J. Shi, P. W. Kantoff, R. Wooster, and O. C. Farokhzad, Cancer nanomedicine: progress, challenges and opportunities, Nat. Rev. Cancer, vol.17, pp.20-37, 2016.
DOI : 10.1038/nrc.2016.108

URL : http://europepmc.org/articles/pmc5575742?pdf=render

S. Mura, J. Nicolas, and P. Couvreur, Stimuli-responsive nanocarriers for drug delivery, Nat. Mater, vol.12, pp.991-1003, 2013.
DOI : 10.1038/nmat3776

T. Lammers, A. S. Hennink, W. E. Storm, G. Kiessling, and F. , Theranostic Nanomedicine, Acc. Chem. Res, vol.44, p.19, 2011.

S. J. Soenen, G. V. Velde, A. Ketkar-atre, U. Himmelreich, D. Cuyper et al., Magnetoliposomes as magnetic resonance imaging contrast agents, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol, vol.3, pp.197-211, 2011.
DOI : 10.1002/wnan.122

B. S. Pattni, V. V. Chupin, and V. P. Torchilin, New Developments in Liposomal Drug Delivery, Chem. Rev, vol.115, pp.10938-10966, 2015.
DOI : 10.1021/acs.chemrev.5b00046

E. Amstad, J. Kohlbrecher, E. Mu?ller, T. Schweizer, M. Textor et al., Triggered Release from Liposomes through Magnetic Actuation of Iron Oxide Nanoparticle Containing Membranes, Nano Lett, vol.11, pp.1664-1670, 2011.

G. Mikhaylov, U. Mikac, and A. A. Magaeva, Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment, Nat. Nano technol, vol.6, pp.594-602, 2011.
DOI : 10.1038/nnano.2011.112

G. Béalle, D. Corato, R. Kolosnjaj-tabi, and J. , Ultra Magnetic Liposomes for MR Imaging, Targeting, and Hyperthermia, Langmuir, vol.28, pp.11834-11842, 2012.

H. Marie, L. Lemaire, and F. Franconi, Superparamagnetic Liposomes for MRI Monitoring and External Magnetic Field-Induced Selective Targeting of Malignant Brain Tumors, Advanced Functional Materials, vol.25, pp.1258-69, 2015.
DOI : 10.1002/adfm.201402289

URL : https://hal.archives-ouvertes.fr/hal-01392430

M. E. Fernandez-sanchez, S. Barbier, and J. Whitehead, Mechanical induction of the tumorigenic ?-catenin pathway by tumour growth pressure, Nature, vol.523, pp.92-95, 2015.

G. Ramniceanu, B. T. Doan, and C. Vezignol, Delayed hepatic uptake of multiphosphonic acid poly(ethylene glycol) coated iron oxide measured by real-time magnetic resonance imaging, RSC Adv, vol.6, pp.63788-63800, 2016.
DOI : 10.1039/c6ra09896g

URL : https://hal.archives-ouvertes.fr/hal-01375004

D. Hernando, Y. S. Levin, C. B. Sirlin, and R. Sb, Quantification of liver iron with MRI: State of the art and remaining challenges, J. Magn. Reson. Imaging, vol.40, pp.1003-1021, 2014.

R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media, IEEE, vol.17, p.20, 1981.
DOI : 10.1109/tmag.1981.1061188

P. A. Jarzyna, T. Skajaa, and A. Gianella, Iron oxide core oil-in-water emulsions as a multifunctional nanoparticle platform for tumor targeting and imaging, Biomaterials, vol.30, pp.6947-6954, 2009.
DOI : 10.1016/j.biomaterials.2009.09.004

URL : http://europepmc.org/articles/pmc2834194?pdf=render

C. Wilhelm, F. Gazeau, and J. C. Bacri, Magnetophoresis and ferromagnetic resonance of magnetically labeled cells, Eur. Biophys. J, vol.31, pp.118-125, 2002.

E. Heijman, W. De-graaf, and P. Niessen, Comparison between prospective and retrospective triggering for mouse cardiac MRI, NMR Biomed, vol.20, pp.439-486, 2007.
DOI : 10.1002/nbm.1110

S. M. Bovens, B. C. Boekhorst, and K. Den-ouden, Evaluation of infarcted murine heart function: comparison of prospectively triggered with self-gated MRI, NMR Biomed, vol.24, pp.307-322, 2011.

J. Seguin, B. T. Doan, L. Ossa, and H. , Evaluation of Nonradiative Clinical Imaging Techniques for the Longitudinal Assessment of Tumour Growth in Murine CT26, 2013.

