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Abstract

Background: Biochemical and regulatory pathways have until recently been thought and modelled within one cell
type, one organism and one species. This vision is being dramatically changed by the advent of whole microbiome
sequencing studies, revealing the role of symbiotic microbial populations in fundamental biochemical functions. The
new landscape we face requires the reconstruction of biochemical and regulatory pathways at the community level
in a given environment. In order to understand how environmental factors affect the genetic material and the
dynamics of the expression from one environment to another, we want to evaluate the quantity of gene protein
sequences or transcripts associated to a given pathway by precisely estimating the abundance of protein domains,
their weak presence or absence in environmental samples.
Results: MetaCLADE is a novel profile-based domain annotation pipeline based on a multi-source domain annotation
strategy. It applies directly to reads and improves identification of the catalog of functions in microbiomes. MetaCLADE
is applied to simulated data and to more than ten metagenomic and metatranscriptomic datasets from different
environments where it outperforms InterProScan in the number of annotated domains. It is compared to the
state-of-the-art non-profile-based and profile-based methods, UProC and HMM-GRASPx, showing complementary
predictions to UProC. A combination of MetaCLADE and UProC improves even further the functional annotation of
environmental samples.
Conclusions: Learning about the functional activity of environmental microbial communities is a crucial step to
understand microbial interactions and large-scale environmental impact. MetaCLADE has been explicitly designed for
metagenomic and metatranscriptomic data and allows for the discovery of patterns in divergent sequences, thanks to
its multi-source strategy. MetaCLADE highly improves current domain annotation methods and reaches a fine degree
of accuracy in annotation of very different environments such as soil and marine ecosystems, ancient metagenomes
and human tissues.

Keywords: Domain annotation, Metagenomic, Metatranscriptomic, Functional annotation, Probabilistic model,
Environment, Motif

Background
Ecosystem changes are often correlated with the pres-
ence of new communities disturbing their stability by
importing new metabolic activities [1–4]. Very often,
such communities, their functional behaviour and their
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mutual interactions are hard to identify and analyse
[5–9]. Unraveling their structure and determining what
they functionally do is crucial for understanding their
metabolic dynamics and activities.
Computational studies improving the detection of the

functional preferences of environmental communities are
important for gaining insight into ecosystem changes
[10–15]. Ideally, they shall quantitatively relate genetic
information with environmental factors in order to under-
stand how these factors affect the genetic material and
the dynamics of the expression from one environment
to another, from one community to another. Therefore,
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they demand the development of appropriate tools to
zoom in metabolic activities and to compare environ-
ments in detail being as precise as possible in evaluating
the quantity of genetic material (gene protein sequences
or transcripts) associated to a given function.
Over the past years, a lot of effort has been devoted to

the creation of integrated systems for the computational
analysis of metagenomic (MG) and metatranscriptomic
(MT) datasets. Several pipelines conducting data pre-
processing, assembly, taxonomic characterisation, gene
finding, protein-coding gene annotation and pathway
reconstruction, such as MinPath [16], ShotgunFunc-
tionalizeR [17], CAMERA [18], CoMet [19], IMG/M
[20, 21], MetaPath [22], PICRUSt [23], Genometa
[24], MetaPathway [25], COGNIZER [26], MG-RAST
[27, 28], MEGAN [29] and MOCAT2 [30], have been pro-
posed [31]. For functional characterisation, protein gene
annotation remains a fundamentally difficult task that still
needs to be improved in order to better understand the
billions of sequences that remain functionally unanno-
tated [32, 33]. One difficulty comes from the fact that
most environmental coding sequences present no or very
weak similarity with known sequences and that many of
them might be new genes with novel functions. In prac-
tice, they often do not match reference databases or they
match with very low significance scores [34], leading to
a poor functional annotation [32]. A second difficulty is
that environmental coding sequences are fragmented and
annotation of partial information becomes harder due to
a much reduced sequence length. In this respect, since
protein-coding sequences might be too long compared
to reads, in environmental sequence classification, one
can either realise a simultaneous alignment and assembly
of reads using reference proteins or probabilistic protein
sequence profiles [35–37] hoping to improve the sen-
sitivity to detect significant matches, or can focus on
annotating protein domains directly on sequencing reads
[38]. Indeed, domains are functional units, much shorter
than proteins: even though their sizes vary from a few tens
up to several hundreds of amino acids, 90% of the known
domains are smaller than 200 aa with mean size of 100 aa
[39–41]. Despite their short length, they are sufficiently
precise to inform us about the potential functional activity
of the communities. In particular, direct read annota-
tion will become increasingly important in the future,
due to its contribution in the design of computation-
ally efficient and precise assembly algorithms [42]. With
the production of larger and larger MG/MT datasets and
the exploration of new environments (possibly gather-
ing many unknown species), contig reconstruction might
become evenmore challenging if realised without the help
of domain annotation.
Here, we introduce MetaCLADE, a new generation

