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Abstract We show how the necessary constraints to project
out all the components of a chiral superfield except for some
scalar degrees of freedom originate from simple operators in
the microscopic theory. This is in particular useful in con-
structing the simplest models of a goldstone boson/inflaton;
or extracting the Standard Model Higgs doublet from a super-
symmetric electroweak sector. We use the Fayet–Iliopoulos
model as an example of the origin for the supersymmetry
breaking. We consider the regime where both gauge symme-
try and supersymmetry are spontaneously broken, leaving (in
the decoupling limit) the goldstino as the only light mode in
this sector. We show in three different ways, both in compo-
nents and in superspace language, how the nilpotent goldstino
superfield emerges. We then use it to write different effective
operators and extract some of the consequences for the low
energy spectrum.
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1 Introduction

Superspace and superfields are powerful tools for the con-
struction of globally supersymmetric theories. In [1], it was
shown how they can also be used in the case where super-
symmetry is only realised non-linearly [2]. The goldstino is
then part of a constrained superfield XNL . In the simplest
examples [1,3] the latter satisfies:

X2
NL = 0 (1.1)

which eliminates the scalar component, the sgoldstino. In
[3], the constraint (1.1) was explicitly derived by taking the
sgoldstino mass to infinity. Going further and imposing

XNL D
2
XNL ∝ XNL (1.2)

fixes the scale of supersymmetry breaking, the F-term FX

in XNL [1]. This leaves then the goldstino λ̃α as the only
independent component in the superfield:

DαXNL | = √
2λ̃α + · · · ; XNL | = λ̃αλ̃α

2FX
+ · · · (1.3)

In [4], it was argued that the constraint (1.2) can be too restric-
tive and one can instead choose to use only (1.1) and keep as
independent components of XNL both the goldstino super-
field and the auxiliary component. It was also conjectured that
the superfield X which controls the violation of the Ferrara–
Zumino supercurrent Jαα̇ conservation equation:

D
α̇Jαα̇ = DαX (1.4)

flows in the infrared to the superfield XNL , i.e. X → XNL .
There are other ways to embed the goldstino in a con-

strained superfield. The goldstino can appear as the low-
est component as it was originally described in [5,8]. One
approach is to directly write the superfield in “splitting form”
in terms of homogeneously transforming components [6–8]:
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�α ≡ √
2FXθα + λ̃α(z),

zμ ≡ xμ − iθσμθ − i

√
2

FX
λ̃(x)σμθ̄ . (1.5)

On the other hand, in order to make contact with the UV-
origin of the fields, we can instead identify the goldstino
with a spin 1/2 component of a vector multiplet VNL , and
this is the approach we shall take here (although the two
approaches can be related by a non-linear transformation of
the superfields). The corresponding constraints take then the
form:

VNL = VNL
† (1.6)

V 2
NL = 0 (1.7)

VNL ∝ VNL

(
DαD

2
Dα + D

α̇
D2Dα̇

)
VNL (1.8)

and the goldstino is obtained from the lowest component of

WNLα = −1

4
D

2
DαVNL = λ̃α + · · · (1.9)

These constraints are satisfied if VNL = XNL XNL/�2

where the size of the suppression scale � is given by the XNL

F-term. Note that VNL can be used either for a true D-term
breaking model or to parametrise the effects of an F-term
breaking as done in [9–12]. Here the condition (1.8) appears
as a consequence of (1.2). An important result shown in [5,8],
and subsequently in [7,13–15] for the other representations,
is that the corresponding Lagrangian is the Volkov–Akulov
one or can be mapped to it through field redefinitions.

This nilpotent superfield construction allows to describe
the coupling of the goldstino to matter fields in the lower
energy effective theory. Writing appropriate constraint equa-
tions, XNL allows to project out heavy components in matter
superfields without explicitly going through integrating them
out in the ultaviolet (UV) theory Lagrangian [4]. We shall
consider here the constraint equation:

XNL(A + A) = 0, (1.10)

which leaves only a pseudo-scalar degree of freedom propa-
gating and removes the other components of the chiral multi-
plet A. This can be applied to describe goldstone bosons for
example [4] or the inflaton [16,17]. It is important to under-
stand how (1.10) can be obtained from a linearly realised
supersymmetry theory in the UV. It was noted in [18] that
imposing (1.10) is equivalent to three independent con-
straints:

XNL XNL(A + A) = 0, (1.11)

XNL XNL Dα̇A = 0, (1.12)

XNL XNL D2A = 0, (1.13)

which eliminates the heavy real scalar, the fermion and the
auxiliary field separately. These were lifted as three operators

added to the Lagrangian with the inconvenience of dealing
with higher derivative terms. We shall provide in this work a
single operator that when present in the microscopic theory
can give rise to the constraint (1.10). This will be based on
switching on a D-term to break supersymmetry.

