-art in this domain. They showed the variety
of techniques and application domains. For instance, Fischer et al. used
a static analysis algorithm [28]. Other approaches use techniques from
the field of Information Retrieval (IR). Xue et al. [33] and Salman et
al. [34] proposed the use of Formal Concept Analysis (FCA) [35] to group
implementation elements in blocks and then, in a second step, the IR
technique Latent Semantic Indexing (LSI) [36] to map between these
blocks and the features. Salman et al. used hierarchical clustering to
perform this second step [32].

4



Figure 1 illustrates the feature location task in feature-based variants. In
the upper half we illustrate the abstraction phase and in the lower half we
illustrate the location phase. We present a set of variants (four circumferences
in the figure) and their implementation elements (rhombuses). For each of the
variants, we also have the information of which features are implemented. In
fact, feature location techniques in software families use to assume that feature
presence or absence in the product variants is known upfront [28]. For example,
Variant 1 implements F1, F2 and F3 while Variant 2 implements F1 and F3 as
well but not F2. Despite that we know if a feature is implemented in a variant,
we do not know the implementation elements associated to it. Therefore, the
feature location algorithm takes the information of all the variants (features and
implementation elements) and decide, for each feature, which are the associated
implementation elements as shown at the bottom of Figure 1.

Figure 1: Feature location in feature-based variants. The feature location technique takes
as input the implementation elements of each variant and the list of features present in each
variant, and outputs the mapping between features and implementation elements.

3. The Eclipse family of integrated development environments

The Eclipse community, with the support of the Eclipse Foundation, pro-
vides integrated development environments (IDEs) targeting different developer
profiles. The IDEs cover the development needs of Java, C/C++, JavaEE,
Scout, Domain-Specific Languages, Modeling, Rich Client Platforms, Remote
Applications Platforms, Testing, Reporting, Parallel Applications or for Mobile
Applications. Following Eclipse terminology, each of the customized Eclipse
IDEs is called an Eclipse package. To avoid confusion with Java packages, we
will refer to Eclipse packages as variants in the rest of the paper.

As the Eclipse project evolves over time, new variants appear and some
other ones disappear depending on the interest and needs of the community.
For instance, in 2012, one variant for Automotive Software developers appeared
and, recently, in 2016, another variant appeared for Android mobile applications
development. The Eclipse Packaging Project (EPP) is the technical responsible
for creating entry level downloads based on defined user profiles.
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Continuing with Eclipse terminology, a simultaneous release (release here-
after) is a set of variants which are public under the supervision of the Eclipse
Foundation. Until 2016, there was one main release in June, which was followed
by two service releases for maintenance purposes: SR1 and SR2 usually around
September and February. Since 2017 there are three service releases around
September, December and March. For each main release, the platform version
changes and traditionally celestial bodies are used to name the releases, for ex-
ample Luna for version 4.4 and Mars for version 4.5. Each release represents a
family of Eclipse variants.

The variants present variation depending on the included and not-included
features. A feature is defined in the Eclipse official documentation as a unit of
separately installable functionality. For example, Eclipse variant for Testers is
the only one including the Jubula Functional Testing features. On the contrary,
other features like the Java Development tools are shared by most of the variants.
There are also common features for all the variants, like the Equinox features
that implement the core functionality of the Eclipse architecture. The online
documentation of each release provides high-level information on the features
that each variant provides 1.

It is important to mention that in this work we are not interested in the
variation among the releases (e.g., version 4.4 and 4.5, or version 4.4 SR1 and
4.4 SR2), known as variation in time. We focus on the variation of the different
variants of a given release, known as variation in space, which is expressed in
terms of included and not-included features. Each variant is different in order
to support the needs of the targeted developer profile by including only the
appropriate features.

Eclipse is feature-oriented and based on plugins. Each feature consists of a
set of plugins that are the actual implementation of the feature. Table 1 shows
an example of feature with four plugins as implementation elements that, if in-
cluded in an Eclipse variant, adds support for the Concurrent Versioning System
(CVS). At technical level, the actual features of a variant can be found within
a folder called features containing meta-information regarding the included fea-
tures and the list of plugins associated to each. A feature has an id, a name
and a description as defined by the feature providers of the Eclipse community.
A plugin has an id and a name defined by the plugin providers, but it does not
have a description.

Table 2 presents data regarding the evolution of the Eclipse releases over
one decade. In particular, it presents the total number of variants, features
and plugins per release. To illustrate the distribution of variants and features,
Figure 2 depicts a matrix of the different Eclipse Kepler SR2 variants where a
black box denotes the presence of a feature (horizontal axis) in a variant (vertical
axis). We observe that some features are present in all the variants while others
are specific to only few variants. The 437 features are alphabetically ordered by

1High-level comparison of Eclipse variants of the latest release:
https://eclipse.org/downloads/compare.php
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Table 1: Eclipse feature example. The Eclipse CVS Client feature and its associated plugins.

Feature
id: org.eclipse.cvs
name: Eclipse CVS Client
description: Eclipse CVS Client (binary runtime and user documentation).
Plugin id Plugin name

org.eclipse.cvs Eclipse CVS Client
org.eclipse.team.cvs.core CVS Team Provider Core
org.eclipse.team.cvs.ssh2 CVS SSH2
org.eclipse.team.cvs.ui CVS Team Provider UI

their id. For instance, the feature Eclipse CVS Client, tagged in the figure, is
present in all variants except in the Automotive Software variant.

Table 2: Eclipse releases and their number of variants, features and plugins.

Year Release Variants Features Plugins

2008 Europa Winter 4 91 484
2009 Ganymede SR2 7 291 1,290
2010 Galileo SR2 10 341 1,658
2011 Helios SR2 12 320 1,508
2012 Indigo SR2 12 347 1,725
2013 Juno SR2 13 406 2,008
2014 Kepler SR2 12 437 2,043
2015 Luna SR2 13 548 2,399
2016 Mars SR2 12 549 2,545
2017 Neon SR3 14 564 2,614

Figure 2: Eclipse Kepler SR2 variants and a mapping to their 437 features. For example,
Eclipse CVS Client is present in all variants except in the automotive variant.

Features have dependencies among them: Includes is the Eclipse terminology
to define subfeatures, and Requires means that there is a functional dependency
between the features. Figure 3 shows the dependencies between all the features
of all variants in Eclipse Kepler SR2 (nodes in the graph correspond to Eclipse
features and edges represent dependencies). On the right side of Figure 3, we
tagged some features and subfeatures of the Eclipse Modeling Framework to
show cases of features that are strongly related. In the Eclipse IDE family there
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is no excludes constraint between the features.
Functional dependencies are mainly motivated by the existence of dependen-

cies between plugins of different features. Plugins dependencies are explicitly
declared in each plugin meta-data. Figure 4 shows a small excerpt of the depen-
dency connections of the 2043 plugins of Eclipse Kepler SR2. Concretely, the
excerpt shows the dependencies of the four CVS plugins presented in Table 1.

Figure 3: Feature dependencies in the Eclipse Kepler SR2 variants. Each node is a feature
and the edges correspond to feature dependencies.