method for the annotation of protein domains in MG/MT

reads. MetaCLADE uses a multi-source annotation
strategy [43], where each known domain is represented
by a few hundred probabilistic models and an intelligent
algorithmic strategy filters the high number of hits pro-
duced by themodels, retaining only themost reliable ones.
These models, called clade-centered models (CCMs),
span regions of the protein sequence space that are usu-
ally not well represented in a model based on a global
sequence consensus (SCM) [44–47]. They might highlight
motifs, structural or physico-chemical properties charac-
teristic of divergent homologous sequences. Hence, if a
domain is associated to many divergent homologs, CCMs
are expected to describe properties that could be missed
by the SCM representing a global consensus. For this
reason, CCMs should help in finding diverged homolo-
gous sequences in species that might be phylogenetically
distant.
The great improvement in annotation obtained with

the multi-source strategy compared to the mono-source
strategy, employed by the twomost commonly used anno-
tation tools HMMer [47] and HHblits [48, 49], was proven
for CLADE in [43, 50] for genomes and, more generally,
for datasets of complete coding sequences. Many differ-
ent validation tests have been developed in [43], where,
in particular, it has been shown that many of the anno-
tations realised with CLADE based on domains present
in Pfam24 and considered false positives by Pfam24 were
finally validated by the Pfam27 release, this augment-
ing the confidence on CLADE annotation of protein
sequences. With the introduction of MetaCLADE, how-
ever, we push forward this idea and we show that CCMs
can also be used to successfully annotate fragmented
coding sequences in MG/MT datasets, where domain
divergence and species variability might be very large.
Under the hypothesis that the most populated functional
classes define community preferences, the high-quality
quantification of domains in reads reached with Meta-
CLADE allows us to infer domain functional classification
and the functional importance of species in a commu-
nity. Differences in domain counts for specific functional
classes can also be used to compare and characterise
environments.
For the annotation of MG/MT sequences, the main

improvement of MetaCLADE over CLADE lies in the
manner clade-centered models are handled. In fact, Meta-
CLADE employs neither the machine-learning algorithm
for domain annotation nor the algorithm constructing
the most likely protein domain architecture, character-
ising the two main algorithmic steps in CLADE. Due
to the traits of MG/MT reads compared to full protein
sequences (e.g., the very short length), the design of a
specific computational method was demanded. Hence,
in order to annotate fragmented domains and evaluate
much shorter hits, MetaCLADE was designed around
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two main contributions. First, it introduces a novel def-
inition for a domain-specific bi-dimensional gathering
threshold based on a probability space constructed using
a naive Bayes classifier. Second, it simplifies the hit selec-
tion so that domain annotation would be less sensitive to
sequencing errors and hit length.
In order to show how MetaCLADE performs with

respect to known domain annotation methods, we
realised multiple comparative analyses of MG/MT
datasets and demonstrated that MetaCLADE improves
domain annotation and provides an improved resolution
of the functional activity of a community, while clar-
ifying preferences and missing functional features. We
compared MetaCLADE against InterProScan [51, 52], a
tool that combines different protein signature recogni-
tion methods and different domain databases; UProC
[38], a fast and sensitive algorithm that applies directly
to raw reads; and the profile-based assembler HMM-
GRASPx [37]. These are either new or most commonly
used metagenomic annotation tools and, as they are based
on Pfam, we can fairly compare MetaCLADE to them.We
used several datasets, based on either real or simulated
MG/MT sequences, with different characteristics, such
as read length (100 bp versus 200 bp) and non-uniform
species relative abundance. The simulated datasets have
been generated either from known complete genomes or,
more realistically, from MG datasets.