Another issue of interest is the extraction of the Standard
Model Higgs SU (2) doublet from a supersymmetric elec-
troweak sector. In its minimal realisation the latter contains
two doublet superfields. We look then for a way to project
out the fermionic partners (the higgsinos) and keep only one
linear combination of the scalar two Higgs doublets light. We
illustrate how this can be achieved easily using two type of
operators, one for the μ-like terms and diagonal soft-terms
and one for the Bμ-term.

As an example of microscopic theory for D-term super-
symmetry breaking, we consider the original Fayet–
Iliopoulos (FI) model [19]. In [8], the parameters region
where supersymmetry but not gauge symmetry is broken
was considered. It was noted that replacing the original vec-
tor multiplet V in the FI model by the constrained one,
V → VNL , as described by the above equations leads to
the supersymmetry breaking soft masses. We shall consider
instead the parameter region where both supersymmetry and
the gauge symmetry are spontaneously broken leaving in the
infrared only the massless goldstino. We shall then show how
V flows in the infrared to VNL ∝ XNL XNL where XNL is
the goldstino nilpotent superfield. For the purpose, we shall
illustrate by deriving this result in three different ways: from
integrating out heavy modes within the Lagrangian in com-
ponents fields, identification of the nilpotent superfield in the
Ferrara–Zumino supercurrent equation and from integrating
out the heavy modes through the superfield equations in the
super-unitary gauge.

In Sect. 2, we explain how the supersymmetry algebra
fixes the different components of the goldstino multiplet in
particular for the nilpotent vector superfield. This result is
explicitly derived in Sect. 3 for the case of the FI model in
the regime where the only massless degree of freedom is
the goldstino. A complete and simple picture is obtained by
providing the identification of XNL and VNL by different
ways. An important result of this work, the use of a sin-
gle and simple operator to obtain the minimal constrained
superfield, containing a single pseudo-scalar degree of free-
dom is described in Sect. 4. The discussion about the Higgs
sector is in Sect. 5. The conclusions give a summary of the
results.

2 Nilpotent superfield components from
supersymmetry algebra

Integrated out the complex scalar is replaced by a function
of the fermionic ψ and the auxiliary field F components of
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the chiral supermultiplet. The supersymmetry transformation
reads then:

δεφ(ψ, F) = ∂φ

∂ψα

δεψα + ∂φ

∂F
δεF

εψ = ∂φ

∂ψα

[−i(σμε)α∂μφ + εαF
]

− ∂φ

∂F
(iεσμ∂μψ). (2.1)

By solving the partial differential equation, we can fix the
complex scalar to be:

φ = ψψ

2F
. (2.2)

The chiral multiplet can be written as:

XNL = ψψ

2F
+ √

2θψ + θθF, (2.3)

which is nilpotent:

X2
NL = 0. (2.4)

Because of the nilpotency constraint, the general form for the
Lagrangian without supersymmetric covariant derivatives for
this superfield is:

LX =
∫

d4θXNL XNL +
(∫

d2θ f XNL + h.c.

)

= iψσμ∂μψ − ∂μ

(
ψψ

2F

)
∂μ

(
ψψ

2F

)

+FF + f F + f F, (2.5)

in which f is a constant. This recovers the Volkov-Akulov
action by a field-redefinition.