C. Carcinoma, Int. J. Mol. Imaging, vol.2013, pp.1-13

E. Weatherall and G. R. Willmott, Applications of tunable resistive pulse sensing, Analyst, vol.140, pp.3318-3334, 2015.

M. S. Martina, J. P. Fortin, and C. Ménager, Generation of Superparamagnetic Liposomes Revealed as Highly Efficient MRI Contrast Agents for in Vivo Imaging, J. Am. Chem. Soc, vol.127, pp.10676-10685, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00162333

J. Bulte, M. De-cuyper, D. Despres, and J. A. Frank, Preparation, relaxometry, and biokinetics of PEGylated magnetoliposomes as MR contrast agent, J. Magn. Magn. Mater, vol.194, pp.204-209, 1999.

C. Lorenzato, C. Oerlemans, and M. Van-elk, MRI monitoring of nanocarrier accumulation and release using Gadolinium-SPIO co-labelled thermosensitive liposomes: Gd-TSM for nanocarrier localization and monitoring of release using MRI, Contrast Media Mol. Imaging, vol.11, pp.184-194, 2016.

B. A. Larsen, M. A. Haag, N. J. Serkova, K. R. Shroyer, and C. R. Stoldt, Controlled aggregation of superparamagnetic iron oxide nanoparticles for the development of molecular magnetic resonance imaging probes, Nanotechnology, vol.19, p.265102, 2008.

J. Seguin, C. Nicolazzi, N. Mignet, D. Scherman, and G. Chabot, Vascular density and endothelial cell expression of integrin alpha v beta 3 and E-selectin in murine tumours, Tumor Biol, vol.33, pp.1709-1717, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00709732

J. Malinge, B. Géraudie, and P. Savel, Liposomes for PET and MR Imaging and for Dual Targeting (Magnetic Field/Glucose Moiety): Synthesis, Properties, and in Vivo Studies, Mol. Pharm, vol.14, pp.406-414, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01427809

J. W. Seo, H. Zhang, D. L. Kukis, C. F. Meares, and K. W. Ferrara, A Novel Method to Label Preformed Liposomes with (CU)-C-64 for Positron Emission Tomography (PET), Imaging. Bioconjug. Chem, vol.19, pp.2577-2584, 2008.

A. L. Petersen, T. Binderup, and P. Rasmussen, 64Cu loaded liposomes as positron emission tomography imaging agents, Biomaterials, vol.32, pp.2334-2341, 2011.

W. T. Phillips, B. A. Goins, and B. A. , Radioactive liposomes, Wiley Interdiscip. Rev.-Nanomedicine Nanobiotechnology, vol.1, pp.69-83, 2009.

E. Klotz and M. König, Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke, Eur. J. Radiol, vol.30, pp.170-184, 1999.

S. Pesnel, S. Akkoul, and R. Ledée, Use of an Image Restoration Process to Improve Spatial Resolution in Bioluminescence Imaging, Mol. Imaging, vol.10, pp.446-452, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00657001

R. W. Brown, Y. Cheng, E. M. Haacke, M. R. Thompson, and R. Venkatesan, Magnetic Resonance Imaging: Physical Principles and Sequence Design, 2014.

J. M. Oakes, E. C. Breen, M. Scadeng, G. S. Tchantchou, and C. Darquenne, MRI-based measurements of aerosol deposition in the lung of healthy and elastase-treated rats, J. Appl. Physiol, vol.116, pp.1561-1568, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01095643

B. Chertok, B. A. Moffat, and A. E. David, Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors, Biomaterials, vol.29, pp.487-496, 2008.

S. Melemenidis, A. Jefferson, and N. Ruparelia, Molecular Magnetic Resonance Imaging of Angiogenesis In Vivo using Polyvalent Cyclic RGD-Iron Oxide Microparticle Conjugates, Theranostics, vol.5, pp.515-529, 2015.

Y. Wang and T. Liu, Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker: QSM, Magnetic Resonance in Medicine, vol.73, pp.82-101, 2015.

N. Schleich, C. Po, and D. Jacobs, Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy, J. Controlled Release, vol.194, pp.82-91, 2014.

J. Chen, X. Ke, and Z. He, A MSLN-targeted multifunctional nanoimmunoliposome for MRI and targeting therapy in pancreatic cancer, Int. J. Nanomedicine, vol.7, pp.5053-5065, 2012.

M. De-smet, E. Heijman, S. Langereis, N. M. Hijnen, and H. Grüll, Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperaturesensitive liposomes: An in vivo proof-of-concept study, J. Controlled Release, vol.150, pp.102-110, 2011.

D. Corato, R. Béalle, G. Kolosnjaj-tabi, and J. , Combining Magnetic Hyperthermia and Photodynamic Therapy for Tumor Ablation with Photoresponsive Magnetic Liposomes, ACS Nano, vol.9, pp.2904-2916, 2015.