Results
Protein domains found in short MG and MT reads can
be used as precise markers of the functional activity
of an environment. We show that MetaCLADE highly
improves current annotation methods and reaches a very
fine degree of accuracy in annotation.
MetaCLADE workflow is illustrated in Fig. 1a. It takes

a dataset of reads (with an average size between 100 and
500 nucleotides) in input and searches for domains using
a library of more than two million probabilistic mod-
els (CCMs and SCMs) [43] associated to almost 15,000
Pfam domains. For each domain, hundreds of CCMs have
been generated from homologous sequences representing
the entire phylogenetic tree of life. The spread of species
whose sequences were used for CCM construction is illus-
trated by the phylogenetic tree in Fig. 1b, where each leaf
corresponds to a different species. In contrast, the dis-
tribution of models constructed from sequences coming
from different clades of the phylogenetic tree is illus-
trated in Fig. 1c. We note that the total number of models
constructed from bacterial species is higher than from
eukaryotes and even higher than from archaea. Indeed,
a species contributes to at most one model for a domain
and can be used for constructing several models for dif-
ferent domains. As an example, the number of species
considered for Bacteria and Viridiplantae is roughly the

same (Fig. 1b) while the number of models constructed
from bacterial sequences is an order of magnitude
higher than those from Viridiplantae (1.3e+6 vs 1e+5,
see Fig. 1c).
Given a read, a large number of domain hits is pro-

duced from the large number of models. MetaCLADE
filters them according to three main criteria, applied one
after the other to obtain the most likely annotation for
each read. The first selection criteria filters out all over-
lapping hits for the same domain by using the match best
score. Note that for any domain identified in a region
of the read, it keeps exactly one domain hit per region.
Also, note that a read might contain more than one non-
overlapping occurrence of the same domain. This filter
constitutes the first rough selection eliminating redundant
hits and keeping different domains. The second crite-
ria is the heart of the selection step and filters out most
hits by keeping only those having a very high proba-
bility of being true hits. Probabilities are estimated in
MetaCLADE through a pre-computed step that divides
the sequence space of each domain in probability regions
describing whether a hit (possibly a fragment of a domain)
can be accepted with a certain confidence or not. This fil-
ter might eliminate all hits associated to a given domain.
Finally, the third step selects hits that might be asso-
ciated to very similar domains. Often, the hit matches
produced by models associated to similar domains are
overlapping. MetaCLADE carefully evaluates them and
selects the hit with a highest sequence identity to the con-
sensus sequence of the model and the highest bit-score
(see “Methods” section).
A main important methodological point in Meta-

CLADE concerns the explicit estimation of the likelihood
of a hit to be a true domain. This estimation is partic-
ularly sensitive to the length of the hit, that in MG and
MT data might be very small; namely, for each domain,
MetaCLADE defines a two-dimensional gathering thresh-
old (GA) by combining bit-score and mean-bit-score of
the domain hit and by identifying multiple regions in the
two-dimensional sequence space that, with a high prob-
ability, contain reliable annotations for short sequences.
All computational details of the approach (i.e., algo-
rithms, statistical models and parameter thresholds) are
described in the “Methods” section. Differences between
MetaCLADE and CLADE are listed in the “Discussion”
section.
Annotated MG and MT datasets can be explored to