For a U (1) vector multiplet, fixing a gauge breaks super-
symmetry. Thus, after a supersymmetry transformation a new
supergauge transformation is required to go back to the cho-
sen gauge. Choosing the Wess–Zumino gauge, the new super-
gauge transformation is:

δGV = i(� − �),

�(y) = i√
2
θσμεAμ − θθ

i√
2
ελ, (2.6)

The combination of the two transformations read then:
√

2δε+G Aμ = εσμλ + λσμε,

√
2δε+Gλα = i

2

(
σμσνε

)
α
Fμν + εαD,

√
2δε+GD = −iεσμ∂μλ + i∂μλσμε. (2.7)

Once the gauge group and supersymmetry are broken, we
can integrate out Aμ. To do this, we work in the superunitary
gauge (i.e. we absorb the Goldstone boson; we shall do this
throughout) and, writing the component Aμ as a function of
λ, λ and D, the supersymmetric transformation:

δε Aμ = ∂Aμ

∂λα

[
i

2
√

2
(σμσνε)αFμν + 1√

2
εαD

]
+ h.c.

+∂Aμ

∂D

i√
2
(−εσμ∂μλ + ∂μλσμε). (2.8)

is satisfied if:

Aμ = λσμλ

D
. (2.9)

Note that this is not gauge invariant, as the gauge group is
broken; if we restore the would-be Goldstone boson a then
we have the relation

Aμ − 1

mA
∂μa = λσμλ

D
,

which returns to the above expression when the gauge boson
mass mA → ∞. The corresponding Lagrangian includes the
kinetic term and a Fayet–Iliopoulos term is then:

LV =
∫

d2θ
1

4
WNLWNL + h.c. +

∫
d4θ2ξV

= iλσμ∂μλ − 1

4

[
∂μ

(
λσνλ

D

)
− ∂ν

(
λσμλ

D

)]

×
[
∂μ

(
λσνλ

D

)
− ∂ν

(
λσμλ

D

)]
+ 1

2
D2 + ξD,

(2.10)

which is shown to be equivalent to Eq. (2.5) if ξ = √
2 f .

3 Nilpotent goldstino superfield from FI model

Let us first summarise the Fayet–Ilioupous (FI) model; this
allows to fix our notations. It contains two chiral superfields
�±(y, θ, θ̄ ) = φ±(y)+√

2θψ±(y)+θθF±(y), yμ ≡ xμ −
iθσμθ̄ , with superpotential W = m�+�−, a U (1) gauge
field and an FI term ξ with the interaction

∫
d2θ

(
1

4
WαWα + m�+�−

)
+ h.c.

+
∫

d4θ
[
�+e2gV�+ + �−e−2gV�− + 2ξV

]
. (3.1)

Eliminating the D-term leads to a potential

L ⊃ − m2
(
|φ+|2 + |φ−|2

)
− 1

2

(
ξ + g|φ+|2 − g|φ−|2

)2
.

(3.2)

We consider the case ξg > m2 where both the U (1) symme-
try and supersymmetry are broken. Writing φ− = 1√

2
(v +

h + ia), we have:
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g2v2

2
= ξg − m2

D = −ξ + gv2

2
= −m2

g
, F∗+ = −mv√

2

|F+|2 + 1

2
D2 = m2

2g2 (m2 + g2v2). (3.3)

The whole spectrum is: two spinors ψ− and ψ̃ combined
to get a Dirac mass

√
m2 + g2v2, one vector vμ and the real

scalar h of mass gv, one complex scalar field φ+ of mass√
2m2 and one massless Goldstone fermion λ̃. The fermionic

mass eigenstates are related to the original fields through the
re-definition:

(mψ+ − gvλ)ψ− ∝ ψ̃ψ−

→
(

ψ̃

λ̃

)
= 1√

m2 + g2v2

(
m −gv
gv m

) (
ψ+
λ

)

(
ψ+
λ

)
= 1√

m2 + g2v2

(
m gv

−gv m

) (
ψ̃

λ̃

)
. (3.4)

Looking at the supersymmetry transformations we have

δλ̃ = 1√
2
εα

1√
m2 + g2v2

[√
2gvF+ + mD

]

= − m√
2g

√
m2 + g2v2εα + · · ·

≡ f̃ εα + · · · (3.5)

3.1 Integrating out in components

We should then integrate out all of the fields except λ̃ and
then relate λ to λ̃. For the rest, we have the gauge boson
EOM, the Higgs, φ+ and two fermion EOMs:

Aμ : 0 = ∇2Aμ + g2v2
(
Aμ − 1

gv
∂μa

)

+ g

[
−ψ−σμψ− + (mψ̃ + gvλ̃)σμ(m ¯̃

ψ + gv ¯̃
λ)

m2 + g2v2

]