Plugins of the Eclipse CVS Client feature

Figure 4: Plugin dependencies of the four plugins of the Eclipse CVS Client feature. Each
node is a plugin and the edges correspond to plugin dependencies.

4. EFLBench: Eclipse Feature Location Benchmarking framework

In this section, we justify why Eclipse variants represent an interesting and
challenging ground for benchmarking feature location techniques. We then pro-
vide the details on the realization of the EFLBench benchmarking framework.
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4.1. Reasons to consider Eclipse for benchmarking
We present characteristics of Eclipse variants that make the case study in-

teresting for a feature location benchmark:
Ground truth available: The Eclipse case study fulfils the requirement,

mentioned in Section 1, of providing the needed data to be used as ground
truth. This ground truth can be extracted from features meta-information.
Despite that the granularity of the implementation elements (plugins) is coarse
if we compare it with source code AST nodes, the number of plugins is still
reasonably high. In Eclipse Kepler SR2, the total amount of unique plugins is
2043 with an average of 609 plugins per Eclipse variant and a standard deviation
of 192.

Challenging: The relation between the number of available variants in the
different Eclipse releases (around 12) and the number of different features (more
than 550 in the latest release) is not balanced. This makes the Eclipse case study
challenging for techniques based only in static comparison (e.g., intersection-
based approaches like interdependent elements [37] or FCA [30]) because they
will probably identify few “big” blocks containing implementation elements be-
longing to a lot of features. The number of available product variants has been
shown to be an important factor for feature location techniques [28].

Friendly for information retrieval and dependency analysis: Eclipse
feature and plugin providers have created their own natural language vocabu-
lary. The feature and plugin names (and the description in the case of the fea-
tures) can be categorized as meaningful names [13] enabling the use of several IR
techniques. Also, the dependencies between features and dependencies between
implementation elements have been used in feature location techniques. For ex-
ample, in source code, program dependence analysis has been used by exploiting
program dependence graphs [38]. Acher et al. also leveraged architecture and
plugin dependencies [20]. As presented in previous section, Eclipse also has de-
pendencies between features and dependencies between plugins enabling their
exploitation during feature location.

Noisy: There are properties that can be considered as “noise” that are
common in real scenarios. Some of them can be considered as non-conformities
in feature specification [39]. A case study without “noise” should be considered
as an optimistic case study. In Eclipse Kepler SR2, 8 plugins do not have a name,
and different plugins from the same feature are named exactly the same. There
are also 177 plugins associated to more than one feature. Thereby the features’
plugin sets are not completely disjoint. These plugins are mostly related to
libraries for common functionalities which were not included as required plugins
but as a part of the feature itself. In addition, 40 plugins present in some of the
variants are not declared in any feature. Also, in few cases, feature versions are
different among variants of the same release.

Friendly for customizable benchmark generation: The fact that Eclipse
releases contain few variants can be seen as a limitation for benchmarking in
other desired scenarios with larger amount of variants. For example, it will be
desired to show the relation between the results of the technique and the num-
ber of considered variants. Apart from the official releases, software engineering
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practitioners have created their own Eclipse variants. Therefore, researchers
can use their own variants or create variants with specific characteristics. In ad-
dition, the plugin-based architecture of Eclipse allows to implement automatic
generators of Eclipse variants as we present later in Section 6.

Similar experiences exist: Analysing plugin-based or component-based
software system families to leverage their variability has been shown in previous
works [20, 19, 21, 22, 23, 24]. For instance, experiences in an industrial case
study were reported by Dhungana et al. and Grünbacher et al. where they
performed manual feature location in Eclipse variants to extract an SPL for the
Siemens VAI MSS (Maintenance and Setup Systems) involving more than 20
Eclipse customizations per year [19, 22].

4.2. EFLBench

EFLBench is aimed to be used with any set of Eclipse variants including vari-
ants with features that are not part of any official release. Figure 5 illustrates,
at the top, the phase for constructing the benchmark and, at the bottom part,
the phase for using it. The following subsections provide more details on the two
phases. In Section 2 we presented the principles for feature location in feature-
based systems. EFLBench follows these assumptions for a feature location task
and provide the following inputs for the feature location technique:

• The feature names, descriptions and dependencies among features
• The plugin names and the dependencies among plugins
• For each feature, the list of variants where it was included

Figure 5: EFLBench: Eclipse variants as benchmark for feature location.

4.2.1. Benchmark construction

The benchmark construction phase takes as input the Eclipse variants and
automatically produce two outputs, 1) a Feature list with information about
each feature name, description and the list of variants where it was present, and
2) a ground truth with the mapping between the features and the implementa-
tion elements which are the plugins.
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We implemented an automatic extractor of features information. The in-
formation is available in the file feature.xml of each feature so it was easy to
automatically get the metadata (name, description, dependencies etc.) corre-
sponding to all features. The implementation elements of a feature are those
plugins that are directly associated to this feature. From the 437 features of the
Eclipse Kepler SR2, each one has an average of 5.23 plugins associated with,
and a standard deviation of 9.67 plugins. There is one outlier with 119 plu-
gins which is the feature BIRT Framework included in the Reporting variant.
From the 437 features, there are 19 features that do not contain any plugin, so
they are considered abstract features which are created just for grouping other
features. For example, the abstract feature UML2 Extender SDK (Software
Development Kit) includes the features UML2 End User Features, Source for
UML2 End User Features, UML2 Documentation and UML2 Examples.

Reproducibility can become easier by using benchmarks and common frame-
works that launch and compare different techniques [15]. This practice, allows a
valid performance comparison with all the implemented and future techniques.
We integrated EFLBench and its automatic extractor in BUT4Reuse.

4.2.2. Benchmark usage

Feature Location Technique integration using BUT4Reuse. Once the benchmark
is constructed, at the bottom of Figure 5 we illustrate how it can be used
through BUT4Reuse where feature location techniques can be integrated. The
Eclipse adapter [10] is responsible for the variant abstraction phase. During the
product abstraction phase, the implemented Eclipse adapter decomposes any
Eclipse variant in a set of plugins by visiting and analysing the Eclipse variant
file structure. The plugin elements contain information about their id, name
as well as their dependency to other plugin elements. This will be followed by
the launch of the targeted feature location techniques which takes as input the
feature list and the Eclipse variants (excluding the features folder).

The integration of feature location techniques through BUT4Reuse is based
on what is refereed to as the block identification step which is the previous step
to locate features. To distinguish features and their associated elements, the
idea is to analyse and compare artefact variants for the identification of their
common and variable parts. We refer to each of such distinguishable parts as
a block. A block is a set of implementation elements of the artefact variants
that are relevant for the targeted mining task. Examples of existing techniques
to identify blocks are based on static analysis, dynamic analysis or information
retrieval techniques [11]. Independently of the technique or artefact type, a
block is an intermediary abstraction representing a candidate set of elements
that might implement a feature. Feature location techniques use the concept of
blocks to create a mapping between features and the implemented elements.

Evaluation metrics. The feature location technique in EFLBench produces a
mapping between features and plugins that can be evaluated against the ground
truth obtained in the benchmark construction phase. Concretely, EFLBench
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calculates the precision, recall and F-measure which are classical evaluation
metrics in IR studies (e.g., [32]).

