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UMR 7588, 4 Place Jussieu, F-75005 Paris, France
(Dated: August 31, 2018)

The transport mechanism in titanium dioxide through polarons is an open issue. High Resolution
Electron Energy Loss Spectroscopy (HREELS) is in principle of great relevance in such context,
provided the fingerprints on the loss spectrum of the charge carriers involved in the material are
disclosed. The present paper aims at evidencing those fingerprints. Through a suitable parametriza-
tion of the dielectric function, a theoretical analysis of EELS excitations in defective TiO2 rutile is
developed in the framework of the semi-classical dielectric theory. The focus is put on the inter-
play between phonons, interband transitions and defect related excitations, namely plasmon and
band gap states. Transport properties are demonstrated to be more efficiently grasped through the
screening they induce on phonons than through the existence of a defined surface plasmon peak.
While the corresponding imaginary part of the dielectric function only yields a slight broadening
and temperature dependence of the quasi-elastic peak due to the large static dielectric function and
electron effective mass, a sizable upward shift in energy and a decrease in intensity of phonons due to
the real part are predicted. Band gap states also screen phonons but with downward shift in energy
loss. Due to its large oscillator strength, the high energy lying surface phonon at 95 meV is a very
sensitive reporter of the combined effects of transport behavior and band gap states. Finally, it is
highlighted that extracting quantitative information out of EELS experiments requires an accurate
modeling of the depth profile.

I. INTRODUCTION

The behavior of the excess electrons present in titania
and their link with the (photo)catalytic properties
of the oxide have triggered a substantial amount of
fundamental studies1–9, in particular at the prototypical
(110) surface of rutile. Created by photon adsorption,
doping or through intrinsic stoichiometric defects such
as oxygen vacancies or titanium interstitials, they
formally correspond to a change of oxidation state from
Ti4+ to Ti3+ by populating states derived from the
conduction band. Due to the large static dielectric
function of TiO2 rutile10, they are accompanied by a
strong lattice polaronic distorsion that screen them
giving rise to specific fingerprints depending on the
way they are excited11–13. On the one hand, excess
electrons appear as band gap states (BGS) if the
lifetime of the excitation is shorter than the phononic
relaxation. In reduced TiO2, BGS related to defects1–8

are evidenced by (i) a photoemission line at 0.8-1 eV
below EF

14–17 that reverberates in Auger transitions
involving the valence band18, (ii) an electron energy
loss of ∼ 1 eV19–22, (iii) features in scanning tunneling
spectroscopy23,24 or (iv) near-infrared absorption25,26

and electron spin-resonance band27. On the other
hand, transport measurements28–31 favor a conduction
mechanism through polarons the radius of which remains
an open issue32. According to simulations, large polaron
or free-like carriers in the conduction band seems to
compete with more localized polaronic configurations
in TiO2 rutile24,33,34. Up to now, the dual character of
excess electrons has never been evidenced within the
same experiment, not to speak about the possible coex-

istence of trapped and free states that would account for
transport and spectroscopic measurements.

High-Resolution Electron Energy Loss (HREELS)35,36

deserves attention in such context. Aside vibrational
analysis of adsorbates, HREELS has proved its capa-
bilities to probe solid state excitations in the surface
region of materials since the birth of the technique37.
Loss fingerprints of phonons, plasmons, band-to-band
transitions and gap states have been accounted for in
the dipolar scattering regime35,38. Numerous studies
have already shown the sensitivity to surface plasmon,
in particular in space-charge layers at the surface of
semi-conductors, and to the coupling of those excita-
tions to phonons as in ZnO(0001)39–42, Si(111)43–45,
InSb(110)46,47, InAs(110)48 and GaAs(100)49–51. In
most cases, physical parameters related to the profile
of carrier concentration were derived by applying the
dielectric theory35,52–58. Although blurred by multiple
excitations and by a complex in-depth sensitivity,
HREELS intrinsically probes dielectric properties in a
way similar to optics with the advantage of covering
a wide range of energy at once. The earlier HREELS
experiments that were performed in the eighties on
rutile19,20,59 and anatase60 addressed the question of
phonon spectra and pinpointed the existence of a defect-
related band gap feature. Since then, several groups
have explored the defect reactivity with probe molecules
(H2O61, O2

62–64, CO65, HCOOH42 etc. . . ) by looking at
(i) either the evolution of the corresponding stretching
frequencies (ii) or the variation of the BGS intensity. In
line with the infrared study of Baumard and Gervais66,67,
HREELS experiments19,20,59 have stressed the existence
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of a relationship between the defect-related BGS and
the conductivity although they pointed to intrinsic
limitations of the HREELS technique that prevented in
depth exploration. Rocker et al.19 suspected that “the
modification in intensity and frequency of Fuchs-Kliewer
phonons may be correlated with concentration of free
electrons near the surface”; but they “could not resolve
plasmon excitations at low energies due to the linewidth
of the instrument and the background of phonons near
the elastic peak”. Later on, Eriksen and Edgell20,59

focussed only on the “downward shift and attenuation
of the highest energy phonon loss that was attributed
to modification of the effective background dielectric
constant by defect excitations (BGS)”. In association
with Cox and Flavell59, the previous authors even tried
to simulate the phonon spectra within the dielectric
theory; but they were “unable to reproduce the observed
changes of intensity without introducing an unduly
large downward shift in phonon energy”. The lack of
a solution to overcome these limitations likely explains
that since that time and despite the burst of interest
in charge localization in TiO2 (see reviews Refs. 2–9),
the correlation between the defect related BGS and
the conductivity has no longer been addressed by the
HREELS technique. While the n-type conductivity of
reduced TiO2−x is used to perform measurements, the
existence of collective excitations due to carriers in EELS
has never been disclosed although the sizeable carrier
concentration obtained by reduction31 should lead to
an EELS signature as in the case of more conventional
semiconductors35.

To relaunch the debate, the present work aims at an-
alyzing theoretically the capability of HREELS in cor-
relating transport and BGS. This article is built as fol-
lows. After a reminder of the used dielectric theory of
EELS (Sect. II), a suitable dielectric function including

all the solid-state excitations in reduced TiO2 from in-
frared to ultraviolet is proposed (Sect. III). Then the
impact of carrier absorptions and band gap states on the
quasi-elastic peak (Sect. IV A) and the phonon excitation
(Sects. IV B-IV C) is analyzed theoretically by stressing
on the effect of screening. Beyond the exploration of spe-
cific fingerprints for the various excitations that exist in
the surface region of the oxide, new prospects are opened
on interplays between those excitations. The role of the
relative probing depth as a function of energy loss is also
developped (Sect. V).

II. REMINDER ON DIELECTRIC THEORY OF
EELS AND METHODS

All simulations have been performed within the
semi-classical dielectric theory35,52–58 the relevance of
which in the modeling of EELS spectra has been proven
since the early beginning of the technique37 and in depth
over the years38,68.

In a EELS experiment, an electron of charge −e, mass
me, wavevector kI , incident energy EI = h̄2k2

I/2me and
velocity vI = h̄kI/me impinges on the sample surface
at an angle ΘI before being scattered along the direc-
tion given by wavevector kS . In the following, the sub-
scripts ‖ and ⊥ stand for components parallel and per-
pendicular to the surface, respectively. In the standard
dipole scattering theory, the electron is a classical parti-
cle that follows a nearly unperturbed specular trajectory,
i.e. k‖ = |k‖,I − k‖,S | � kI , and bounces off the surface
giving rise to a transient electrostatic field that produce
excitations in the substrate. The single loss probability
for an electron inelastically scattered in an energy win-
dows h̄dω around h̄ω � EI and close to the specular
direction reads35,52–58:

Pcl(kI , ω) =
4e2

h̄v⊥

∫
D

(k‖v⊥)3

[(ω − k‖.v‖)2 + (k‖v⊥)2]2
Im

[
− 1

1 + ξ(k‖, ω)