ψ− : 0 = iσμDμψ̄− −
√
m2 + g2v2ψ̃

+ g(h − ia)√
m2 + g2v2

(−gvψ̃ + mλ̃)

ψ̃ : 0 = iσμ∂μ
¯̃
ψ −

√
m2 + g2v2ψ−

+ mgAμ

m2 + g2v2 σμ(m ¯̃
ψ + gv ¯̃

λ)

− g2v(h − ia)√
m2 + g2v2

ψ− −
√

2g

m2 + g2v2 φ∗+

×
[
−2mgvψ̃ + (m2 − g2v2)λ̃

]

φ∗+ : 0 = −∂2φ+ − 2m2φ+ + scalar terms

−
√

2g

m2 + g2v2 (mψ̃ + gvλ̃)(−gvψ̃ + mλ̃)

h : 0 = −∂2h − 2g2v2h + scalar terms

+
[

g√
m2 + g2v2

ψ−(−gvψ̃ + mλ̃) + h.c.

]
(3.6)

We therefore see that

Aμ ∼ O(λ̃2)

φ+ ∼ O(λ̃2)

ψ− ∼ O(λ̃3)

h ∼ O(λ̃4) (3.7)

The imaginary part a of φ− which is the would-be gauge
boson that can be eliminated in the unitary gauge, can also
be shown in other gauges to be of O(λ̃4). We can therefore
set h = a = 0 and expand:

Aμ = − g

m2 + g2v2 λ̃σμ ¯̃
λ + · · ·

φ+ = − g2v√
2m(m2 + g2v2)

λ̃λ̃ + O(λ̃4)

ψ− = −
√

2g

(m2 + g2v2)3/2 φ∗+(m2 − g2v2)λ̃

+ mg2vAμσμ ¯̃
λ

(m2 + g2v2)3/2 + iσμ∂μ
¯̃
ψ + · · ·

= − g3v

m(m2 + g2v2)3/2 λ̃λ̃λ̃ + · · ·

ψ̃ = 1√
m2 + g2v2

iσμDμψ̄− + · · ·

= − g3v

m(m2 + g2v2)2 iσ
μ∂μ(λ̃λ̃λ̃) + · · · (3.8)

so we finally find

λ = gv√
m2 + g2v2

[
λ̃ + g2

(m2 + g2v2)2 iσ
μ∂μ[(λ̃λ̃)λ̃] + · · ·

]

(3.9)

Thus we find that in the low energy limit, the degrees of
freedom can be parameterised into one chiral multiplet and
one vector multiplet, in an obvious notation:

�+(φ+, ψ+, F+)
I R−→ gv√

m2 + g2v2
�+

(
λ̃λ̃

2 f̃
, λ̃, f̃

)

(3.10)

V (λ, vμ, D)
I R−→ m√

m2 + g2v2
V

(
λ̃,

λ̃σμλ̃√
2 f̃

,
√

2 f̃

)
.

(3.11)
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This corresponds to Eqs. (2.2) and (2.9) and the correspond-
ing Lagrangian can be mapped to the Volkov–Akulov action.

3.2 Integrating out in superspace

Let us use the superunitary gauge, in which, the chiral super-
field �− is eaten by the gauge field. Then the Lagrangian
becomes:

LSU =
∫

d2θ

(
1

4
WαWα + 1√

2
mv�+

)
+ h.c.

+
∫

d4θ

(
�+e2gV�+ + 1

2
v2e−2gV + 2ξV

)
.

(3.12)

It is then instructive to consider the two limits m2 � g2v2

and m2 � g2v2 separately. The reason is that we shall inte-
grate out one of the superfields entirely, via the equations of
motion, while leaving the other light, and this only makes
sense if there is a hierarchy of masses. From the component
calculation, we observe that in the first limit the Goldstino is
dominated by ψ+ ⊃ �+, while in the second it is dominated
by the gaugino; in superfields unsurprisingly we see that in
each limit it is the corresponding superfield that remains in
the spectrum.