learn about the functional activity of the community. For
this, one has to properly evaluate the performance of the
methods and this was done on simulated datasets and
on several published MG/MT datasets. MetaCLADE’s
improvement over HMMer was shown on a simu-
lated dataset, generated from 56 completely sequenced
genomes with the addition of sequencing errors, and
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Fig. 1 The MetaCLADE workflow. a The MetaCLADE workflow is described in the rectangular green box: the two MetaCLADE main steps are
illustrated in white boxes. MetaCLADE input data is constituted by (i) a set of reads to be annotated where ORFs have been already identified and (ii)
the CLADE model library. The CLADE model library is used to identify all domain hits for a ORF. The large set of identified hits is then combined with
gathering thresholds pre-computed for each domain model (pink box), to realise the second main step in MetaCLADE (right white box):
overlapping domain hits are selected based on three filtering features. The output of the workflow is an annotation of the ORF, possibly constituted
by several domains. The figure illustrates the best expected annotation of a ORF, that is a domain with, possibly, some domain fragments
surrounding it. The rectangular pink box illustrates the pre-computed step. For each domain, the CLADE library contains several hundreds of models
that are used in MetaCLADE to identify the hits. For domain D1, considered in the blue cylinder on the left, the model library contains the consensus
model (blue coloured line, bottom) and hundreds of CCMs generated from sequences that are spread through the phylogenetic tree of species.
Coloured lines represent models constructed from sequences coming from phylogenetic clades coloured on the same colour tone. The blue box
on the right illustrates the pre-computation of the domain-specific parameters for the discrimination of positive (light blue, yellow and dark red)
from negative (blue, orange and red) sequences. Dots in the plots correspond to sequences. The sequence spaces defined by bit-scores and
mean-bit-scores (white plots) and the probability spaces (plots where probabilities are associated to regions) obtained by the naive Bayes classifier
are given. b Phylogenetic tree of species that generated the CCMs used in MetaCLADE [43]. c Histogram reporting the number of CCMs available in
MetaCLADE, organised by clades
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on five ocean MT samples. Five more environmental
samples, produced with 454 GS FLX Titanium technol-
ogy, demonstrated that MetaCLADE annotation highly
improves over InterProScan (run with different libraries).
One more environmental sample, produced with Illumina
HiSeq 2000 technology, confirmed MetaCLADE’s good
performance on datasets of much shorter reads.
To compare MetaCLADE against two state-of-the-art

annotation tools designed for short sequences, HMM-
GRASPx and UProC, we used environmental samples, a
simulated dataset previously employed to evaluate HMM-
GRASPx, and two datasets simulated directly from MG
sequences. These datasets are different in terms of aver-
age read length and species coverage, and they highlight
the complementarity of MetaCLADE compared to UProC
with respect to reads of shorter (100 bp) and longer
(200 bp) size. They help to show that a combination of the
two tools can improve performances even more.

Comparison of MetaCLADE and HMMer on a simulated
metagenomic dataset
We simulated a 454-read dataset from 56 fully sequenced
genomes—belonging to archaea and bacteria—and
accounting for a total size of 187 Mbp (NCBI’s accession
numbers and genome sizes are shown in Additional file 1:
Table S2.) Genomes have been fragmented with MetaSim
[53] and the outcoming clones have been parsed with
FlowSim [54], to simulate realistic insertion and deletion
errors expected during DNA sequencing. FlowSim was
used with the error model of the “454 Titanium FLX”
sequencing platform (error rate ∼ 1%). This resulted in
about 500,000 reads, with an average size of 523 bp, that
were given as input to MetaCLADE.
Even though 454 is becoming nowadays a sequencing

platform less and less used, we considered it in order
to compare MetaCLADE to HMMer on reads that are
not short. Indeed, HMMer was previously shown not to
perform well on short fragments [38].
The performance of MetaCLADE and HMMer on the

aforementioned ORFs was computed on a ground-truth
defined as follows: from each genome, we considered
its CoDing Sequence (CDS) in NCBI and retained only
those also defined by Swiss-Prot (June 2016 release). CDS
regions were further enriched with the available Pfam
domain annotation (version 29). Then, the set of true pos-
itives has been defined by those ORFs overlapping such
Pfam annotations.
Predictions made by MetaCLADE and HMMer have

been compared on two levels by considering or not as true
positives (or true negatives) the predictions which fell into
the same Pfam clan [55] or InterPro family [56]. In the
clan-oriented annotation, MetaCLADE and HMMer were
able to obtain an F-score of 98.57 and 99.56 respectively.
However, MetaCLADE was able to identify more domains

(86.2%) than HMMer (74.8%). Instead, if the compari-
son does not take into account the clans, the F-scores fall
down to 95.22 and 98.16 (with 83.3 and 73.8% of recovered
domains) for MetaCLADE and HMMer, respectively. In
both these analyses, we notice that MetaCLADE presents
a higher number of false positives and false negatives
with respect to HMMer. This is expected as Swiss-Prot’s
annotations—which we used to define the ground-truth—
are based on Pfam and hence on HMMer. A synthesis of
the comparison is reported in Additional file 1: Table S3.
Finally, it is interesting to point out that the 13.8% of

MetaCLADE’s missed domains belonged to very small
fragments, with an average length of 38 aa. The distribu-
tion of E values for domains annotated by MetaCLADE is
plotted in Additional file 1: Figure S6A (a similar analy-
sis which considers the TrEMBL annotation is available in
Additional file 1: Figure S6B).