]
d2k‖

k2
‖

=

∫
D

F (kI , ω)G(k‖, ω)d2k‖, (1)

where h̄ is the Planck constant divided by 2π and
v‖ = vI sin ΘI , v⊥ = vI cos ΘI . The k‖ integration
domain D in Eq. 1 is defined by the incident beam di-
vergence and detector angular acceptance, the so-called
slit integration35. To avoid the cumbersome69 underlying
fourth integral over incoming/scattering angles for con-
vergent/divergent beams, analyses have been performed
with an equivalent circular detector acceptance θc and a
parallel incident beam. In that case, k‖ depends on θS
(0 < θS < θc), the small angle from the specular direc-
tion and on φS , the azimuth angle looking downwards

the origin22,35,

k‖ = kI

{
−θS cosφS cos ΘI + θE sin ΘI

−θS sinφS
, (2)

with θE = h̄ω/2EI . If the integrand in Eq. 1 depends
only on the modulus of k‖, the integration over (θS , φS)
in Eq. 1 can be transformed into a one-dimensional radial
integral in the k‖ plane (see Appendix of Ref. 58 for
details), a process that speed up calculations. Pcl(kI , ω)
involves two terms. On the one hand, the kinematical
prefactor or sensitivity function F (kI , ω) gives rise to
the angular behavior of the EELS cross section with
an intense lobe of aperture θE close to the specular
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direction35 and a fast decay with h̄ω. On the other
hand, the loss function G(k‖, ω) depends on the effective
dielectric function ξ(k‖, ω) of the probed interface which,
for a homogeneous isotropic non-dispersive semi-infinite
substrate is nothing else than the dielectric function of
the medium ε(ω). Indeed, since the present analyses
have been mainly performed in the specular direction,
no intrinsic k‖-dependence (i.e. dispersive behavior

of the dielectric function70) has been accounted for.
For an uniaxial material like TiO2, ξ(k‖, ω) depends
in a complex way on the relative orientation of the
crystallographic axis and of the scattering plane57 (see
Sect. S1 of Supplemental Material71). Hopefully, when
the c-axis (or [001]) of the quadratic structure is perpen-
dicular (respectively, parallel) to the scattering plane,

ξ(k‖, ω) ' εa⊥(ω) (respectively, ξ(k‖, ω) '
√
εa⊥(ω)εc‖(ω))

becomes k‖-independent. It is given by the two com-
ponents of the dielectric tensor εc‖(ω) and εa⊥(ω) along

directions parallel and perpendicular to the c-axis72. As
detailed in Sect. S1 of Supplemental Material71, Eq. 1
can be generalized to account recursively for any profile
of dielectric function along the normal to the surface58.

When the coupling between the incident electron and
the medium is relatively strong or when the energy loss
is of the same order of magnitude as kT as in the case of
surface plasmons, the single scattering probability Eq. 1
breaks down. The spectrum involves a complex combi-
nation of intense multiple energy losses and gains due to
the creation and annihilation of quanta of excitations37.
The problem at hand can be treated completely (i) on
quantum-mechanical point of view either in the first Born
approximation or in a more complex way including mul-
tiple scattering54,55 or (ii) through in a semi-classical
method by considering the electron as a classical source
of perturbation for the quantized boson field of surface
excitations35,52,70. Within this more tractable approach,
the HREELS spectrum P (ω) at finite temperature T in-
cluding multiple excitations is generated through:

P (ω) =
1

2π

∫
e−iωtR(t)e[P(t)−P(0)] (3)

= e−P(0)R(ω)⊗

{
δ(ω) +

∞∑
n=1

1

n!
[P(ω)]

n⊗

}
, (4)

P(t) =

∫ +∞

0

dω′Pcl(ω
′) (5)

×
[
(nω′ + 1)(eiω

′t + 1) + nω′(e−iω
′t − 1)

]
, (6)

where nω =
[
eh̄ω/kBT − 1

]−1
is the Bose-Einstein

distribution, kB the Boltzmann constant, ⊗ the convo-
lution product. P(t) and P (ω) are related by Fourier
transform. In order to simulate a finite resolution of
the spectrometer by a convolution, an instrumental
transfer function R(t) =

∫
e−iωtR(ω)dω can be easily

introduced before the back Fourier transform in Eq. 3.
The EELS spectrum P (ω) appears as the multiple

convolution (Eq. 4) of the single gain-loss function
P(ω) which generates not only multiple losses from a
given transition but also combination features between
different transitions and also gain peaks at finite tem-
perature. The series of multiple losses follows a Poisson
statistics (Eq. 4)37,73. Finally, the k‖ integration over
domain D has been restricted herein to one-quantum
loss processes i.e. performed on Pcl(kI , ω) (Eq. 1) and
not on the multiple excitation cross section P (ω) (Eq. 3)
as it should be70. But, the underlying approximation is
usually hidden in the experimental uncertainties70.

On a practical point of view, once the function ξ(k‖, ω)
is defined from the profile of the dielectric function
(see Sect. S1 of Supplemental Material71), Pcl(ΘI , EI , ω)
(Eq. 1) is obtained by 1D auto-adaptative numerical in-
tegration74 under the symplifying assumption of a cir-
cular detection slit58. It is then Fourier transformed af-
ter multiplication by the required Bose-Einstein statistics
(Eq. 6) for the selected temperature T to obtain P(t)
(Eq. 5). The exponential of this latter is then multiplied
by the Fourier transform of the apparatus point spread
function R(t) before being back Fourier transform to ob-
tain the final simulated HREELS spectrum P (ω). In
passing, a great care has been taken in the sampling in
the integrals in Eqs. 1,5-6 which may be biased by nu-
merical issues at low plasmon energies or dampings. Fast
Fourier transform was used with an energy step down
to ∆h̄ω = 10−4 meV. If not stated afterward, the fol-
lowing simulations parameters corresponding to exper-
iments22,69 have been used throughout this theoretical
study: beam energy EI = 8 eV or EI = 38 eV; incident
angle ΘI = 60◦; circular aperture in detection θc = 1◦;
gaussian shape for the apparatus resolution function75

R(ω) = 1
σa

√
2π

exp[− h̄
2ω2

2σ2
a

] with a Full-Width at Half-

Maximum (FWHM) of ∆a = 2
√

2 ln(2)σa = 8 meV for
HREELS at EI = 8 eV or ∆a = 50 meV for EELS
at EI = 38 eV; temperature T = 300 K. Simulations
have been performed with a beam perpendicular to the
c-axis i.e. with a dominant contribution from εa⊥(ω). If
not specified, simulations involve hereafter only a semi-
infinite substrate; profiles of dielectric function treated
in Sect. V have been sliced in a staircase way to com-
pute recursively ξ(k‖, ω) until reaching convergence of
the simulated spectrum.

III. THE DIELECTRIC FUNCTION OF TIO2

FROM INFRARED TO ULTRAVIOLET

An accurate expression of the two components εc‖(ω)

and εa⊥(ω) of the dielectric tensor of TiO2 is required
to model the energy loss spectrum of TiO2 over a large
spectral range (up to 6 eV). To obtain a tractable an-
alytic expression of the dielectric function, εc‖(ω) and

εa⊥(ω) have been decomposed into contributions due to
phonon εPh(ω), band-to-band transitions εIb(ω), band
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gap states εgs(ω) and Drude or plasmon-like excitations
εPl(ω) (Fig. 1):

εTiO2
(ω) = εPh(ω) + εIb(ω) + εgs(ω) + εPl(ω). (7)

As seen in what follows, the two former components
of the equation can be extracted from tabulated data.
However, new approaches are required to determine the
contribution εgs(ω) + εPl(ω). If not stated specifically,
the labels ‖,⊥ for the dielectric function are assumed
to be implicit hereafter. Each term will be detailed one
after the other. Only dipolar EELS simulations will be
carried out (k‖ ' 0). Therefore, any dependence on
wavevector transfer parallel to the surface k‖, i.e. non
local effects, can be safely discarded.