We explain precision and recall, two metrics that complement each other,
in the context of EFLBench. A feature location technique assigns a set of
plugins to each feature. In this set, there can be some plugins that are actually
correct according to the ground truth. Those are true positives (TP). TPs are
also referred to as hit. On the set of plugins retrieved by the feature location
technique for each feature, there can be other plugins which do not belong to
the feature. Those are false positives (FP) which are also referred to as false
alarms. Precision is the percentage of correctly retrieved plugins relative to
the total of retrieved plugins by the feature location technique. A precision of
100% means that all retrieved plugins are contained in the ground truth set and
that no false alarm plugins were included. The formula of precision is shown in
Equation 1.

precision =
TP

TP + FP
=

plugins hit

plugins hit + plugins false alarm
(1)

According to the ground truth there can be some plugins that are not in-
cluded in the retrieved set, meaning that they are miss. Those plugins are false
negatives (FN). Recall is the percentage of correctly retrieved plugins from the
set of the ground truth. A recall of 100% means that all the plugins of the
ground truth were assigned to the feature. The formula of recall is shown in
Equation 2.

recall =
TP

TP + FN
=

plugins hit

plugins hit + pluginsmiss
(2)

Precision and recall are calculated for each feature. We also provide the
F-measure (F1), calculated through the harmonic mean of precision and recall
as shown in Equation 3.

F1 = 2 ∗ precision ∗ recall
precision + recall

(3)

In this context of feature location in families of systems, high recall is im-
portant for not having to manually add missing plugins. However, high recall
without high precision means that the domain experts will need to manually
remove many unnecessary plugins. F1 is a measure that provides a meaningful
balance between these two aspects. In order to have a global result of the pre-
cision, recall and F1 we use the mean of all the features. Finally, BUT4Reuse
reports the time spent for the feature location technique. With this information,
the time performance of different techniques can be compared.

5. Examples of EFLBench usage in Eclipse releases

This section aims at presenting the possibilities of EFLBench by bench-
marking four feature location techniques in official Eclipse releases. For the
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four techniques we use Formal Concept Analysis (FCA) [35] as a first step for
block identification and the four feature location techniques are Strict Feature
Specific (SFS), SFS+ST, SFS+TF, SFS+TFIDF which we detail in next sub-
section before presenting the results.

5.1. Background on techniques used in the examples

FCA is an intersection-based technique used during feature location. FCA
[35] uses a formal context as input and groups elements that share common
attributes. The entities of the formal context are the variants, and the attributes
(binary attributes) are the presence or absence of each of the elements in each
variant. With this input, FCA discovers a set of concepts, and the concepts
containing at least one element are considered as a block for the feature location
task. Figure 6 illustrates FCA. The identified blocks correspond to the different
intersections from the input artefact variants. A detailed explanation about
FCA formalism in the same context of extractive SPL adoption can be found
in Al-Msie’deen et al. [30] and Shatnawi et al. [21]. At technical level, we
implemented FCA for block identification using Galatea2.

Formal Concept Analysis
Artefact variants

Identified blocks

Figure 6: Illustration of block identification with Formal Concept Analysis.

SFS is a feature location technique that follows two assumptions: A feature
is located in a block when 1) the block always appears in the artefacts that
implements this feature and 2) the block never appears in any artefact that does
not implement this feature. The principles of this feature location technique are
similar to locating distinguishing features using diff sets [27].

Natural Language Processing (NLP) techniques: In SFS+ST, SFS+TF,
SFS+TFIDF, where we use IR and NLP, we do not make use of the feature or
plugin ids. In order to extract the meaningful words from both features (name
and description) and elements (plugin names), we used two well established
techniques in the IR field.

• Parts-of-speech tags remover: These techniques analyse and tag words
depending on their role in the text. The objective is to filter and keep only
the potentially relevant words. For example, conjunctions (e.g., “and”),
articles (e.g., “the”) or prepositions (e.g., “in”) are frequent and may
not add relevant information. As an example, we consider the following

2Galatea Formal Concept Analysis library: https://github.com/jrfaller/galatea
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feature name and description: “Eclipse Scout Project. Eclipse Scout is
a business application framework that supports desktop, web and mobile
frontends. This feature contains the Scout core runtime components.”. We
apply Part-of-Speech Tagger techniques using OpenNLP [40].

• Stemming: This technique reduces the words to their root. The objec-
tive is to unify words not to consider them as unrelated. For instance,
“playing” will be considered as stemming from “play” and “tools” from
“tool”. Instead of keeping the root, we keep the word with greater num-
ber of occurrences to replace the involved words. As example, in the
Graphiti feature name and description we find “[...]Graphiti supports the
fast and easy creation of unified graphical tools, which can graphically
display[...]” so graphical and graphically is considered the same word as
their shared stem is graphic. Regarding the implementation, we used the
Snowball stemmer [41].

SFS and Shared term: The intuition behind this technique is first to group
features and blocks with SFS and then apply a “search” of the feature’s words
within the elements of the block to discard elements that may be completely
unrelated to the feature. For each association between feature and block, we
keep, for this feature, only the elements of the block that have at least one
meaningful word shared with the feature. That means that we keep the elements
whose term frequency (tf) between feature and element (featureElementTF) is
greater than zero. For clarification, featureElementTF is defined in Equation 4
being f the feature, e the element and tf a method that just counts the number
of times a given term appears in a given list of terms.

featureElementTF (f, e) =
∑

termi∈e.terms
tf(termi, f.terms) (4)

Figure 7 illustrates, on the left side, how for a given feature, we have associ-
ated words and how, from a block obtained with SFS, we discard elements that
do not share any word with the feature.

F1

SFS and shared term

block

SFS and tf SFS and tf-idf

F1     F2    F3 F1     F2    F3
words

tf tf-idf

Figure 7: Three different feature location techniques using SFS and term frequency.

SFS and Term frequency: After employing SFS, this technique is based
on the idea that all the features assigned to a block compete for the block
elements. The feature (or features in case of drawback) with higher featureEle-
mentTF will keep the elements while the other features will not consider this
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element as part of it. Figure 7 illustrates this technique in the center of the
figure. Three features compete for the elements of a block obtained with SFS,
and the assignation is made by calculating the tf between each element and the
features. That means that, for each element, the feature with higher tf with
respect to the element will be the only feature that is mapped to this element.