Functional annotation of large oceanic metatranscriptomic
samples
Domain identification allows to highlight the main func-
tional activities of a community through the identifica-
tion of the functions supported by the most abundant
domains, but also to compare communities and organ-
isms. A more accurate zooming into functional activities
hopefully leads to capture missing features of communi-
ties’ behaviour.
The functional annotation of domains in the five oceans

MT datasets in [57] demonstrates a sharp difference in
relative abundance of domains found by MetaCLADE
compared to HMMer (hmmscan) (Fig. 2a). MetaCLADE
shows that the larger amount of domains it detects
falls coherently in functional classes of interest for spe-
cific environments, reaching a much better resolution
of sign ificant terms among all Metagenomic GO-Slim
functional classes. Certain functional classes, such as
“translation”, are overrepresented for both MetaCLADE
and HMMer, as expected. Others are characteristic of
certain environmental conditions, and they are only
detected by MetaCLADE. The numerical comparison
involving all Metagenomic GO-Slim functional classes
(partly visualised by the heat-map in Fig. 2a) is reported
in Additional file 1 (see the “Methods” section for the
normalisation procedure).
A striking example is the “ion transport” functional

class for the EPAC and ANT samples, where HMMer
annotation completely misses the large presence of
bacteriorhodopsin-like domains in EPAC, as illustrated in
Fig. 2a, b. In other environments, such as the ANT sam-
ple, there is a much weaker presence of these domains
but their existence is nevertheless captured. In particu-
lar, MetaCLADE annotation is much finer than HMMer
annotation as seen in the complexity of the tree graphs
associated to the “ion transport” GO-term in Fig. 2c, d.
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Fig. 2 Functional analysis of MT data collected on five ocean sites. a Comparative table of domain abundance classification. Rows represent the
Metagenomic GO-Slim functional classes that are the most represented, in at least one of the ocean samples. The level of domain abundance
(entries of the table; normalised domain abundance, NS

I defined in the “Methods” section, is rescaled here in the interval [0,1]) for Antarctic (ANT),
North Pacific (NPAC), Equatorial Pacific (EPAC), Arctic (ARC) and North Atlantic (NATL) samples that are described. Samples are arranged in five
columns reporting, for each functional class, the level of abundance obtained with MetaCLADE and HMMer. The colour bar ranks high levels of
abundance in dark red and low levels in blue. The ranking of Metagenomic GO-Slim functional classes (from top to bottom in the table) is fixed by
the average abundance of a domain in the five samples detected by MetaCLADE. Note that only the most abundant subset of GO-Slim classes is
reported. bMetaCLADE analysis of domains belonging to the GO-term “ion transport” (GO.0006811). Results are displayed by GO-terms association
(left) and by domain name (right). Column heights correspond to the estimation NS

I of domain abundance relative to each sample S and functional
class I (see the “Domain abundance” section in the “Methods” section). For each environmental sample, the abundance of the first five most
represented domains in the sample is plotted (note that each column has five colours.) c Hierarchical tree graph of GO-terms for “ion transport”
obtained with MetaCLADE and described in b for the ANT sample. The count of domains classified with a given GO-term in ANT is represented by
the colour of the associated box. The colour scale represents the number of domains identified for a GO-term. Red corresponds to > 150 domain
hits. Each box in the tree graph is coloured independently of its position in the tree graph because each domain is associated to a single box. There
is no cumulative effect in the counting. d Hierarchical tree graph of GO-terms for “ion transport” obtained with HMMer. The GO-terms are associated
to domains identified by HMMer in the ANT sample, compared to c. e Distribution of species originating CCMs used to annotate the five MT
datasets. Due to the different number of reads in the datasets (and hence, the variable number of identified domains), we report the proportion of
species, organised in clades, for each dataset

Note the red colour, representing the highest abun-
dance, given to the node “ion transport” in the Meta-
CLADE tree graph of Fig. 2c compared to the yellow

colour, corresponding to a weaker abundance, in the
HMMer tree graph of Fig. 2d. MetaCLADE tree graph
is much more detailed and precise in the annotation of