A. Phonons

As suggested in the infrared reflectivity analysis of
Gervais and Piriou67,77,78 and in the accurate mid-
infrared and far-infrared ellipsometric measurements of
Schöche et al.10, the contribution of infrared active opti-
cal phonons is described through a factorized model:

εPh(ω) = εPh,∞
∏
n

ω2
LO,n − ω2 − iΓLO,nω

ω2
TO,n − ω2 − iΓTO,nω

. (8)

ωLO, ωTO and ΓLO,ΓTO stand for the frequencies and
dampings of the longitudinal and transverse phonon
modes at the center of the Brillouin zone. εPh,∞ is the
optical dielectric function i.e. at frequencies much higher
than phonons. Parameters from Ref. 10 given in Tab. S1
of Supplemental Material71 match perfectly with all
previous determinations of phonon modes in rutile via
infrared probe77,79, neutron scattering80 and ab initio
modelling81–83. This infrared ellipsometry analysis was
performed on stoichiometric TiO2 samples84 of various
orientations (001), (110) and (111)10. The group theory
decomposition in irreducible representation of TiO2

rutile phonons20,80,81,85 (point group D1
4h or P4/mmm):

Γ = A1g + A2g + A2u + B1g + B2g + 2B1u + Eg + 3Eu
shows that only four modes (A2u + 3Eu) have infrared
(EELS) dipole activity with longitudinal/transverse
splitting. Eu modes are doubly degenerated. Therefore,
the summation in Eq. 8 extends over n⊥ = 3Eu and
n‖ = 1A2u modes. The factorized form of ε(ω) was
preferred over the classical summation of damped oscilla-
tors20,79 to allow independent broadenings of transverse
and longitudinal phonons and asymmetric shapes as
observed in ionic crystal with several modes having
large TO-LO splitting10,77,78. Furthermore, it explicitly
expresses the longitudinal phonon frequencies probed in
transmission EELS as the poles of 1/εPh(ω). In reflection
EELS, Fuchs-Kliewer modes35,37 appear as the maxima
of (i) Im [1/(1 + ε⊥,Ph(ω)] at h̄ωsph,1 = 45.3 meV,
h̄ωsph,2 = 54.6 meV, h̄ωsph,3 = 95.4 meV and (ii) of

Im
[
1/(1 +

√
ε‖,Ph(ω)ε⊥,Ph(ω)

]
at h̄ωsph,1 = 45.6 meV,
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FIG. 1. a) Real and b) imaginary part of the TiO2 dielec-
tric functions εc‖(ω) (blue line), εa⊥(ω) (red line) (Eq. 7). c)
Corresponding loss function Im[1/1 + ε(ω)]. The inset shows
a zoom of Re[ε(ω)] over the 0.1 − 12 eV range. Vertical dot-
ted blue and red lines pinpoint the frequencies of transverse
ωTO and longitudinal ωLO phonons frequencies of bulk TiO2

used in εPh(ω) (Eq. 8). h̄ωp = 80 meV, h̄ΓP = 20 meV,
h̄ωgs = 1000 meV, h̄Γgs = 600 meV, Ωgs = 500 meV have
been used to describe the Drude (Eq. 12) and band gap states
(Eq. 10) contributions; the phonon and interband transition
counterparts are extracted from Refs. 10 and 76, respectively.
The black dotted line points at the position of BGS.

h̄ωsph,2 = 55.4 meV, h̄ωsph,3 = 93.8 meV for incident
planes perpendicular and parallel to the c-axis, re-
spectively (Fig. S1 in Supplemental Material71). The
similarity of the two sets of frequencies stems from the
accidental degeneracy of A2u,‖ and Eu,⊥

20,59. Four
symmetry forbidden additional phonons of much lower



5

oscillator strengths, two along each direction, have also
been reported10,77 (Tab. S1 and Fig. S2 in Supplemental
Material71). They correspond to maxima in the phonon
density of states and are probably activated by bulk
defects through folding of the Brillouin zone. For
completeness, they were accounted for in the present
study.

The severe longitudinal/transverse splitting of phonon
modes in rutile (Tab. S1 of Supplemental Material71) re-
sults in large values of static dielectric constants. The
Lyddanne-Sachs-Teller relation86:

ε(0) = εPh,∞
∏
n

ω2
LO,n

ω2
TO,n

. (9)

leads to εc‖(0) = 153 and εa⊥(0) = 84.710,77 in agree-

ment with capacitance measurements87. Those values
demonstrate the importance of the electron-phonon
coupling that is at the origin of polaronic behavior of
excess electrons. As a matter of comparison, ε(0) of
ZnO wurtzite and Si are one order of magnitude lower
(εZnO(0) = 8.7; εSi(0) = 11.7).

B. Interband transitions

The valence and conduction bands of TiO2 rutile are
dominated by O sp and strongly localized Ti 3d states,
respectively with a direct Γ−point band gap of 3.1-
3.2 eV83,88,89 and a complex role of crystal field effect
on anisotropy at large energies90,91. The UV-visible con-
tribution εIb(ω), in particular the part related to inter-
band transitions, was extracted from the compilation
of Ref. 76. For the sake of EELS simulation, it was
parametrized and fitted using the critical point transi-
tion approach92:

εIb(ω) = εIb,∞ +
∑
m

{
Cme

iΦm

(ωm − ω − iΓm)µm

+
Cme

−iΦm

(ωm + ω + iΓm)µm

}
. (10)

εIb,∞, Cm,Φm, µm, ωm,Γm, are the high frequency di-
electric function and the amplitude, the phase, the pole
order, the frequency, the damping of the mth critical
point, respectively. Compared to the standard oscilla-
tor93, the representation accounts for transitions between
band pairs with a substantial integration over k-space
leading to an apparent broadening larger than intrin-
sic linewidth to functional dependence other than sim-
ple poles. A satisfactory fit in the 0.6 − 12 eV range of
data of Ref. 76 (Fig. S3 in Supplemental Material71) was
achieved with only three transition points along the par-
allel and perpendicular direction and zero phases (Fig. 1).
Data were carefully matched to the εPh(ω) value from
Ref. 10.

C. Defect induced band gap states and optical
absorption

The BGS correspond to the optical absorption by
a polaronic trapping state due to defect-related ex-
cess electrons, a polaron being a quasiparticle made
of an electron and the accompanying phonon cloud
due to lattice distortions. The slow motion of the
atoms allows to freeze the self-trapping potential well
during photoemission12, which explains why thermal
activation energy28–31 differs from optical transition
energy for excess electrons. The line shape of absorp-
tion from polaronic states depends on the degree of
electron-phonon coupling, on the temperature or even
on the dimensionality of space94,95. Two extreme cases
can be distinguished, large and small polaron11. The
photo-ionization of the hydrogenoic ground state of the
potential well of the large polaron excites electrons to a
continuum of unbound states. The absorption coefficient
α ∼ (kR)3/ω[1 + (kR)2]4, where h̄k =

√
2m(h̄ω − 3Ep)

is the free-carrier wavevector and R the radius of the
polaron, leads to a peaked asymmetric function that
starts above three times the polaron binding energy Ep.
Conversely, the self-trapped carrier of the small polaron
is excited from its localized state to an adjacent site. The
absorption coefficient α ∼ exp [−(2Eb − h̄ω)2/∆2]/ω
depends on the polaron binding energy Eb and on the
thermal broadening ∆ of levels. It shows a gaussian
line shape with an asymmetry on the higher energy side
and a strong temperature dependence in contrast to the
large polaron model.

Beside the debate on the location of excess charges
in the subsurface region of TiO2

17,96–99, little is known
about their degree of localization22,24,33,100, i.e. the po-
laron radius. The large polaron model is favored in
anatase24,101,102. The polaron radius is not settled yet
in rutile24,34,67, although the small polaron model is cur-
rently favored in bulk25,103 and at (110) surfaces104. The
apparatus sensitivity function and the actual profile of
excess electrons to which several types of defects con-
tribute22 makes difficult the determination of the polaron
radius via the asymmetry of the BGS in EELS. There-
fore, it has been chosen herein to represent BGS optical
absorptions by a simple oscillator model:

εgs(ω) =
Ω2
gs

ω2
gs − ω2 − iΓgsω

, (11)

where ωgs, Γgs,Ωgs are the frequency, damping and
strength of the oscillator, respectively. This form is sup-
posed to grasp most of the physics of screening discussed
hereafter.
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D. Excitation due to itinerant motion of carriers:
the Drude model

Reduced rutile is indubitably a n−type semiconductor
whose transport properties have been much stud-
ied30,31,105. But their nature is unclear. In particular
the puzzling question of the large mobility24,34 at low
temperature is not understood, not speaking about the
role of defects22 (oxygen vacancies and/or titanium
interstitials). Is transport in titanium dioxide due to a
dual behavior of excess electrons or to the coexistence
of trapped and free states giving rise to BGS and
conductivity24,34 ?