Case m2 � g2v2:

In this limit, ψ+ dominates the goldstino. We first consider
the equation of motion for V :

0 = 1

8

(
DαD

2
Dα + h.c.

)
V + 2g�+e2gV�+

− gv2e−2gV + 2ξ. (3.13)

We then use

V ⊃ 1

2
θ4D, DαD

2
Dαθ4 = 16 (3.14)

and write

V = θ4 1

2

(
−ξ + gv2

2

)
+ V̂ ≡ θ4 1

2
δ + V̂

Wα = θαδ + Ŵα (3.15)

which, when combined with

∫
d4x

∫
d2θ

1

2
θαŴα =

∫
d4x

∫
d4θ V̂ (3.16)

substituted back into the action, gives

LSU =
∫

d2θ

(
1

4
ŴαŴα + 1√

2
mv�+

)
+ h.c.

+
∫

d4θ

(
�+e2gV�+ + 1

2
v2e−2gV + (2ξ + 2δ)V̂

)

+ 1

2
δ2 + ξδ

=
∫

d2θ

(
1

4
ŴαŴα + 1√

2
mv�+

)
+ h.c.

+
∫

d4θ

(
�+e2gV�+ + 1

2
v2e−2gV + gv2V

)

+ 1

2
δ2 + ξδ − 1

2
δgv2 (3.17)

This action has no linear term in V once we expand the expo-
nential, which will be what we need. The equations of motion
are

0 = 2δ + 1

8

(
DαD

2
Dα + h.c.

)
V̂ + 2g�+e2gV�+

− gv2e−2gV + 2ξ

= 1

8

(
DαD

2
Dα + h.c.

)
V̂ + 2g�+e2gV�+

+ gv2(1 − e−2gV )

≡ � + 2g�+e2gV�+ + gv2(1 − e−2gV ) (3.18)

If we then solve this as a quadratic equation we have

e−2gV = 1

−2gv2

[
−gv2 − � ±

√
(gv2 + �)2 + 8g2v2|�+|2

]

= (gv2 + �)

2gv2

[
2 + 4g2v2|�+|2

(gv2 + �)2 + · · ·
]

(3.19)

If we neglect the terms with derivatives (i.e. �) then we have

gV = −|�+|2
v2 + 3

|�+|4
v4 + · · · (3.20)

Let us substitute this back into the action:

L =
∫

d2θ
1√
2
mv�+ + h.c.

+
∫

d4θ
1

16
V (DαD

2
Dα + h.c.)V

+ �+e2gV�+ + 1

2
v2e−2gV + 2ξV

=
∫

d2θ
1√
2
mv�+ + h.c. +

∫
d4θ

1

2
V

×
[
−2g�+e2gV�+ + gv2e−2gV − 2ξ

]

+ �+e2gV�+ + 1

2
v2e−2gV + 2ξV

123
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=
∫

d2θ
1√
2
mv�+ + h.c.

+
∫

d4θ �+�+
[

1 − m2

2g2v2

]

+ |�+�+|2
[
− 1

v2 + 3m2

g2v4

]
+ · · · (3.21)

We note that integrating the gauge field out and retaining
the full �+ field only makes sense for m2 � g2v2; in this
case we have the mass for the φ+ from the last term in Eq.
(3.21) as

m2
φ+ = 4

|F+|2
v2 = 2m2 (3.22)

which is exactly what we found in components. The fact
that this equality is only valid for m2 � g2v2 (and not true
everywhere) is because of the supergauge rotation that we
made: we have rotated the �+ and �− fields among each
other.

Note that (3.21) is of the form of the low energy-limit of
the O’Raifeartaigh model and the equations of motion lead
to the nilpotency �+ as discussed for instance in [4].

Case m2 � g2v2:

In this limit, the gaugino λ dominates the goldstino. We can
first write the equation of motion for the chiral superfield
�+:

0 = −4
√

2mv + D2(e2gV�+) + D
2
(�+e2gV ). (3.23)

This equation is hard to solve. But there is one obvious solu-
tion at low energy:

�+ = cXNL , V = XNL XNL/�2, (3.24)

in which c and � can be determined from the vev of the
auxiliary field of �+, V and XNL .