SFS and tf-idf: Figure 7, on the right side, illustrates this technique. SFS
is applied and then the features also compete, in this case, for the elements of
the block but a different weight is used for each word of the feature. This weight
(or score) is calculated through the term frequency - inverse document frequency
(tf-idf) value of the set of features that are competing. tf-idf is a well known
technique in IR [42]. tf is a metric consisting in giving more relevance to the
terms appearing with more frequency in a document d. When dealing with a set
D of documents d1, ..., dn, term frequency-inverse document frequency (tf-idf)
is another metric used in IR [42]. For a document d, tf-idf penalizes common
terms that appear across most of the documents in D and emphasizes those
terms that are more specific to d. There are different formulas to calculate
them. In this work, we used the formulas presented in Equation 5, where we
use raw term frequency (tf) which is calculated counting the occurrences of a
given term in a document, inverse document frequency (idf) which measures
how much rare or common a term is across all the documents using a logarithmic
scale and, finally, tf-idf uses tf multiplied by idf to penalize or encourage
a term depending on its occurrence across D. In our context, the idea is that
words appearing more frequently through the features may not be as important
as less frequent words.

tf(termi, d) = ftermi,d

idf(termi, D) = log

(
|D|

|{d ∈ D : termi ∈ d}|

)
tf-idf(termi, d,D) = tf(termi, d.terms)× idf(termi, D)

(5)

Given that tf-idf is used in SFS+TFIDF, we illustrate it in the context of
Eclipse features. For example “Core”, “Client” or “Documentation” are more
frequent words across features but “CVS” or “BIRT”, being less frequent, are
probably more relevant, informative or discriminating.

5.2. Results in Eclipse releases

We used the benchmark created with each of the Eclipse releases presented in
Table 2. The experiments were launched using BUT4Reuse (commit f81dd54 )
which contains the presented feature location techniques. Detailed instructions
for reproducibility are available 3. We used a laptop Dell Latitude 5480 with
a processor Intel(R) Core(TM) i5-7300U CPU@2.6GHz with 8GB RAM and
Windows 10 Pro 64-bit.

3https://github.com/but4reuse/but4reuse/wiki/Benchmarks
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After using the benchmark, we obtained the results shown in Table 3. Pre-
cision, Recall and F1 are the mean of all the features as discussed at the end
of Section 4.2.2. The results in terms of precision are not satisfactory in the
presented feature location techniques. This suggests that the case study is chal-
lenging. Also, we noticed that there are no relevant differences in the results
of these techniques among the different Eclipse releases. As discussed before,
given the small number of Eclipse variants under consideration, FCA is able to
distinguish blocks which may actually correspond to a high number of features.
For example, all the plugins corresponding specifically to the Eclipse Modeling
variant, will be grouped in one block while many features are involved. Despite
that these techniques are used in feature location of feature-based variants we
provide these results to be used as baselines to motivate the search of more accu-
rate feature location techniques and to show that the benchmark is appropriate
to advance the research in this field.

Table 3: Precision (Prec), recall and F1 of the different feature location techniques.

SFS SFS+ST

Release Prec Recall F1 Prec Recall F1

Europa Winter 6.51 99.33 9.70 11.11 85.71 15.14
Ganymede SR2 5.13 97.33 7.85 10.36 87.72 14.02

Galileo SR2 7.13 93.39 9.57 10.92 82.01 14.57
Helios SR2 9.70 91.63 14.15 16.04 80.98 21.62
Indigo SR2 9.58 92.80 13.55 15.72 82.63 20.76

Juno SR2 10.83 91.41 15.90 19.08 81.75 25.41
Kepler SR2 9.53 91.14 14.20 16.51 83.82 22.17

Luna SR2 7.58 93.36 11.39 13.52 86.52 18.50
Mars SR2 7.54 93.90 11.14 12.71 86.71 17.55
Neon SR3 8.86 92.99 12.47 15.22 85.69 19.82

Mean 8.23 93.72 11.99 14.11 84.35 18.95

SFS+TF SFS+TFIDF

Release Prec Recall F1 Prec Recall F1

Europa Winter 12.43 58.69 14.28 13.07 53.72 22.26
Ganymede SR2 11.65 64.31 19.70 12.80 52.70 22.59

Galileo SR2 11.82 60.50 20.27 12.45 53.51 21.50
Helios SR2 25.97 63.70 37.23 29.46 58.39 43.82
Indigo SR2 19.79 59.72 30.19 22.86 57.57 34.80

Juno SR2 25.97 61.92 37.62 24.89 60.82 38.43
Kepler SR2 26.38 62.66 38.12 26.86 57.15 42.03

Luna SR2 23.96 58.00 36.89 24.62 52.36 40.55
Mars SR2 21.13 57.88 32.71 21.69 50.22 37.55
Neon SR3 21.25 58.23 32.80 21.05 50.71 36.69

Mean 20.03 60.56 29.98 20.97 54.71 34.02

Another example, in Eclipse Kepler SR2, FCA-based block identification
identifies 60 blocks with an average of 34 plugins per block and a standard
deviation of 54 plugins. In Eclipse Europa Winter, with only 4 variants, only 6
blocks are identified with an average of 80 plugins each and a standard deviation
of 81. Given the low number of Eclipse variants, FCA identifies a low number of
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blocks. The number of blocks is specially low if we compare it with the actual
number of features that we aim to locate (e.g., 60 blocks in Kepler SR2 against
its 437 features). The higher the number of Eclipse variants, the more likely
FCA will be able to distinguish different blocks.

The first location technique (FCA+SFS) does not assume meaningful names
given that no IR technique is used. The features are located in the elements
of a whole block obtaining a high recall (few plugins missing). Eclipse feature
names and descriptions are probably written by the same community of devel-
opers that create the plugins and decide their names. In the approaches using
IR techniques, it was expected a higher increment of precision without a loss
of recall but the results suggest that a certain divergence exists between the
vocabulary used at feature level and at implementation level.

Regarding the time performance, Table 4 shows, in milliseconds, the time
spent for the different releases. The Adapt column corresponds to the time
to decompose the Eclipse variants into a set of plugin elements and get their
information. This adaptation step heavily rely to access the file system and
we obtain better time results after the second adaptation of the same Eclipse
variant. The FCA time corresponds to the time for block identification. We
consider Adapt and FCA as the preparation time. Then, the following columns
show the time of the different feature location techniques. We can observe that
the time performance is not a limitation of these techniques as they take a
maximum of around one minute.

Table 4: Time performance in milliseconds for feature location.

Preparation Concrete techniques

Release Adapt FCA SFS SFS+ST SFS+TF SFS+TFIDF

Europa Winter 2,009 2 4 2,206 2,359 4,093
Ganymede SR2 6,649 9 73 9,851 9,846 22,521

Galileo SR2 11,572 27 78 15,871 16,085 36,189
Helios SR2 13,225 47 136 5,888 5,336 14,058
Indigo SR2 13,969 39 104 8,020 7,825 18,562

Juno SR2 17,148 67 204 6,882 6,895 13,871
Kepler SR2 22,310 105 227 8,267 8,258 16,687

Luna SR2 18,940 69 240 14,340 14,838 34,189
Mars SR2 19,238 126 278 19,681 19,502 44,538
Neon SR3 23,349 113 307 21,255 21,039 55,164

Mean 11,128 60 165 9,213 11,198 25,987

It is out of the scope of the EFLBench contribution to propose feature lo-
cation techniques that could obtain better results in the presented cases. The
objective is to present the benchmark usage showing that quick feedback from
feature location techniques can be obtained in the Eclipse releases case studies.
In addition, we provide empirical results of four feature location techniques that
can be used as baseline.
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6. Automatic and parametrizable generator of Eclipse variants

The main motivation for the generation of synthetic variants is that it enables
to evaluate the feature location techniques in controlled settings. As shown in
Table 2, the number of official variants of an Eclipse release amounts to around
12 Eclipse variants. In order to provide a framework for intensive evaluation
of feature location techniques, cases with larger number of Eclipse variants are
desired. In addition, a parametrizable number of variants could serve to analyse
the results of the same feature location technique under different circumstances.
For instance, it is interesting to evaluate the same technique in cases with vari-
ants which are similar, or dissimilar, among them. Using the Jaccard similarity
measure between pairs of variants [43, 44] (calculated as the size of the intersec-
tion of the selected features divided by the size of the union) and considering the
official releases, we observe that the average similarity ranges from the 22.56%
of Ganymede SR2 to the 33.55% of Neon SR3, with an average of 26.97% for
the ten presented releases. Therefore, these families are homogeneous in terms
of the average similarity between variants. However, it is desired to experiment
in other settings to evaluate this factor in the different techniques.