Because of the strong electron-phonon coupling,
transport is often debated in terms of the impact of the
above described small and large polarons on conductiv-
ity24,34,67. The ability of a polaron to move coherently
in an alternative field is always restricted as it is linked
to the atomic motion. However, a polaron can have a
Drude-like carrier absorption11,94,95 at low frequency
if it moves itinerantly with a mean free path greater
than the inter-site separation. For a large polaron, the
Drude-like behavior occurs only at frequencies below the
characteristic phonon frequency involved in the trapping.
For a small polaron, the condition is more stringent.
The extremely narrow bands that characterize small
polaronic carriers may preclude itinerant (coherent)
small-polaron motion in all but the most idealized
conditions11.

To account for EELS findings69, the carrier excitations
and therefore the conductivity at low frequency are de-
scribed in this work through a classical Drude formula:

εPl(ω) = − ω2
P

ω2 + iωΓP
with ω2

P =
ne2

mem∗ε0
, (12)

where the plasma frequency ωP is given in terms of
the carrier density n and their effective polaronic mass
m∗, (e,me, ε0) being respectively the elementary electric
charge, the electron rest mass and the vacuum permit-
tivity. The damping ΓP is related to the carrier mobility
µ through ΓP = 2πe/(mem

∗µ). The Drude model is
the ground level of description of the frequency depen-
dent (or optical) conductivity σ(ω) (ε(ω) = ε0 +iσ(ω)/ω)
through a collision relaxation time86. Baumard and Ger-
vais66,67 demonstrated that this basic model correctly fits
the infrared reflectivity behavior in heavily reduced sam-
ples TiO2−x (x ' 0.001 − 0.05) over a large frequency
range (25 − 375 meV) well above the transverse optical
frequency of phonons. They found that plasmons cou-
ple to longitudinal phonon modes and that ω2

P depends
linearly on reduction level x. Through temperature de-
pendent measurements, they concluded that the activa-
tion of carriers to the conduction band constitutes the es-
sential feature of the electrical conductivity. Frequency-
dependent conductivity below the terahertz (4 meV) were
also successfully interpreted with the Drude approach

for optically created carriers32,106 as well as for hydro-
gen doping107 at low temperature. By using the Drude
model, Hendry et al.32,106 concluded that transport oc-
curs through a polaron in the intermediate regime of cou-
pling, neither large nor small with a strong anisotropy of
effective mass and electron mobility.

IV. THE INTERPLAY BETWEEN
EXCITATIONS IN REDUCED TIO2

The energy losses that stem from carriers-related col-
lective excitations have never been disclosed, although
a fingerprint of conductivity is to be expected. The
case is now explored by simulating (HR)EELS spectra
of TiO2(110) at low and large impact energies on the ba-
sis of the above described dielectric function. The main
features of such spectra are exemplified in Fig. 2. Be-
side the single phonon excitations ωsph,1, ωsph,2, ωsph,3 al-
ready present in the loss function (Fig. 1-c and Fig. S2
of Supplemental Material), multiple and combination ex-
citations are accounted for as well as gain peaks on the
negative energy loss axis. Due to the sensitivity func-
tion F (kI , ω) (Sect. II), intensities of the elastic peak
and phonon losses are several orders of magnitude higher
than that of interband-transitions located above 3.2 eV
(inset of Fig. 2). Gap states appear clearly as an iso-
lated broad feature in the EELS spectrum of reduced
TiO2

20–22. In the following, through dielectric simula-
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FIG. 2. An example of simulated HREELS spectrum in the
region of phonons (EI = 8 eV and ∆a = 8 meV) and of the
interband transitions (inset; EI = 38 eV and ∆a = 50 meV).
The beam is perpendicular to the c-axis for which the effective
dielectric function amounts only to ξ(ω) = εa⊥(ω) (Sect. II).
Due to a fortuitous degeneracy of phonon modes20,59, the
crystal orientation at 90◦ leads to a similar spectrum (see
Sect. S2 of Supplemental Material71). Calculations include
plasmon (h̄ωP = 120 meV, h̄ΓP = 2 meV) and BGS (h̄Ωgs =
1000 meV, h̄ωgs = 1000 meV, h̄Γgs = 600 meV) excitations.

tions with typical experimental parameters, this section
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aims to identify the EELS signatures of the various ex-
citations of excess electrons, including the interplay of
the surface plasmons with the quasi-elastic peak and the
screening of phonons by either carrier excitations or band
gap states.

A. Quasi-elastic peak broadening and surface
plasmons

When low frequency conductivity is described only
through a Drude term ε(ω) = ε(0) − ω2

P /(ω
2 + iωΓP ),

the classical loss function which reads:

G(ω) = Im

[
− 1

1 + εPl(ω)

]
=

1

1 + ε(0)

ΓPω
2
spω[

ω2
sp − ω2

]2
+ Γ2

Pω
2

(13)
has a nearly lorentzian shape that peaks at the so-called
surface plasmon frequency ωsp = ωP /

√
1 + ε(0). These

excitations are coherent delocalized electron oscillations
that exist at the interface between materials (vac-
uum/solid here). They are the electronic equivalent
of surface phonons35,108. For doped semiconductors,
the conductivity manifests itself in EELS either as a
isolated peak or as a broadening of the elastic peak
due to multiple ωsp−excitations35,43. The coupling to
the incident electrons may be so intense that the peak
is better named “quasi-elastic” as nearly all reflected
electrons suffer from energy loss. As an incipient
ferroelectric compound, TiO2 possesses a much higher
static dielectric function ε(0) (εc‖(0) = 153, εa⊥(0) = 84.7,

see Sect. III A) than ZnO and Si (εZnO(0) = 8.7,
εSi(0) = 11.7) of which surface plasmon excitation and
accumulation/depletion layers have been studied by
EELS40–51. In addition, the polaronic nature of the
electronic transport leads to a much higher effective
mass of m∗ = 8 − 1031,32,67 than the estimate by ab
initio band-structure calculations for a rigid lattice
(m∗⊥ = 1.1,m∗⊥ = 0.5783). The combination of the two

effects yields a ωsp ∼ 1/
√
m∗
√

1 + ε(0)-value two orders
of magnitude lower than for classical semiconductors at
a given carrier concentration n (see top scales of Fig. 4).
Consequently, the limited resolution makes difficult the
direct EELS detection of surface plasmon in TiO2. Only
a broadening of the quasi-elastic peak is expected.

Full numerical simulations of the elastic peak shape
have therefore been carried out herein to identify both
the effect of carrier concentration n/m∗ and damping ΓP
on the FWHM of the quasi-elastic peak of rutile (Fig. 3).
Besides instrumental broadening ∆a, the FWHM is
driven by the superposition of multiple excitations of
surface plasmons ωsp, which are better visible when
ΓP and ∆a values are artificially reduced (Fig. 3-b).
Their intensities follow a Poisson distribution (Eq. 3)
modulated by the Bose-Einstein statistics (Eq. 6). As
predicted by the analytic formula of Ref. 43 (dotted line
of Fig. 4, Sect. S3 of Supplemental Material71), increas-
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FIG. 3. Elastic peak shape a) for selected plasmon fre-
quencies ωP (or carrier density n/m∗) at fixed damping
h̄ΓP = 2 meV and room temperature, b) at reduced damp-
ing h̄ΓP = 0.25 meV and increase apparatus resolution
∆a = 0.25 meV (T = 300 K) and, c) at two different temper-
atures T = 100, 300 K for plasma frequencies ωP ,ΓP given in
figure.
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FIG. 4. a) FWHM and b) maximum of the quasi-elastic peak
at T = 300 K as obtained from a simulated spectrum includ-
ing multiple excitations (Eqs. 1-6). Quantities are plotted as
a function of (i) carrier density n normalized by the effec-
tive mass m∗ (bottom scale) or (ii) the bulk plasmon ωP or
surface plasmon ωsp frequency (top scales) for various carrier
plasmon dampings ΓP . The comparison with the analytic for-
mula Eq. S3 of Supplemental Material71 (dotted black line)
is added for completeness in Fig. a. The inset of Fig. b shows
the fraction of elastically scattered electrons versus carrier
density and damping.

ing the carrier concentration result in a broadening of
the quasi-elastic peak up to a turn over point at which
a high enough surface plasmon frequency ωsp forms
an isolated single excitation (Fig. 3-a,b) that appears
as a side shoulder of the elastic peak. In parallel, the
quasi-elastic maximum follows the reverse trend. It
decreases before the turn over point and then increases
up to a value higher than that of a carrier-free substrate
(Fig. 3-b) which translates the increase of the elastic
contribution to the quasi-elastic peak. Indeed, the
progressive metallization of the substrate increases the
fraction of elastically scattered electrons (inset of Fig. 4)
given theoretically35 by eP(t=0) (Eq. 3).