Ugarte et al. Microbiome  (2018) 6:149 Page 7 of 27

domains: it contains six nodes (corresponding to distinct
GO-terms) more than the HMMer tree graph. The set
of domains for the GO-term “metal ion transport”, for
instance, is represented by just one node of 44 identi-
fied domains in the HMMer tree graph (Fig. 2d), while
it is detailed by a more complex MetaCLADE tree graph
of 165 identified domains, associated to iron ion, nickel
cation, cobalt ion and ferrous iron transport GO-terms
(Fig. 2c). This association to specific functional roles of
the identified domains can help biologists to better char-
acterise the metabolic regimes of the sample. Overall,
MetaCLADE uniformly annotatesmore domains andwith
a more specific functional association than HMMer. The
same tree graph analysis was realised for all Metage-
nomic GO-Slim functional classes, and the functional
variability, through which annotated domains span within
each tree graph, was estimated by counting the num-
ber of nodes (corresponding to distinct GO-terms) in
the MetaCLADE and HMMer tree graphs. The values
of the analysis are reported in Additional file 2, and
they confirm, at large scale, that MetaCLADE annota-
tion provides a more refined functional description than
HMMer.
In Fig. 2a, some functional classes appear as the most

represented in exactly one environmental sample. This is
the case for the pyrophosphates in NATL, the transfer-
rin and the ammonium transporter in NPAC. Others are
shared by several samples. They might be present in the
remaining samples as well, but relatively less represented
(as for the bacteriorhodopsin-like domains in EPAC and
ANT discussed above, for instance, illustrated in Fig. 2b).
This comparative information is crucial for zooming in
the functional activity of an environment.
Finally, one should notice the distribution of species

providing the homologous sequences generating CCMs
used by MetaCLADE to annotate domains in the
five oceanic samples (Fig. 2e). These eukaryotic read
sequences were mostly annotated by “eukaryotic”
CCMs generated from Metazoa and Alveolata domain
sequences. A large contribution from other organisms,
such as Bacteria, is also present as expected. We notice a
large presence of annotations from “bacterial” CCMs for
EPAC. These annotations mostly concern three domains
(bacteriorhodopsin-like, S-adenosyl-L-homocysteine
hydrolase and cyclosome subunit 3—Apc3 domains)
covering together the 12% of all EPAC CCM annotations
and the 38% of all “bacterial” CCM annotations for EPAC.
These are the domains whose “bacterial” CCMs cover
alone more than the 1% of all CCM annotations; note that
the bacteriorhodopsin-like domain alone covers more
than 25% of “bacterial” CCM annotations for EPAC. The
list of domains that have been annotated by MetaCLADE
with bacterial/eukaryotic/archaea/viral CCMs is given in
Additional file 3. See also Additional file 4.

Identification of divergent domains by conserved small
motifs
MetaCLADE multi-source annotation strategy is used
with the purpose of identifying very divergent domain
sequences lying in reads. In fact, CCMs are probabilis-
tic models that describe closely specific sequences and
they can capture conserved patterns that are specific of
homologs niches and that are missed by SCMs. As a
consequence, CCMs for a domain have the possibility
to describe domain sequences in greater detail and span
a greater space of homologous sequences, possibly very
divergent. For instance, in Fig. 3a, we consider the con-
servation profile of the sequence alignment associated
to a CCM used in the annotation of the rhodopsin-like
domain in MG fragments, missed by HMMer as dis-
cussed above, but whose expression is expected in the
Equatorial Pacific [58, 59]. With this and other CCMs,
MetaCLADE could annotate 371 sequences in EPAC that
could not be detected by HMMer in [57] due to the strong
sequence divergence (Fig. 3d). The conservation profile
of the alignment of the 371 environmental sequences
is reported in Fig. 3b. It is very conserved and corre-
sponds to a portion of the rhodopsin-like domain. This
conserved pattern makes the third of the length of the
entire domain. The rest of the sequence is divergent and
remains with no annotation. One can visually appreci-
ate the stronger similarity of the CCM profile (Fig. 3a)
to the MG sequences (Fig. 3b) compared to the Pfam
SCM profile (Fig. 3d) of the bacterial-like rhodopsin.
Indeed, 48 positions of the CCM profile versus 25 of
the Pfam SCM profile match the alignment of the MG
sequences (that is, given a position, the most represented
amino acid in the MG profile is one of the first three
best represented amino acids in the CCM/SCM profile at
that position).
Note that the motif identified by MetaCLADE in the

eukaryotic MG sample was recently identified in the
dinoflagellate Prorocentrum donghaiense [60] (Fig. 3c)
with an alignment comprised by homologs from Oxyrrhis
marina and bacteria. The conserved positions, character-
istic of the dinoflagellate sequence [60], are recovered in
the alignment of our MG sequences, confirming Meta-
CLADE functional annotation.
MetaCLADE demonstrated that its algorithmic strategy

allows for the identification of conserved small motifs in
MG samples and opens up the possibility of a systematic
characterisation of environmental motifs.