It is not evident where to find real Eclipse configurations and how to group
them to satisfy certain desired characteristics, therefore we extended our frame-
work with the generation of variants enabling the possibility to create several
settings regarding the number of variants and the similarity among them. We
extended the benchmark construction phase of EFLBench with an automatic
and parametrizable generator of Eclipse variants to construct benchmarks with
tailored characteristics. The approach consists in automatically creating vari-
ants taking as input a user-specified Eclipse variant.

We agree that generated variants are synthetic variants which can be seen as
non representative variants of realistic cases (i.e., we cannot validate if the set of
features makes sense for a real development scenario). For using EFLBench with
realistic variants we should rely on the official Eclipse releases as we presented
in Section 5. The synthetic families of variants should be used to discover
properties of the feature location techniques when presented to hypothetical
cases beyond the publicly available realistic families from the official Eclipse
releases. At the end of Section 4.1, we presented similar experiences reported
in the literature about feature location in plugin-based systems and in Eclipse
variants. That means that other realistic families exist in specific application
domains with their own number of variants and specific characteristics. For the
generated variants we can only guarantee the following two characteristics.

• Feature constraints are respected (i.e., dependencies of the features)
• The Eclipse variant can be executed

Figure 8 illustrates the benchmark construction phase using the automatic
generation of Eclipse variants. First, as shown on the upper left side of the
figure, we take as input an Eclipse variant to extract its features and feature
constraints. These features and constraints define a configuration space in the
sense that, by deselecting features, we can still have valid Eclipse configura-
tions (i.e., all the feature constraints are satisfied). Then, we leverage this
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configuration space to select a set of configurations. The automatic selection of
configurations is parametrized by a given strategy, thus, this step is extensible
to different implementations. Below, we present three different strategies that
we have implemented. Finally, once the set of configurations are selected, we
implemented an automatic method to construct the variants through the input
Eclipse and the feature configurations. The constructed variants are created
for preparing the benchmark construction but, if desired, given that constraints
are respected, they can be executed in the same way as the variants in Eclipse
releases.

Figure 8: Automatic and parametrizable generation of Eclipse variants to construct a feature
location benchmark. The use of different strategies in the step to select configurations enables
to construct benchmarks exhibiting different characteristics.

6.1. Strategies for the automatic selection of configurations

We implemented three strategies to select configurations from a set of fea-
tures and constraints with the final objective to construct benchmarks present-
ing different characteristics. Apart from the input Eclipse, the three take as
input a user-specified number of variants (n) that want to be generated. We
present the three strategies and then discuss their properties:

• Random selection strategy : In this strategy, we randomly select n config-
urations from the configuration space. The configuration space is the set
of all possible valid configurations (those that satisfy all the constraints
among features). Therefore, this strategy can be illustrated as repeating
n times the selection of a random number from one to the size of the con-
figuration space, and then taking the feature configuration associated to
this number. The selection of random valid configurations, taking as input
features and their constraints, is implemented through a functionality of-
fered by the PLEDGE library (Product Line Editor and tests Generation
tool) [45]. We used the PLEDGE tool as a black box library as it fitted
our needs and that had already proven useful in other cases of randomly
selecting configurations in the way we have described. PLEDGE internally
relies on a boolean satisfiability problem solver (SAT solver) [46, 47].
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• Random selection strategy trying to maximize dissimilarity : This strat-
egy aims to obtain a set of n configurations that maximize their global
dissimilarity. That means that an optimization algorithm explores the
configuration space trying to find the set of n configurations from the con-
figuration space that are more different among them. For this we use again
the available PLEDGE functionality. First, PLEDGE selects n random
configurations and then, they evolve over time by performing mutations.
Concretely, it applies a search-based approach guided by a fitness func-
tion that tries to identify the most dissimilar configurations based on the
Jaccard distance [43, 44]. The best solution found (the set of n configura-
tions) at time t is returned as result. This strategy demands also to select
a user-specified time (t) allocated to the search-based algorithm. Once
the allowed time is over, the set of configurations are obtained.

• Percentage-based random selection strategy : This strategy consists of two
steps. First, we ignore the constraints and we go through the feature
list deciding if we select or not each feature. This is automated by a
user-specified percentage (p) defining the chances of the features of being
selected. Second, once some features are randomly selected, we need to
guarantee that the feature constraints are satisfied. We may have included
a feature that requires another one that was not included. Therefore, we
repair the configuration including the missing features until obtaining a
valid configuration. This strategy does not use PLEDGE. Since Eclipse
features only provide dependency constraints, satisfying those constraints
using the mentioned repair approach is trivial and no SAT solver is needed.

The three algorithms for the strategies that we have presented have stochas-
tic components. In the following paragraphs we show the characteristics that
we can be expected from each of them based on empirical data of their usage.

Using as input the Modeling variant of Eclipse Kepler SR2, Figures 9 and
10 show, in the vertical axis, the number of features in 1000 automatically
selected configurations using the presented strategies. The total number of
features of the input Eclipse variant is 173 corresponding to the maximum value.
Considering the feature constraints, the configuration space exceeds one million
configurations. In the case of the random and dissimilarity strategies, as shown
in Figures 9a and 9b, we can observe that only some outlier configurations
reach a large number of selected features. Given that the dissimilarity strategy
depends on the number of desired variants to generate, we repeated the process
with different number of configurations (not only 1000) obtaining analogous
results. We also observed that the time allowed for the search-based algorithm
did not affect the number of selected features, at least from 10 minutes to 1
hour as shown in Figure 9b. On the contrary, in Figure 10, we can observe how
the user-specified percentage has an impact in the median of selected features.
For example, using the random strategy, we expect variants with around 50%
of the features selected from the input Eclipse. On the contrary, if we select
percentage-based random selection with 90% of user-specified percentage, we
expect variants with almost all the features selected from the input Eclipse.
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Figure 9: Different settings of the first two strategies for selecting configurations taking as
input the features and constraints extracted from the Modeling variant of the Eclipse Kepler
SR2. Each boxplot shows the number of features in the selection of 1000 configurations.