As shown in Fig. 4 when using a typical experimental
resolution of ∆a = 8 meV, increasing ΓP at fixed carrier
density n/m∗ surprisingly sharpens the quasi-elastic
peak down to the resolution function. Notably, the
discrepancies between the present simulations and the
analytic formula of the broadening of quasi-elastic peak
of Ref. 43 (see Sect. S2 of Supplemental Material71 and
dotted black lines in Fig. 4-a and Fig. 5) demonstrate
its inadequacy in the present case due to the failure of
the assumption of infinitesimal ΓP and ωsp.

Finally, a temperature dependence of the elastic peak
is found, in line with experimental findings69, which re-
sults from a complex interplay between damping and
carrier density (Fig. 5). Indeed, despite the existence
of possible combinations of phonon modes at h̄ωsph,2 −
h̄ωsph,1 = 9.2 meV, the elastic peak without carrier con-
tribution (ωP = 0) should be insensitive to temperature
(Fig. 3, black curve and circles).

B. Screening of phonons by carrier excitations

The plasmon-phonon coupling was addressed by
Baumard and Gervais66,67 in their infrared study of
samples with variable reduction states. As shown
in Figs. 6,7,8, free carriers have a triple effect on
phonon losses: (i) a broadening, (ii) a variation of rel-
ative intensities and (iii) a shift toward higher frequency .

The broadening and change in intensity result from the
existence of complex multiple and combination modes be-
tween surface phonon and plasmon excitations as demon-
strated by the comparison of line profiles with (Fig. 6-b,
Eq. 3) and without (Fig. 6-c, Eq. 3; n = 1) multiple ex-
citations. As seen in simulations at increased resolution
(∆a → 0) and reduced dampings of both phonons and
plasmon109 (ΓLO,ΓTO,ΓP → 0), the single-loss spectrum
(Fig. 6-c) involves only the three main surface phonons
ωsph,1, ωsph,2, ωsph,3 (plus minor modes, Tab. S1 of Sup-
plemental Material71) and a surface plasmon ωsp. Upon
including multiple excitations, the surface phonon ωsph,3
is accompanied by side shoulders at ωsph,3±ωsp. The re-
sulting complex overall broadening follows roughly the
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ωP ) and three different dampings: a) h̄ΓP = 2 meV, b) h̄ΓP = 20 meV, c) h̄ΓP = 120 meV. Data are compared to the analytic
results of Eq. S3 of Supplemental Material71 (dotted lines).

trend of the quasi-elastic peak (Fig. 3-a). Indeed, if
P(t) = PPl(t) + PPh(t) can be decomposed as the sum
of isolated plasmon and phonon contributions (Eqs. 5-4),
then the full spectrum

P (ω) = e−P(0)R(ω)⊗

{
δ(ω) +

∞∑
n=1

1

n!
[PPl(ω)]

n⊗

}

⊗

{
δ(ω) +

∞∑
n=1

1

n!
[PPh(ω)]

n⊗

}
(14)

appear as the convolution of the phonon multiple exci-
tations by the plasmonic ones and vice-versa. However,
depending on the overlap in P(t), both excitations can
even mix to generate the so-called “plasmaron”39,40,110.

Regarding shifts, low energy phonons at
h̄ωsph,1 ' 45.2 meV and h̄ωsph,2 ' 54.4 meV are
much less affected than the peak h̄ωsph,3 ' 92.9 meV
which is the focus of Fig. 7. This is particularly clear
in Fig. 8 where fictitious spectra are plotted in the
single loss approximation at reduced damping; the shift,
which directly stems from the screening of phonon
excitation by carriers, correlates with the appearance
of the surface plasmon feature close to the elastic
peak. Up to a carrier density of n/m∗ ' 5 1017 cm−3

(h̄ωP ' 20 meV) (Fig. 7-8), h̄ωsph,3 keeps its unscreened
value of 95.4 meV with a slight decrease in intensity
due to broadening. Phonon intensity and ΓP -induced
broadening are strongly correlated (Fig. 7-b); the higher
the plasmon damping ΓP the lower the intensity as
expected from the presence of ωsph,3±ωsp peaks. Above
n/m∗ ' 5 1017 cm−3, a noticeable shift is observed.

To first order, these findings can be rationalized in the
single excitation regime by accounting for the high energy
phonon with a model of isolated oscillator of strength

Ω, frequency ω0 and damping Γ screened by a constant
background εc:

εosc(ω) = εc +
Ω2

ω2
0 − ω2 − iΓω

. (15)

Close to ω0, the corresponding loss function:

Im

[
1

1 + ξosc(ω)

]
=

ΓωΩ2

[(1 + εc)(ω2
0 − ω2) + Ω2]

2
+ Γ2ω2(1 + εc)2

(16)
displays a quasi-lorentzian shape35 centered on ωosc, of
intensity Iosc and of FWHM Wosc given by:

ωosc = ω0 +
Ω2

2ω0(1 + εc)
, (17)

Iosc =
Ω2

Γω0(1 + εc)2
, (18)

Wosc =
Ω2

ω0(1 + εc)
− Γ. (19)

In the case of plasmon (see Sect. III D), the screening
constant at the oscillator frequency εc ' εc,0 − ω2

P /ω
2
0

decreases with the plasmon frequency below the value
given by the remaining excitations εc,0. For plasmon fre-
quencies smaller than the oscillator eigen-frequency ω0

or more precisely when ωP � ω0

√
1 + εc,0, a first order

expansion of Eqs. 17-19 shows that the frequency shift,
the variation of intensity and the width vary linearly with
the carrier density n ∼ ω2

P with slopes αP and βP given
by:

∆ωosc = αPω
2
P =

Ω2ω2
P

2ω3
0(1 + εc,0)2

, (20)

∆Iosc/Iosc = βPω
2
P =

2ω2
P

ω2
0(1 + εc,0)2

, (21)

∆Wosc = 2αPω
2
P =

Ω2ω2
P

ω3
0(1 + εc,0)2

. (22)
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The estimated values of the corresponding parameters
are given in Tab. S2 of Supplemental Material71. The
linearity of the phonon shift with ω2

P is correctly verified
below (ωmP )2 on full simulations (see insets of Fig. 7 for
ωsph,3). However, the model remains qualitative. By
using the oscillator strengths of Ref. 79 and εc,0 ob-
tained from the parametrization of Ref. 10, the values
αP (Tab. S2 of Supplemental Material71) of the slopes in-
cluding all multiple excitations are systematically larger
than those obtained through the screened single exci-
tation of an isolated phonon. The discrepancy comes
from the simplifying assumption of independent oscilla-
tors, since a shift of a given peak significantly change
the screening of its neighbors; due to a larger oscillator
strength, ωsph,3 is expected to shift faster than ωsph,2
which decreases its screening εc,0 and therefore increases
its αP . The same reasoning applies to ωsph,1 and its
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or plasmon frequencies ωP , ωsp (top scales) for various damp-
ings ΓP of the ωsph,3-phonon: a) peak position and b) peak
intensity normalized to elastic intensity. Simulations include
multiple excitations. The insets show the phonon position
and its intensity as a function of ω2

P = ne2/mem
∗ε0 once

normalized to elastic.

neighbors at high energy ωsph,2. Anyway, according to
the insets of Fig. 7, if all multiple excitations are taken
into account, ωsph,3 is expected to shift by several meV,
while increasing ωP up to 100 meV and therefore the
carrier concentration up to n/m∗ = 7.0 1018 cm−3.
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ance of the plasmon feature and the strong shift of the high
energy surface phonon ωsph,3.