Improved annotation of MG/MT datasets compared to
InterProScan
We ran MetaCLADE and InterProScan [61] with five
different libraries (Pfam [55, 61, 62], Gene3D [63], TIGR-
FAM [64], PRINTS [65] and ProSite [66]) on five pub-
licly available MG and MT datasets (listed in Table 1;
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a

b

c

d

Fig. 3 Conserved motif in bacterial rhodopsin sequences annotated by MetaCLADE in the MT dataset EPAC. a Conservation profile of the
MetaCLADE CCM fragment generated by the Geodermatophilus obscurus (strain ATCC 25078/DSM 43160/JCM 3152/G-20; Actinobacteria) sequence
of the rhodopsin-like domain used by MetaCLADE to annotate environmental sequences in EPAC [57]. An orange dot is located above all positions
in the profile when one of the three top residues with the highest frequency appears as highest frequency residue in the corresponding position of
the conservation profile in b. b Profile generated from the alignment of 371 environmental sequences annotated by MetaCLADE with CCMs of the
rhodopsin-like domain and missed by HHMer. The letter height in the logo is proportional to the number of sequences in the alignment that
contain the letter at a specific position, and the letter thickness is proportional to the number of gaps in the alignment at that position. c Rhodopsin
fragment sequence from the dinoflagellate Prorocentrum donghaiense found in the NR database and matching, with E value 3e−22 and sequence
identity 78%, the longest environmental sequence among the 371 annotated by MetaCLADE. Note that the fragment has been aligned to the
profile in b for a visual inspection of conserved positions. d Conservation profile HMM of the Pfam bacterial rhodopsin domain PF01036 (fragment).
As in c, positions are aligned with the profile in b for best visualisation. An orange dot is located above a position in the profile when one of the
three top residues with the highest frequency appears as highest frequency residue in the corresponding position of the conservation profile in b

see Additional file 1). For these datasets, the sequenced
reads had been pre-processed with the EBIMetagenomics
pipeline [67] leading on which the annotation has been
realised.
These datasets differ in number of reads and difficulty

(measured by the number of annotated domains that
could be identified). The performances of InterProScan

on the five domain libraries differ greatly (Table 1).
The first observation comes from the number of anno-
tated domains shared by the five libraries, which is
very reduced, indicating the complementarity of their
domain models (see Fig. 4a for the Puerto Rico Rain-
forest dataset and Additional file 1: Figures S7A-S10A
for the other four datasets). One observes that Pfam

Table 1 # of ORFs annotated by five different domain annotation tools

MG/MT datasets # Predicted ORFs Gene3d Pfam TIGRFAM PRINTS&Prosite MetaCLADE MetaCLADE +UProC

# of ORFs annotated by each tool

Puerto Rico Rainforest soil metagenome 520 791 189 138 181 777 15 155 27 710 260 953 266 380

Arctic Winter marine ecosystem 358 095 113 307 104 098 6 835 15 324 150 786 158 496

Bone sample from Vindija Neanderthal 74 705 12 793 9 717 612 933 18 589 22 673

Human gut metagenome 45 770 17 873 18 981 905 2 002 27 028 29 645

Human gut metatranscriptome 37 209 10 297 9 699 183 714 16 522 20 479

# of ORFs annotated by one specific tool

Puerto Rico Rainforest soil metagenome 520 791 16 482 1 090 2 473 138 37 811 43 222