3.3 Nilpotent chiral superfield from Ferrara–Zumino
supercurrent

In the general case, the goldstino is a linear combination of
ψ+ and λ. One easy way to see it is through the Ferrara–
Zumino supercurrent. It was noted in [4] that the nilpo-
tent goldstino superfield controls the non-conservation of the
Ferrara–Zumino supercurrent Jαα̇ through the equation:

D
α̇Jαα̇ = DαX (3.25)

It was subsequently shown in [20] that in the presence of
a FI term, X can be formally obtained in a gauge invariant
form as:

X = 4W − 1

3
D

2
[
K + 2ξ(V + i� − i�†)

]
. (3.26)

In our case, the lagrangian (3.12) in the super-unitary gauge
gives:

W = 1√
2
mv�+, (3.27)

K = �+e2gV�+ + 1

2
v2e−2gV . (3.28)

Now we compute the Eq. (3.26):

X = 2
√

2mv�+ − 1

3
D

2
(

�+e2gV�+ + 1

2
v2e−2gV + 2ξV

)

= 2
√

2mv�+ − 1

3
D

2
�+�+ − 1

3
D

2
V (−gv2 + 2ξ) + · · ·

= 4
√

2

3
mv�+ − 2

3

m2

g
D

2
V + · · · , (3.29)

in which ... denotes higher order term in the expansion of
e±2gV . The reason we can neglect them in the IR is that the
θ component contains higher dimension operator than single
fermion. We now focus on the θ component of Eq. (3.26):

X |θ = 8

3
mvψ+ + 8

3

m2

g
λ. (3.30)

Compared to the previous results Eq. (3.4), we can identify
this as being proportional to λ̃. In the IR, the Lagrangian
contains only one goldstino with supersymmetry breaking
scale:

f̃ = − m√
2g

√
m2 + g2v2. (3.31)

We know that the Lagrangian becomes that of Volkov–
Akulov at low energy :

LV A =
∫

d4θXNL XNL +
(∫

d2θ − f̃ XN L + h.c.

)
,

(3.32)

in which the nilpotent chiral superfield XNL contains the
goldstino:

XNL = λ̃λ̃

2 f̃
+ √

2θλ̃ + θθ f̃ , (3.33)

Putting the Volkov–Akulov action into Eq. (3.26), we can
identify:

X = −8 f̃

3
XNL . (3.34)

By matching Eqs. (3.29) and (3.34) we obtain:

2
√

2mv�+ − 1

3
D

2
(

�+e2gV�+ + 1

2
v2e−2gV + 2ξV

)

→ −8 f̃

3
XNL . (3.35)
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The θ component gives the linear combination of the gold-
stino:

λ̃ = gvψ+ + mλ√
m2 + g2v2

. (3.36)

The vev of the auxiliary fields can fix the low energy param-
eterization of �+ and V :

�+ → gv√
m2 + g2v2

XNL (3.37)

V → − g

m2 + g2v2 XNL XNL (3.38)

Both equations of motion and Ferrara–Zumino supercurrent
shows that the massive vector multiplet can be parameterized
as XNL XNL in the infrared. In the following sections, we will
use the gauge invariant superfield Wα

NL to write the coupling
to the visible sector:

Wα
NL = 1

4
√

2 f
D

2
Dα

(
XNL XNL

)
, (3.39)

where f = |FXNL |. In components, this reads:

Wα
NL = λ̃α + θα D̃ + i

2
(σμσνθ)α F̃μν + iθθ(σμ∂μλ̃)α,

(3.40)

where:

λ̃α = − FX

f
ψα − i

f
∂μφ(σμψ)α (3.41)

D̃ = −
√

2FX FX

f
+ √

2∂μφ∂μφ

− i√
2
ψσμ∂μψ − i√

2
ψσμ∂μψ (3.42)

Ãμ = −ψσμψ + iφ∂μφ − iφ∂μφ√
2 f

. (3.43)

Finally, note that using X2
NL = 0 and XNL DαXNL = 0,

it is easy to show that Wα
NL satisfies

XNL XNLW
α
NL = 0. (3.44)

4 The minimal constrained superfield

We shall describe now the use of the FI goldstino nilpotent
superfield introduced above in order to project out all but one
degrees of freedom of a chiral superfield Aa . The latter is in
the adjoint representation of a gauge symmetry group with
field strength superfield Wa

α .
We consider the gauge invariant interaction between Aa ,

Wa
α and Wα

NL :

− mD

f

∫
d2θWα

NLW
a
αAa

= − mD

4
√

2 f 2

∫
d2θD

2
Dα(XNL XNL)Wa

αAa . (4.1)