C. Screening of phonons by band gap states

The impact of BGS on polar phonons of TiO2 was
stressed in the earlier HREELS approaches19,20,59 and
in an indirect way in infrared study66,67, as modification
of the dielectric function at infinity ε∞ for phonons (see
Eq. 8, Sect. III A).

EELS spectra with a beam energy EI = 38 eV and
a resolution ∆a = 50 meV similar to experiments22,69

have been calculated. As a first step, the BGS is repre-
sented by an oscillator (Eq. 11, Sect. III C) of strength
Ωgs spread homogeneously in a semi-infinite substrate
(Fig. 9-a inset). It appears as a low intensity feature
between the phonon clump and the band-to-band tran-
sitions located above the 3.2 eV band gap of rutile. Be-
sides an obvious increase of its intensity with Ωgs, the
BGS shifts to higher energy (Fig. 11-a) and gets asym-
metric because of multiple excitations; in particular, a
second order excitation appears in the inset of Fig. 9-a
at around 2500 meV for h̄Ωgs = 2000 meV. As shown
by Eq. 17 for the simple oscillator used here to describe
BGS, this shift roots into the EELS cross section which is
proportional to Im[1/1 + ε(ω)] and is linear in Ω2

gs mod-
ulo the sensitivity function as shown in Fig. 11-a.

In contrast to interband transitions which seem in-
sensitive to BGS because of their much smaller oscilla-
tor strengths, the phonon region is strongly screened by
BGS. The effect is fairly well illustrated in high resolution
spectrum including (Fig. 9-a) or not (Fig. 10) multiple
losses, but it is less obvious at moderate resolution as usu-
ally used in EELS (Fig. 9-a, inset). Phonons evolve in the
opposite direction with respect to the screening induced
by carrier excitations; they all redshift and the ωsph,3 in-
tensity decreases (Fig. 11-b). Phonon screening by the
tail of BGS excitation is again the main driving force.
But, since the frequency of BGS is larger than those of
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FIG. 9. Evolution of the phonon (main graphs, linear scale)
and band gap (insets, logarithmic scale) electron energy loss
spectra as a function of the band gap state strength Ωgs (at
constant frequency h̄ωgs = 1000 meV and damping h̄Γgs =
600 meV): a) semi-infinite substrate, b) BGS localized in a
layer thickness 6.5 Å just below the surface, and c) mixture of
both configurations with h̄ωbulk

gs = 500 meV. Dielectric profile
is chosen accordingly to the experimental findings22,69.

phonons, the real part of the BGS dielectric component
εgs(ω) is negative at phonon frequencies (Fig. 1) at the
opposite to the plasmon contribution εpl(ω). The effect
can also be accounted by describing phonons through iso-
lated oscillators to determine variations in position and
intensity. To first order i.e. Ωgs � ωmgs = ωgs

√
1 + εc,0,

they are linear in Ω2
gs with negative slopes that amount
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surface phonons, in particular ωsphn,3 is observed.

to:

∆ωosc = −αgsΩ2
gs = −

Ω2Ω2
gs

2ω0ωgs(1 + εc,gs)2
, (23)

∆Iosc/Iosc = −βgsΩ2
gs = −

2Ω2
gs

ω2
gs(1 + εc,gs)2

, (24)

∆Wosc = −2αgsΩ
2
gs = −

Ω2Ω2
gs

ω0ωgs(1 + εc,gs)2
. (25)

Downward shifts and decrease in phonon intensities
obtained in the case of multiple excitations (Fig. 11-a)
are well accounted for. The limits of the modelling by
isolated oscillators and single loss explain the quantita-
tive discrepancy between calculated slopes αgs, βgs and
actual values (see Tab. S2 of Supplemental Material71

for numerical values).

Surprisingly, the BGS also impacts the quasi-elastic
peak intensity which increases at constant FWHM
(Fig. 11-a) with Ωgs. This phenomenon finds its origin
in the transfer of intensity from phonons and their mul-
tiple excitations to the elastic contribution of the quasi-
elastic peak. Therefore, once normalized to the elastic
peak, phonons decrease in intensity upon increasing the
BGS strength (Fig. 11-b inset). This relative variation
of phonon/elastic appears in an obvious way on experi-
mental spectra during healing of defects by oxygen expo-
sure69.

V. THE EELS DEPTH SENSITIVITY AND THE
PROFILE OF DIELECTRIC FUNCTION

Up to now, the discussion was restricted to a semi-
infinite substrate. The profile of dielectric function
related to defects was not accounted for. However, while
both surface oxygen vacancies and titanium intersti-
tials contribute to BGS in TiO2

22, excess electrons were
shown to be localized on subsurface titanium by resonant

photoemission16 and futher confirmed by out-of-specular
EELS22. In this context, the variable depth sensitivity
of EELS in dipolar regime as a function of impact and
loss energies is of interest. A fair estimate of probing
depth35,50 is the evanescent decay length dp of the
electric field due to the incoming electron35 which is
given by the inverse of the electron wavevector transfer
dp ' 1/k‖ = 1/(kS − kI) sin ΘI ' 1/(kIθE sin ΘI). dp
has been plotted in Fig. 12 for two beam energies EI = 8
and 38 eV, typical for loss regimes of phonons and
BGS and compared to values averaged over the detector
aperture22. The higher the beam energy and the lower
the energy loss the deeper the probing depth. Measure-
ments are bulk sensitive for phonons (dp ' 200 Å), not
speaking about quasi-elastic excitations. Conversely,
EELS at EI = 38 eV that probes the subsurface at the
BGS energy (dp ' 30 Å) becomes very surface sensitive

for interband transition (dp < 10 Å).

But, caution is required for detailed analysis since
the depth dependence of EELS cross section is quite
complex. For instance, while it corresponds to a
constant dielectric function, the sensitivity function
F (EI , cos ΘI , ω) that takes into account the scattering
geometry35 (Eq. 1) does not follow the dp(ω) trend
(Fig. 12; symbols vs lines). A better definition of dp
must account for the weight given for each k‖ by the

sensitivity function50 and for the k‖-dependence of
the loss function G(k‖, ω) (Eq. 1) which expression is

already complex for a stratified medium58 (Eq. S2 of
Supplemental Material71). Therefore, it is mandatory to
resort to full numerical simulations to accurately discuss
depth sensitivity effects and profile of dielectric function,
as shown in the following three examples.

In Fig. 9, several models of distribution of BGS
(bulk: Fig. 9-a, subsurface: Fig. 9-b, and mixture of
both: Fig. 9-c) have been compared at increasing BGS
oscillator strength. As shown in the schematic profiles
in insets, subsurface BGS are put in a 6.5 Å thick
layer below a 2.5 Å dead-layer to mimic the localiza-
tion of charge on subsurface Ti atoms of the rutile
TiO2(110)16,22. The sizable impact of bulk BGS on
phonon position and on relative intensity to elastic peak
(Fig. 11-a), is considerably damped for a subsurface
excitation despite a similar intensity as a band gap
feature in EELS (Fig. 9-b). This effect finds its origin
in the difference of probing depth between excitations
at phonon and band gap state energies (Fig. 12). In
a similar way, the barely visible bulk BGS excitation
buried at a depth below 6.5+2.5=9 Å (Fig. 11-c; black
line in inset) strongly shifts the main phonon peak
(Fig. 11-b and Fig. 11-c; black lines).

Fig. 13 illustrates the more complex dielectric function
profile of an exponential decaying gradient of carriers
from a surface value h̄ωP = 120 meV to a bulk value
h̄ωP = 0 meV, which could mimic an accumulation
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layer due to band-bending and charge transfer with
surface defects. The profile was sampled in a stair case
way (inset of Fig. 13) over 3 times the decay length
Λ and the loss function computed recursively (Eq. S2
of Supplemental Material71). The effects on the quasi-
elastic peak, the phonon position and their relative ratio
parallels the trends described in Sects. IV B-IV C for a
semi-infinite sample. Interestingly, the spectrum poorly
evolves between Λ = 2000 Å (violet curve) and a bulk
substrate (bold black line) in the phonon range, while
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FIG. 13. Effect of an exponential gradient of carrier density
(shown in inset) on the HREELS phonon spectrum in the ab-
sence of BGS contribution. The plasma frequency goes from
h̄ωP = 120 meV at the surface to h̄ωP = 0 meV in the bulk
while the damping is taken constant equal to h̄ΓP = 2 meV.
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from an undoped substrate to flat profile. The profile is sam-
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to the elastic peak maximum.

sizeable differences are still visible for the quasi-elastic
peak. The explanation lies in the difference of probing
depth (see Fig. 12) at the two energies. The sensitivity
to such high Λ-values for phonons compared to the
expected probing depth dp ' 200 Å comes from the
initial difference of slopes of ωP (z); this means that a
linear profile would give a quite similar spectrum.