Larger percentages using the percentage-based random selection allow to
obtain configurations with a larger number of selected features and, therefore,
there will be fewer chances to obtain dissimilar variants using this strategy
compared to the ones using random selection. Empirical studies of Henard et al.
showed that dissimilar configurations exhibit interesting properties in terms of
pairwise coverage [44]. Pairwise coverage measures the coverage of all possible
discrete combinations of features. The first and second strategy can be used
to evaluate how a feature location technique behaves with dissimilar variants
with high pairwise coverage. They also showed that the strategy of selecting
random configurations from the configuration space, without the search-based
step, already obtained a median of more than 90% of pairwise coverage in 120
FMs of moderate size (i.e., less than one thousand features). The third strategy,
compared to the first two, allows to have more control over the total number of
selected features per configuration.

6.2. Results using automatic generation of variants

We show examples of using the EFLBench strategies for automatic genera-
tion of Eclipse variants and we focus on discussing the results of evaluating the
four presented techniques which use FCA as presented in Section 5.1. As input
for the random generation strategies, we use the Modeling variant of Eclipse
Kepler SR2 which is the same used to illustrate the strategies for selecting con-
figurations in Figures 9 and 10.

Using percentage-based random selection of features, we aim to empiri-
cally analyse whether the number of available variants has an impact on the
FCA+SFS technique. First, we generated 100 variants using 40% as percentage
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Figure 10: Different settings of the Percentage-based random selection strategy for selecting
configurations taking as input the features and constraints extracted from the Modeling variant
of the Eclipse Kepler SR2. Each boxplot shows the number of features in the selection of 1000
configurations.

for feature selection. By setting this percentage, the first 10 variants cover the
173 features which is the total number of features of the input Eclipse. This
allows the construction of different benchmarking settings adding 10 variants
each time while keeping the total number of possible features constant.

Table 5 shows the precision, recall and F1 obtained for the four techniques
when considering different number of variants. We can observe how precision
improves with the number of variants. From 10 to 20 variants, we have a
precision improvement of around 15%. Beyond 30 variants, it seems that the
included variants, with their feature combinations, are not adding much more
information that can be exploited by the different techniques. The increase
in precision is reduced to around 2% per each increase of 10 variants. As an
extreme case, we can observe how we obtain almost the same precision with
90 and 100 variants even if we are including 10 more different variants. This
non-linearity of the precision when we add more variants might seem counter-
intuitive. However, it is related to the fact that adding more variants do not
necessarily means that we are including new feature combinations that did not
exist in the previous variants.

Regarding recall, independently of the number of variants we obtain very
high levels of recall (specially in SFS and SFS+ST). It slightly decreases 9%
from 10 to 100 variants, while precision increases, mainly because of the “noise”
introduced by non-conformities in feature specification discussed in Section 4.1.
Table 6 also presents time measures of one execution showing that the four
techniques scale correctly for 100 variants in this benchmark. Concretely, it
took only around 6 seconds in total for FCA and SFS. If we include, as part of
the feature location process, the time for adapting the variants using the Eclipse
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Table 5: Precision (Prec), recall and F1 of the different feature location techniques in sets of
randomly generated Eclipse variants using the percentage-based random strategy with 40%.

SFS SFS+ST

Perc. 40% Prec Recall F1 Prec Recall F1

10 variants 38.26 97.06 41.84 41.00 90.00 43.93
20 variants 55.19 95.68 55.82 56.07 88.63 56.68
30 variants 60.10 92.28 61.76 60.61 85.22 61.76
40 variants 63.14 91.96 65.16 63.78 84.91 65.15
50 variants 65.96 91.68 68.30 65.95 84.62 67.67
60 variants 67.19 91.62 69.23 67.13 84.56 68.35
70 variants 71.37 89.60 71.82 71.84 82.54 71.24
80 variants 73.82 88.99 74.04 73.85 81.94 73.07
90 variants 75.90 88.79 76.10 76.00 81.73 75.20

100 variants 76.38 88.58 76.13 76.66 81.73 75.38

SFS+TF SFS+TFIDF

Perc. 40% Prec Recall F1 Prec Recall F1

10 variants 49.89 77.61 59.25 49.01 67.59 66.17
20 variants 62.20 79.71 68.35 57.88 77.67 68.03
30 variants 70.40 79.28 73.78 67.95 77.27 75.22
40 variants 73.71 80.88 76.70 71.66 78.76 77.95
50 variants 76.40 82.65 77.90 74.68 81.42 79.29
60 variants 76.95 82.76 78.38 75.20 81.56 79.74
70 variants 78.71 81.68 79.70 76.50 79.73 81.63
80 variants 80.33 81.32 81.32 79.00 79.32 83.80
90 variants 81.10 81.83 81.94 80.70 79.02 85.29

100 variants 81.34 82.48 81.75 81.02 79.17 85.49

Table 6: Time performance in milliseconds for feature location in sets of randomly generated
Eclipse variants using the percentage-based random strategy with 40%.

Preparation Concrete techniques

Perc. 40% Adapt FCA SFS SFS+ST SFS+TF SFS+TFIDF

10 variants 23,037 172 126 4,174 4,443 8,174
20 variants 48,920 380 227 2,855 3,053 5,317
30 variants 76,397 734 873 2,542 2,295 4,064
40 variants 141,565 973 677 2,482 2,238 3,210
50 variants 180,122 1,398 817 2,086 1,978 2,680
60 variants 224,429 1,880 1,000 2,327 2,604 2,882
70 variants 269,947 2,845 1,184 2,194 2,105 2,760
80 variants 303,672 3,787 1,795 2,645 2,407 3,187
90 variants 357,965 4,159 1,689 2,386 2,475 5,927

100 variants 392,447 5,158 1,760 2,914 8,381 5,534

adapter (the Adapt time mentioned in Section 5), in the case of SFS+TF with
100 variants, it took only 6 minutes which is acceptable.

We used the same Modeling variant as input to generate 100 variants with the
random selection strategy. As in the previous experiment, we keep the number of
features constant given that 10 variants already cover the 173 features. Then, we
calculate the results by incrementally adding another 10 variants. Table 7 shows
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the results of four techniques in this new setting where we can observe that, with
only 10 variants, we have a precision of around 70%. The result with 10 variants
generated with this random selection strategy is better compared with the same
number of variants generated through the percentage-based random selection
which was around 40% as shown in Table 5 (i.e., around 30% of difference in
precision). Also, using 10 variants with the random strategy, the technique
performs better than 40 variants with the percentage-based random selection.
Then, starting with 20 variants we reach 90% precision and then from 30 to
100 variants it stays almost constant. This fact suggests again that including
variants is not enough to increase the precision. Table 7 presents the time
measures showing that there are no scalability issues with 100 variants regarding
time performance.

Table 7: Precision (Prec), recall and F1 of the different feature location techniques in sets of
randomly generated Eclipse variants using the random strategy.