Writing the expansion in components, we find that the
fermions λa from Wa and χa from Aa combine to make
a Dirac fermion of mass mD; the above operator was studied
for that purpose in [21]. Moreover, using the equations of
motion to solve the D-term in Wa

α , the real part of the scalar
in Aa obtains a mass 2|mD|. Therefore all of these states
decouple from the low energy theory in the limit mD → ∞.
The remaining propagating light degrees of freedom are the
goldstino, the gauge boson in Wa

α and the imaginary part
of the scalar in Aa . We shall show how this decoupling is
described by constraint equations.

First, the equation of motion to theAa immediately yields:

D
2
Dα(XNL XNL)Wa

α = 0. (4.2)

We can multiply by XNL XNL Dβ to the left hand side, then

using the non-zero property of the DD
2
D(XNL XNL) and

the nilpotency XDαX = 0, we find:

XNL XNLW
a
α = 0, (4.3)

which projects out the gaugino in Wa
α , as expected since it

has a large Dirac mass.
Next, we use the equation of motion of Wa

α to find:

DαD
2
Dα(XNL XNL)(Aa + Aa)

−
[
D

2
Dα(XNL XNL)DαAa + h.c.

]
= 0. (4.4)

We can multiply by XNL XNL to the left hand side and get
rid of the second term using the nilpotency of XNL to obtain
the constraint:

XNL XNL(Aa + Aa) = 0, (4.5)

which eliminates the real part of the scalar.
We can also plug into the l.h.s. of Eq. (4.4) XNL XNL Dβ

leading to:

XNL XNL DαAa = 0, (4.6)

which eliminates the fermion χa . In a similar way, we can
also obtain the constraint that leads to the elimination of the
auxiliary field:

XNL XNL D
2Aa = 0, (4.7)

For the case of U (1), the Eq. (4.1) can describe an axion
superfield coupled to the kinetic mixing between two differ-
ent U(1) vector multiplets, which makes saxion and axino
massive and leaves axion light. More precisely:

Laxion = 1

f A

∫
d2θWα

NLW
U (1)
α A (4.8)
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in which A is the axion superfield and WU (1)
α is abelian vector

superfield. f A is the decay constant for the axion.
Comparing with (4.1) shows that the axion coupling oper-

ator is exactly the same as the mass operator for the U (1)

Dirac gaugino and the singlet chiral superfield sBino �1 is
identified with the axion superfield. This also leads to a rela-
tion between the supersymmetry breaking mediation scale
and the axion symmetry breaking scale:

mD ∼ f

�
∼ f

f A
→ � ∼ f A. (4.9)

The CP-odd scalar a remains massless as expected as an
axion, with a coupling:

a

fA
εμνρσ FU (1)

μν FNL
ρσ , (4.10)

which shows the corresponding coupling of goldstini to the
axion due to a kinetic mixing between the U (1) and a Fayet–
Iliopoulos type U (1).

5 Constrained superfield for Higgs sector

Given two chiral doublets H1,2 carrying opposite U (1)

charges, one can write the operator [22]:

OHj j = a j jmH

8
√

2 f

∫
d2θD

2 (
DαVNL DαHi

)
Hj

= −a j jmH

2
√

2 f

∫
d2θWα

NL(DαHi )Hj + · · · , (5.1)

for i, j = 1, 2 where …represent extra terms that do not
contribute to the superpotential (for a different approach,
see for example [23]). Clearly this leads to a Dirac mass
1
2aiimH H̃1 H̃2 for the fermionic modes H̃1 H̃2 and to a mass
|aii |2|mH |2|Hi |2 for the complex scalar in Hi while leaving
massless the scalar in Hj . Taking the limit of a large scale
supersymmetry breaking leaves at low energy only the scalar
component in Hj . This limit is described in the constrained
superfield language as imposing:

XNL XNL DαHi = 0;
XNL XNL DαHj = 0;

XNL XNL Hj = 0 (5.2)

which can be obtained using the equations of motion as was
done in the previous section.