The last example (Fig. 14) deals with a fictitious
highly conductive layer (h̄Γp = 2 meV) of thickness

(t = 6.5 Å) equivalent to the distance between Ti planes
in TiO2(110) buried at increasing depth below the sur-
face. Its plasma frequency h̄ωP = 500 meV corresponds
to a surface carrier density of nS/m

∗ = 1.2 1013 cm2

typical for a doping by a fraction of monolayer of
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defects. This layer impacts the phonon position
ωsph,3 down to around the expected probing depth of

1/k‖ = dp ' 200 Å, but the peak intensity is not yet
converged. The surface plasmon excitation confined in
this layer are still able to broaden the quasi-elastic peak
up to a rather large burying depth.

These few theoretical examples highlight the sensitiv-
ity of EELS to profiles of dielectric function and the com-
plexity of interplay between excitations.

VI. CONCLUSION

Based on an accurate build-up of the dielectric
function from far-infrared to ultraviolet, the interplay
between the solid-state excitations of reduced TiO2

rutile was explored in the frame of the EELS dipole
scattering theory. While the contributions from optical
phonons and interband transitions were extracted

from literature, the transport of excess electrons was
described through a Drude model and the associated
band gap states through an oscillator. The analysis
showed that the dielectric anisotropy has a minor
impact due to a fortuitous degeneracy of phonon modes.
Upon increasing the carrier concentration or the plasma
frequency and contrary to most semi-conductors, only a
modest broadening of the quasi-elastic peak is expected
because of the large static dielectric function and
effective mass in TiO2. Only in the most extreme case, a
surface plasmon shoulder on the side of the quasi-elastic
peak is to be detected. Nevertheless, carriers should in-
duce a measurable temperature dependence of this latter.

Conversely, band gap states appear clearly as isolated
features. Due to its large oscillator strength, the surface
phonon around 95 meV can be used as a reliable
reporter of the excess electrons excitations through the
screening they induce. Above a carrier concentration of
1017−1018 cm−3, an upward shift is predicted. However,
it should be counterbalanced by a downward shift due
to band gap states oscillator strength. Both plasmon
and BGS impact the ratio of phonon to elastic peak
by pumping out intensity. If the screening effect can
be rationalized through an isolated oscillator model of
phonons, the accurate description of shifts, variations
of intensity or broadenings of phonons and elastic peak
requires a full account of all excitations. At last, while
probing depth is much larger for the quasi-elastic peak
and phonons than for band gap states, the previous
trends obtained for semi-infinite substrate hold true for
various dielectric profiles. But the account of the prob-
ing depth turns out to be mandatory for quantitative
analysis.

The present conclusions on phonon screening in EELS
can be generalized to any reducible oxide showing pola-
ronic defect states since a high static dielectric constant
is often related to longitudinal phonon modes of high os-
cillator strengths.
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10 D. Schöche, T. Hofmann, R. Korlacki, T. Tiwald, and

M. Schubert, J. Appl. Phys. 113, 164102 (2013).
11 D. Emin, Phys. Rev. B 48, 13691 (1993).
12 A. Fujimori, A. E. Bocquet, K. Morikawa, K. Kobayashi,

I. T. Saithoh, Y. Tokura, I. Hasex, and M. Onoda, J.
Phys. Chem. Solids 57, 1379 (1996).

13 G. Mattioli, P. Alippi, F. Filippone, R. Caminiti, and
A. A. Bonapasta, J. Phys. Chem. C 114, 21694 (2010).

14 V. E. Henrich, G. Dresselhaus, and H. J. Zeiger, Phys.
Rev. Lett. 36, 1335 (1976).

15 R. Kurtz, R. Stockbauer, T. Madey, E. Román, and
J. de Segovia, Surf. Sci 218, 178 (1989).
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SI. DIELECTRIC THEORY OF ELECTRON
ENERGY LOSS SPECTROSCOPY IN

REFLECTION: UNIAXIAL DIELECTRIC
FUNCTION AND STRATIFIED MEDIUM

For an uniaxial material like tetragonal TiO2 rutile,
the dielectric tensor is anisotropic but diagonal in the
main crystallographic axis with two principal compo-
nents, εa⊥(ω) perpendicular to the c-axis (or parallel to
the a-axis) and εc‖(ω) parallel to the c-axis (or perpen-

dicular to the a-axis). For such an uniaxial material, the
loss function depends on the scattering geometry1. As-
suming that the c-axis lies in the (x, z)-plane at an angle
θ from the surface normal z, ξ(k‖, ω) is given by1,2

ξ(k‖, ω) =
εzz(ω)

k‖

√
εc‖(ω)εa⊥(ω)

ε2zz(ω)
k2
x +

εa⊥(ω)

εzz(ω)
k2
y, (S1)

where εzz(ω) = εc‖(ω) cos2(θ) + εa⊥(ω) sin2(θ) is the

component of the dielectric tensor normal to the
surface and (kx, ky) are the components of the
electron wave vector transfer parallel to the sur-
face. At TiO2(110) surface3,4, the c-axis lies in
the surface plane along the x-axis (θ = 90◦) and

ξ(k‖, ω) = 1/k‖
√
εc‖(ω)εa⊥(ω)k2

x + εa⊥(ω)2k2
y . The

cumbersome integration in Eq. 1 of the paper over the
detector acceptance and incident beam divergence can
be avoided in two extreme cases where ξ(k‖) becomes
k‖-independent. Either the dominant scattering is in the
(y, z)-plane, i.e. kx ' 0 leading to ξ(k‖, ω) ' εa⊥(ω) as in
experiments of Refs. 5 and 6. Or it is in the (x, z)-plane,

i.e. ky ' 0 and ξ(k‖, ω) '
√
εa⊥(ω)εc‖(ω); in this case,

the interpretation is less straightforward as losses result
from a geometric mean of parallel and perpendicular
dielectric behaviors.

Lambin et al.7 derived also the loss function for a strat-
ified medium having a given profile of isotropic dielec-
tric function ε(ω, z). They found a recursive formula
which relates the value of the effective dielectric func-
tion ξ(ω, zi−1) at the lower end of a layer of thickness
di and its dielectric constant ε(ω, zi) to the value of the
function at the upper end of the layer ξ(ω, zi):

ξ(ω, zi−1) = ε(ω, zi) coth(k‖di)−
[
ε(ω, zi)/ sinh(k‖di)

]2
ε(ω, zi) coth(k‖di) + ξ(ω, zi)

.

(S2)

The starting point is given by the substrate dielectric
function ξ(ω, z∞) = εS(ω). The classical loss probability
Pcl(kI , ω) (Eq. 1 of the paper) is then calculated from
the surface effective dielectric function, i.e. ξ(ω, z0)
which can be recasted in to a continued fraction expan-
sion7 from Eq. S2. Through recursivity and slicing, it
is therefore possible to describe any profile of dielectric
function as done in the paper. The generalization to a
stack of anisotropic media is slightly more complex2 but
fortunately with a dominant scattering normal to the
c-axis of TiO2, the above formula is still valid but with
εa⊥(ω).

SII. EFFECT OF DIELECTRIC ANISOTROPY
ON (HR)EELS SPECTRUM

Figure S1 shows simulated spectra at low [EI = 8 eV,
Fig. S1(a)] and high [EI = 38 eV, Fig. S1(b)] impact en-
ergies for the two main orientations of the c-axis leading
to different expression of the effective dielectric function
ξ(ω) (see Sec. SI). This latter amounts to ξ(ω) = εa⊥(ω)

[respectively ξ(ω) =
√
εc‖(ω)εa⊥(ω)] for and incident plane

perpendicular (respectively parallel) to the c-axis. Simu-
lations are also compared to a fictitious material having
a effective dielectric function equal to ξ(ω) = εc‖(ω).