SFS SFS+ST

Random Prec Recall F1 Prec Recall F1

10 variants 63.58 86.89 68.43 71.05 80.71 73.80
20 variants 90.24 85.09 87.03 91.14 78.95 85.93
30 variants 93.10 85.09 88.89 93.38 78.95 86.73
40 variants 93.79 85.09 89.56 94.01 78.95 87.29
50 variants 93.79 85.09 89.56 94.01 78.95 87.29
60 variants 93.79 85.09 89.56 94.01 78.95 87.29
70 variants 93.79 85.09 89.56 94.01 78.95 87.29
80 variants 93.79 84.97 89.49 94.01 78.83 87.21
90 variants 93.79 84.97 89.49 94.01 78.83 87.21

100 variants 93.79 84.97 89.49 94.01 78.83 87.21

SFS+TF SFS+TFIDF

Random Prec Recall F1 Prec Recall F1

10 variants 76.81 81.94 78.29 77.10 78.81 80.29
20 variants 91.68 81.35 89.77 91.54 81.22 90.35
30 variants 93.54 82.16 91.08 93.63 81.42 91.78
40 variants 93.90 82.16 91.33 93.99 81.42 92.03
50 variants 93.90 82.16 91.33 93.99 81.42 92.03
60 variants 93.90 82.16 91.33 93.99 81.42 92.03
70 variants 93.90 82.16 91.33 93.99 81.42 92.03
80 variants 93.90 82.04 91.26 93.99 81.30 91.96
90 variants 93.90 82.04 91.26 93.99 81.30 91.96

100 variants 93.90 82.04 91.26 93.99 81.30 91.96

This result empirically suggests that the four feature location technique per-
form better when the variants are more dissimilar. We calculated the average
Jaccard similarity between the variants using the two strategies: The random
strategy creates groups of 10 variants with an average similarity of 41% while
the percentage-based random selection (using p 40%) has an average similarity
of 73%. It seems that dissimilar configurations cover many more distinct pairs
of features and thus make easier to locate the features.

It is worth to mention that the dissimilarity strategy obtained similar results
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Table 8: Time performance in milliseconds for feature location in sets of randomly generated
Eclipse variants using the random strategy.

Preparation Concrete techniques

Random Adapt FCA SFS SFS+ST SFS+TF SFS+TFIDF

10 variants 16,520 135 76 596 597 972
20 variants 31,751 395 222 756 530 598
30 variants 56,440 632 373 649 821 743
40 variants 72,404 978 554 847 964 1,004
50 variants 104,770 1,443 764 2,094 1,070 1,141
60 variants 144,087 1,950 864 1,190 1,148 1,459
70 variants 158,923 2,536 1,696 1,605 1,376 1,607
80 variants 204,746 3,185 1,373 1,690 2,022 1,590
90 variants 224,469 4,452 8,272 1,909 1,638 2,171

100 variants 242,873 5,212 1,698 2,936 1,966 1,967

as the ones presented in Table 7 which used the random strategy. In several
runs, for 10 variants we obtain around 70% of precision while for 20 variants
we already reach 90%. The average Jaccard similarity using the dissimilarity
strategy (with 10 minutes for the search-based step) is 37% which indicates
that they are more dissimilar than the random strategy (41%). In this case, the
marginal difference in terms of similarity (i.e., 4%) explains the small difference
on the feature location results.

If we compare the results with synthetic families of 10 variants and the
realistic families of Eclipse released presented in Table 3 (which also have around
10 variants), we observe that precision is much more higher in the synthetic
families. One factor is that realistic families since Ganymede SR2 already count
more features than the specific input Eclipse that we used for the synthetic
generation (the 173 features of the Modeling variant of Eclipse Kepler SR2).
However, the main factor is again related to the similarity among variants. As
presented in the beginning of Section 6, the realistic variants have an average
Jaccard similarity of 26.97%, while the synthetic ones almost double or triplicate
this metric.

The presented examples are intended to show the capabilities of EFLBench
in creating scenarios to compare the results of feature location techniques. Con-
cretely, we have shown how to analyse the result 1) with different number of
variants and 2) with the same number of variants but with different degrees of
similarity. In the presented case of the four feature location techniques, we pro-
vided empirical evidences that having more available variants do not necessarily
means better results in precision. However, dissimilar variants is an important
factor for obtaining higher levels of precision.

7. Limitations and threats to validity

The input for the feature location task presented in Section 4 might be
considered few input information if we compare it with concern location in
maintenance tasks where it is a common practice to trace bug reports with
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the names and comments in the source code. However, in similar cases to our
context of feature-based variants (e.g., the Linux-Kernel benchmark for feature
location [26]), we can see that, similarly to EFLBench, only feature names and
descriptions are used as input. In this benchmark the feature location task
is at a granularity of classes or code fragments, however in our case, it is at
the coarse granularity of plugins where we only provide the plugin names as
input. The description of features in Eclipse might be shorter than other kind
of documents like bug reports, enhancement requests or other documentation
such as requirements, however, this can be also seen as a challenging scenario
to information retrieval techniques that will need to exploit other information
(e.g., dependence graphs) to refine their results. In addition, EFLBench, being
open-source, can be easily extended to integrate other sources of information to
be used as input.

Regarding the granularity of Eclipse features, depending on the Eclipse com-
munity projects we can identify different levels of granularity (from coarse-
grained to less coarse-grained ones). This is related to how they have decided to
group the functionalities. Their separation enables us to create a ground truth
that comes from the Eclipse community instead of manually defining a ground
truth which will be difficult to validate. Also, it is worthy to mention that
sub-functionalities are not part of the ground truth. For example, the feature of
the editor to support C++ development can be separated in several function-
alities such as editor syntax highlighting, code-completion etc. which are not
part of the EFLBench ground truth. The editor support for C++, even if we
can consider it a coarse-grained feature, there are still many features related to
C++ in the Eclipse variants (e.g., in Eclipse Kepler variants we have “C/C++
Development Tools”,“Autotools support”, “GCC Cross Compiler”, “Berkeley
UPC (Unified Parallel C) Toolchain Support”, “C99 LR Parser”, “UPC (Uni-
fied Parallel C) Support”, “Memory View Enhancements” and more than ten
optional features related to C++). We agree that each of them could be inter-
nally separated in more features but the number of optional features, as it is, it
is already large. In industrial cases dealing with Eclipse variants [19, 22] they
discuss that more fine-grained variability might be desired. For example, they
also consider different setting values inside a plugin as a feature. However, in
their case study with the Siemens VAI MSS tool [19, 22] their analysis is only
at the level of plugins as we propose in EFLBench.

In Eclipse variants we can find features that are not “conventional” func-
tional features. For example, one feature is “Graphical Modeling Framework
(GMF) Runtime” and another feature is “Graphical Modeling Framework (GMF)
Runtime Source” which contains the source code documentation of the GMF
Runtime. The latter can be certainly seen as a non conventional feature. How-
ever, in Eclipse Kepler, “GMF Runtime” is available in the Automotive and
Modeling variants while “GMF Runtime Source” is only available in Modeling
and not in Automotive. As another example, “Equinox p2 Core Function” is a
feature that exists in all Eclipse variants, however, “Equinox p2 Core Function
Source” is only available in DSL, Modeling, RCP, Scout and Standard, and not
in Automotive, Cpp, Java, JEE, Parallel, Reporting and Testing variants. This
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indicates that the inclusion of this non conventional features in an Eclipse vari-
ant is performed in the same way as they do for conventional ones. If a feature is
a distinguishable characteristic of a system that is relevant to some stakeholder
then it seems that they differentiate between the users of the runtime and the
plugin developers.