One interesting application of this operator is to extract
the Standard Model Higgs-like doublet from the minimally
supersymmetric extended electroweak sector that comes with
two Higgs doublets H1 and H2 with opposite gauge charge.
The mass of the two Higgsinos and one complex scalar should
be heavy, while leaving one light complex Higgs (same gen-
eralisation to doublet). Both mass eigenstates should be a
linear combination of H1 and H2 in order to give the correct

Yukawa couplings. For this, we need to supplement it with
the additional operator:

OH12 = −a2
12m

2
H

2 f 2

∫
d2θWNLWNL H1H2 (5.3)

which generates an off-diagonal mass for the scalars a2
12m

2
H

H1H2. The Higgs mass matrix becomes:

m2
H

(
a2

11 a2
12

a2
12 a2

22

)
(5.4)

One simple way to realize a light eigenstate is to assume
a11 = 0 and a12 � a22. Thus we can take a22 to infinity and
only retain OH22 . The corresponding constraints are exactly
Eq. (5.2). However, this will cause the problem of large tan β.
In the more general case, we require a11a22 − a2

12 = 0 and
derive the equation of motion to either Hi :

1

4
D

2
Hi = −aiimH

2
√

2 f
Wα

NL DαHj − a j jmH

2
√

2 f
Dα

(
Wα

NL Hj
)

−a2
12m

2
H

2 f 2 WNLWNL Hj , (5.5)

in which the l.h.s is from the kinetic term. We include it
since the F-term of Hi contributes to the mass term of h j .
Then we project XNL XNL , XNL XNL Dβ and XNL XNL D2

respectively onto Eq. (5.5):

1

4
XNL XNL D

2
Hi = a j jmH

2
√

2 f
XNL XNL D

αWNLαHj ; (5.6)

0 = XNL XNL D
αWNLα(aii + a j j )DβHj ; (5.7)

0 = aiimH

2
√

2 f
XNL XNL D

αWNLαD
2Hj

+a2
12m

2
H

2 f 2 XNL XNL(DαWNLα)2Hj . (5.8)

Equation (5.7) gives the constraints for the Higgsino:

XNL XNL DαH1 = XNL XNL DαH2 = 0. (5.9)

Applying Eq. (5.6) to (5.8) gives the constraint for the heavy
Higgs:

XNL XNL(a2
12Hj + a2

i i Hi ) = 0. (5.10)

If we use the relation a11a22 − a2
12 = 0, this is equivalent to

XNL XNL(a11H1 + a22H2) = 0. (5.11)

6 Conclusions

The goldstino nilpotent superfield is a common tool to write
constraints that project out some components of other chiral
or vector superfields. Clearly, it is useful to know if there are
consistent microscopic origins of each of such constraints.
And vice-versa, it is also useful to know which constraints are
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obtained when taking some decoupling limits of a given the-
ory leading to non-linearly realised supersymmetry. Along
this line, we have considered the FI model in a regime where
both gauge symmetry and supersymmetry are spontaneously
broken, the latter by the combination of both the FI term
and an induced F-term. This is a very simple model, with
both a pedagogical insight on mechanisms of supersymme-
try breaking and possible applications in phenomenology,
which has not been treated in depth in the existing litera-
ture. After reviewing the basic knowledge of the model, we
proceeded to illustrate in detail how the goldstino appears to
be embedded in a nilpotent superfield. We have worked out
the results in different ways leading to a consistent picture
that is easy to understand. First, starting from the Lagrangian
in components, we have exhibited how the different compo-
nents of the superfields can be expressed as functions of one
goldstone fermion. Then, working directly in superspace, we
were able to follow how the nilpotent superfield emerges at
low energies.

As an application which motivated this work, we have first
shown how the model allows a minimal constrained super-
field which contains only one scalar degree of freedom to be
easily obtained. The necessary constraints to eliminate the
other degrees of freedom are all embedded in a single oper-

ator
∫
d2θD

2
Dα(XNL XNL)Wa

αAa involving our goldstino
superfield and can be obtained from a microscopic theory in
the presence of an effective D-term breaking. We have then
discussed how similar operators can play a role in models
of axions/axinos and supersymmetric models of electroweak
symmetry breaking. Different applications of the resulting
minimal constrained superfields can be advocated. It will be
interesting to investigate in the future if the presence of addi-
tional sectors in the theory, as those necessary to write the
above mentioned operator and which contain gauge vector
bosons, can play a role in these cases.
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