When the c-axis is perpendicular to the incident plane,
the loss spectrum contains only contributions from the
Eu-modes and the high energy surface phonon ωsph,3 =
95.6 meV falls just below the longitudinal Eu phonon
at ωLO = 102.9 meV. The fictitious spectra with εc‖(ω)

is dominated by the A2u mode with a surface peak at
ωsph,‖ = 92.4 meV. When the c-axis is parallel to the
incident beam, the symmetry assignment is less rigorous

since ξ(ω) =
√
εc‖(ω)εa⊥(ω), but the low energy peaks

are clearly of Eu-type while the high energy one at
ωsph,3 = 93.9 meV combines the high energy Eu and
A2u longitudinal modes. The latter screens the low en-
ergy Eu surface modes which are much weaker in inten-
sity than along the other orientation. The discussion on
phonon shifts and changes of intensity are restricted in
the paper to the ξ(ω) = εa⊥(ω) case since, due to the for-
tuitous near degeneracy of the high energy A2u and Eu

longitudinal modes3,4, the differences between the two
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FIG. S1. Effect of the uniaxial anisotropy of TiO2 on simulated (a) HREELS (EI = 8 eV; ∆a = 8 meV) phonon spectrum,
and (b) EELS (EI = 38 eV; ∆a = 50 meV) interband transitions. Blue line: c-axis perpendicular to beam; red line: c-axis
parallel to beam; green line: fictitious material having a εc‖ dielectric function. Spectra have been normalized to the elastic
peak intensity and no band-gap state feature has been accounted for. The inset shows a zoom of the spectrum on a logarithmic
scale.

main c-axis orientations are minor for the high energy
surface phonon ωsph,3. Nevertheless, tiny shifts and dif-
ferences are amplified in the multiple and combination
losses that structure EELS spectra8,9 and therefore eas-
ier to detect despite a modest experimental resolution
[inset of Fig. S1(a)]. Finally, regarding band-to-band
transitions probed at high energy [Fig. S1(b)], the vari-
ous orientations slightly differ through anisotropy (Fig. 1
of the paper). The εa⊥(ω)-orientation offers the lowest
background at the location of the BGS.

SIII. ANALYTIC DESCRIPTION OF
PLASMON-INDUCED BROADENING OF THE

QUASI-ELASTIC PEAK

Starting from a t-expansion of the Poisson distribution
of multiple losses (Eqs. 3-6 of the aricle), Bo Persson
and Demuth10 derived an elegant analytic formula for
the variance of the broadening of the elastic peak due to
bulk free carriers described by a Drude term:

∆2
n =

C

4
π2ω2

sp

[
2

eh̄ωsp/kBT − 1
+ 1

]
with C =

4

π

1

ε(0) + 1

1

cos2 ΘI

1

kIa0
, (S3)

where a0 = 4πε0h̄
2/me2 is the Bohr radius and the other

parameters are defined in the paper. By adding an appa-

ratus function ∆2
a , the evolution of the quasi-elastic full-

width at half-maximum (FWHM = 2
√

2 ln 2
√

∆2
n + ∆2

a)
can be obtained either as a function of carrier concen-
tration at fixed temperature [Fig. 4(a) of the paper,
dotted line] or vice-versa (Fig. 5 of the paper, dotted
lines). For instance, Eq. S3 has been used to determine
the ionization energy of hydrogen-doped ZnO11 from the
temperature dependence of the quasi-elastic peak broad-
ening. But the rutile elastic peak is much less sensi-
tive to broadening because of its much higher static di-
electric constant and effective mass (smaller ωsp) than
ZnO. A temperature dependence is also expected from
Eq. S3 for rutile [Fig. 5(a) of the paper, red and violet
dotted lines] on the basis of a carrier concentration of
n = 1018−19 cm−3 (Refs. 12–14) and of an effective mass
ofm∗ ' 10 (Refs. 15 and 16). Useful to pinpoint the main
phenomena, the approach of Bo Persson and Demuth is
valid only for infinitesimal ΓP and ωsp, a fact which is
not overlooked in the analysis of Ref. 11. The analytic
equation Eq. S3 does not even reproduce the behavior
at very small damping (Fig. 4 of the paper, black dotted
vs black full line) since the underlying limit ωsp → 0 is
not reached; it also overestimates the temperature depen-
dence that is determined in the paper with full numerical
simulations (Fig. 5 of the paper).
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a) Direction Phonon h̄ωTO (meV) h̄ΓTO (meV) h̄ωLO (meV) h̄ΓLO (meV) h̄Ωph (meV) ε∞,Ph

⊥, a Eu 23.38 1.82 45.34 1.09 204.90 5.96

⊥, a Eu 47.03 2.39 55.16 2.28 49.98

⊥, a Eu 62.67 2.77 102.86 5.44 87.68

‖, c A2u 21.47 2.48 98.75 5.75 265.90 7.16

⊥, a n.a. 68.93 8.02 68.07 7.17

⊥, a n.a. 96.83 9.56 96.71 8.73

‖, c n.a. 72.78 6.97 72.41 6.45

‖, c n.a. 88.03 8.52 87.90 9.29

b) Direction h̄C (meVµ) ×10−3 Φ (deg) h̄ω (meV) h̄Γ (meV) µ ε∞,Ib

‖, c 2.5 0 4.09 0.28 0.8 -5.26

‖, c 0.37 0 4.41 0.18 0.7

‖, c 5.2 0 6.63 1.15 1.0

⊥, a 0.28 0 3.92 0.21 0.5 -6.86

⊥, a 1.4 0 5.41 0.44 1.0

⊥, a 19.3 0 7.52 1.46 1.3

c) Direction ωsph,1 (meV) ωsph,2 (meV) ωsph,3 (meV)

Im [−1/ (1 + εa⊥)] 45.3 54.6 95.4

Im

[
−1/

(
1 +

√
εc‖ε

a
⊥

)]
45.6 55.4 93.8

TABLE S1. (a) Parameters of the factorized dielectric function εPh(ω) (Eq. 8 of the paper) of the infrared active optical
phonons 3Eu + A2u (from Ref. 17). Values of symmetry forbidden not assigned (n.a.) minor modes are also given. Error bars
on frequencies and dampings are below 0.1 meV and 0.6 meV (respectively 1.6 meV and 0.6 meV), for the symmetry allowed
modes (respectively the additional ones). The oscillator strengths Ωph of the unfactorized form of the dielectric function (see
Eq. 15 of the paper) of Ref. 18 are also given as well as the prefactor ε∞,Ph. The static values are: εc‖(0) = 153 and εa⊥(0) = 84.7.
(b) Critical point transition parameters (Eq. 10 of the paper) used in the fit of the UV-visible part of the dielectric function
εIb(ω) of Ref. 19. Negative values for ε∞,Ib are counterbalanced by ε∞,Ph at ω → +∞. (c) Positions of the surface phonon
modes as given by the maxima of the loss function.

Phonon h̄ωsph (meV) h̄ω0 (meV) h̄Ω (meV) εc,0

1 45.3 23.4 204.9 25.8

2 54.6 47 50 2.6

3 95.4 62.7 87.7 1.6

Phonon ωmP (meV) ωmgs (meV) αP × 104 (meV−2) βP × 104 αgs × 106 (meV−2) βgs × 106

1 121 5200 22.9/0.8 0.7 1.25/0.1 0.07

2 89.2 1900 9.4/1.4 1.25 2.0/0.4 0.55

3 101 1600 23.1/5.7 1.0 9.1/4.5 0.77

TABLE S2. Screening effect of surface phonons by plasmon and band gap states: surface frequency ωsph, transverse frequency
ω0 = ωTO, oscillator strength Ω from decomposition of Ref. 18, screening value εc,0, maximum value for linearity ωmP =
ω0
√

1 + εc,0 and ωmgs = ωgs
√

1 + εc,0 , slopes αP , αgs and βP , βgs as a function of ω2
P and Ω2

gs, respectively (see paper for
definition).
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FIG. S3. Fit of the UV-visible dielectric function (a) εc‖,Ib(ω) and (b) εa⊥,Ib(ω) of TiO2 from dielectric database of Ref. 19. The
analysis was performed with three critical transition points as explained in the paper.
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