The use of automatically generated variants can be seen as a limitation to
the validity of evaluating feature location techniques using these inputs. How-
ever, in the feature location literature we find several cases where the variants
are generated from an existing SPL [11]. For example, ArgoUML [25], the most
used case study in feature location [11, 12] was a single product which was
reengineered as an SPL by decomposing its features [25]. The ArgoUML SPL
is able to derive 256 variants but only around ten are selected for evaluating
feature location techniques. Our random generation is based on the same prin-
ciples used in ArgoUML. In our case, we take as input an Eclipse variant and
we decompose it also in its features. Then, we select features using a given
strategy to create the variants. Deriving variants from an existing SPL is a
common practice in our research community as it is a way to have a ground
truth to compare the results of the techniques (i.e., the mapping between fea-
tures and implementation elements are known). This comes at the price of using
“synthetic” variants which are valid regarding feature constraints but that can
represent non realistic variants (i.e., we cannot validate if they can respond to
real customer requirements). Apart from using realistic variants of the official
Eclipse releases, several executions of the random generation approaches can
provide complementary insights about the feature location techniques.

8. Related work

Benchmarks: In SPL Engineering (SPLE), several benchmarks and com-
mon test subjects have been proposed. Lopez-Herrejon et al. proposed evaluat-
ing SPL technologies on a common SPL, a Graph Product Line [48], whose vari-
ability features are familiar to any computer engineer. The same authors pro-
posed a benchmark for combinatorial interaction testing techniques for SPLs [49].
Also, automated FM analysis has a long history in SPLE research [50]. FAMA
is a tool for feature model analysis that allows to include new reasoners and new
reasoning operators [51]. Taking as input these reasoners, the BeTTy frame-
work [52], built on top of FAMA, is able to benchmark the reasoners to highlight
the advantages and shortcomings of different analysis approaches.

Feature location on software families is also becoming more mature with a
relevant proliferation of techniques [13, 11]. Therefore, benchmarking frame-
works to support the evolution of this field are in need. In the field of traces
recovery for a single system, there are publicly available datasets (e.g., coest.org
datasets used by Lohar et al. [53]) but they do not take into account the pecu-
liarities of trace recovery in legacy systems reengineering where we have a set
of variants and not just a single system [9]. Tracelab [54] is a framework to de-
fine workflows for traceability recovery. It includes components to compare the
results with a ground truth and obtain precision, recall and f-measure metrics.
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However, TraceLab is for single-systems and its format does not allow to define
or work with families of systems. Therefore, intersection-based approaches such
as FCA cannot be introduced as part of the recovery technique. Also, examples
of use cases with ground truth are related to recover traces from requirements
with sub-requirements, or from system use case descriptions to requirements.
It does not include ground truths dealing with feature descriptions and families
of plugin-based systems as the ones presented in this work. Other benchmarks
exist for information retrieval techniques, for example, queries are also used in
the architectural recovery field [3]. Again, these benchmarks do not consider
the peculiarities of dealing with variant families.

Different case studies have been used for evaluating feature location in soft-
ware families [11, 12]. For instance, ArgoUML variants have been extensively
used [25]. However, none of the presented case studies have been proposed as
a benchmark except the variants of the Linux kernel by Xing et al. [26]. This
benchmark considers twelve variants of the Linux kernel from which a ground
truth is extracted with the traceability of more than two thousands features to
code parts. The Linux kernel benchmark can be considered as complementary
to advance feature location research because EFLBench a) maps to a project
that is plugin-based, while Linux considers C code, and b) the characteristics of
the natural language terminology differ from the Linux kernel terminology. This
last point is important because techniques based on information retrieval tech-
niques should be evaluated in different case studies. EFLBench is integrated
with BUT4Reuse which is extensible for feature location techniques making
easier to control and reproduce the settings of the studied techniques.

Feature location: Liu et al. and Kästner et al. among others proposed
to identify feature information from a single product [55, 56]. There are SPL
adoption scenarios where the SPL wants to be extracted from a single product
by separating its features. However, in this paper we concentrate on the case of
several artefact variants.

Feature location has been investigated in other software engineering fields
such as in maintenance (e.g., determining relevant elements for a modification
task [1, 2]). These techniques have been also used in extractive SPL adoption.
Alves et al., in a case study of commercial mobile game variants [57], instead
of using static comparison techniques, located the implementation elements of
the known features through concern graphs [2]. Kästner et al. proposed a
semi-automatic approach for feature location in single systems where, as input,
the domain expert manually needs to point the system to relevant fragments
of an artefact with respect to a feature [56]. Then, the approach automatically
expands this user selection using information about element dependencies.

As presented in Section 4.2.2, the block identification step is proposed as
a previous step to locate features. In the literature on feature location from
artefact variants, we can find the same concept of blocks with different names.
Rubin et al. call them parts, regions, or diff-sets alluding to the technique used
to retrieve them [58]. Other example of generic names are modules by Méndez-
Acuña et al. [59] or clusters by Yang et al. [60] and Araar et al. [61]. Other
employed terminology is less generic and they specifically refers to the concrete
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artefact types that they are dealing with. Linsbauer et al. [62] and Salman et al.
[34] refer to blocks as potential feature-to-code mappings or traces. AL-msie’deen
et al. call them object-oriented building elements sets [63] and atomic blocks
[64]. Each calculated block cannot be directly considered the implementation
of a feature. In these approaches they propose heuristics or they consider that
the final mapping is a manual process based on domain expertise.

9. Conclusions

We have presented EFLBench, a framework and a benchmark for supporting
research on feature location in artefact variants. Existing and future techniques
dealing with this activity in extractive SPL adoption can find a challenging play-
ground which is directly reproducible. The benchmark can be constructed from
any set of Eclipse variants from which the ground truth is extracted. We have
shown examples of its usage with the Eclipse variants of the official releases for
analysing four different feature location techniques. We also provide automatic
generation of Eclipse variants using three strategies to support the creation of
different benchmarking scenarios. We discussed the evaluation of four feature
location techniques using randomly generated sets of Eclipse variants. We pro-
vided evidences that the number of variants and the similarity among them are
important factors for feature location techniques.

We plan to use the benchmark in order to evaluate existing and innovative
feature location techniques while also encouraging the research community on
using it as part of their evaluation. In order to extend our framework, there
is interest in mining software repositories, forums and issue trackers to identify
real configurations of Eclipse from practitioners beyond the official releases.
Also, given the high proliferation of feature location techniques in families of
systems, meta-techniques can be proposed such as voting systems where the
results of several techniques could provide better results than using each of
them independently. Another interesting open research question is related to
the impact in extractive SPL adoption of the results obtained with feature
location techniques. We need more empirical analysis of what is the actual
meaning of precision and recall by measuring the time and effort required by
domain experts to fully locate the features after applying these techniques (i.e.,
manually removing false positives and adding false negatives).
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