Arctic Winter marine ecosystem 358 095 11 564 580 1 703 159 20 531 28 227

Bone sample from Vindija Neanderthal 74 705 1 824 50 294 14 4 663 8 742

Human gut metagenome 45 770 1 368 55 27 7 4 477 7 093

Human gut metatranscriptome 37 209 1 172 20 4 7 3 983 7 938

Number of ORFs (# of ORFs) predicted in reads with FragGeneScan and annotated by different tools. Largest annotations are reported in bold. See Fig. 4 and Additional file 1:
Figures S7-S10, S12-S15 for additional information
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a b

c d

Fig. 4 Read annotations of the Puerto Rico Rainforest MG dataset obtained with InterProScan and MetaCLADE. a Domain annotation of the five
tools: Pfam (yellow), Gene3D (blue), TIGRFAM (purple), PRINTS&ProSite (orange) and MetaCLADE (green). The Venn diagram representing the
number of reads annotated by one or several tools is reported. b Distribution of species originating CCMs used to annotate the dataset with
MetaCLADE. c Distributions of E values associated to the sets of domains identified in an exclusive manner by each tool. For instance, for
MetaCLADE, we considered 37,811 domains (see a). E values are plotted on the x-axis using a − log10 scale. d Distribution of E values associated to
all domains identified by MetaCLADE. As in c, E values are plotted on the x-axis using a − log10 scale

and Gene3D annotate the largest number of domains,
together with MetaCLADE that largely agrees with them.
In Fig. 4a, for instance, over 260,000 domains annotated
by MetaCLADE, only 38,811 are identified exclusively
by MetaCLADE, while all others are found by at least
another tool. TIGRFAM and PRINTS&ProSite (the union
was considered) annotate the least, and their annotation
is largely covered by other libraries. In particular, notice
that MetaCLADE annotates a large number of reads that
are missed by InterProScan for all five datasets. Table 1
reports the number of ORFs annotated by each library
(top) and those exclusively annotated by a single library
(bottom). MetaCLADE shows a high number of uniquely

annotated ORFs, and, in this respect, it clearly demon-
strates to go far beyond InterProScan based on different
domain libraries. Moreover, on all datasets, the distribu-
tion of E values associated to MetaCLADE annotation
shows a higher statistical confidence compared to Inter-
ProScan with all its libraries. This is illustrated by the
density curves in Fig. 4c and Additional file 1: Figures
S7C-S10C where the peak of the MetaCLADE curve lies
at the rightmost side compared to all other domain anno-
tation tools. In particular, this is true for the Gene3D
library, whose peak corresponds to the acceptance thresh-
old for this tool. This allows to explain why MetaCLADE
seems to perform poorly on the domains exclusively
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annotated by Gene3D. In fact, Gene3D uses the E value
threshold 1e−4 which is for most domains too permis-
sive. Domains were exclusively identified by Gene3D with
an average E value of 1e−7, while domains exclusively
identified by MetaCLADE have an average E value
of 1e−12.
We note that all the 2473 domains annotated exclusively

by TIGRFAM correspond to signatures/domains that are
unknown to Pfam (version 27, for which CCMs have been
generated) and therefore to MetaCLADE.

Identification of motifs in short reads: the example of ABC
transporters
MetaCLADE is also suitable for technologies producing
very short reads like Illumina HiSeq 2000 sequencing sys-
tem. We analysed the predicted ORFs left without anno-
tation by InterPro from one run of the O’Connor lake
dataset. The dataset contains 1,315,435 input reads and
1,211,131 predicted ORFs, with an upper bound on the
missed ORFs of 104,304. InterProScan annotated 273,903
ORFs, leaving unannotated 937,228 ORFs. The two sets of
predicted and unannotated ORFs have ameanORF length
of 123 bp, with a minimum of 100 bp and a maximum of
135 bp. MetaCLADE analysed the 937,228 unannotated
ORFs and succeeded to annotate 57,356 of them. The
distribution of E values for MetaCLADE annotations is
shown in Additional file 1: Figure S11. The list of the most
abundant identified domains is given in Additional file 1:
Table S6. The domain ranked first is the ABC transporter
type 1.
The presence in the MG dataset of annotated sequences

presenting some sequence similarity to the known ABC
transporters is an indicator of potential metabolic activ-
ities that we wish to discover. To support confidence on
this identified group of sequences, we scanned them to
see if we could find motifs that are known to charac-
terise the ABC transporter domain (https://www.ebi.ac.
uk/interpro/entry/IPR000515). For this, we considered all
1109 environmental sequences annotated as ABC trans-
porter type 1 by MetaCLADE (Additional file 1: Table S6)
and selected the ones with an E value smaller than 1e−4.
There are 945 sequences with an average length of 36.9
residues. We ran MEME [68] on them to find the 10
most significant motifs. Among these motifs, we identi-
fied the EAA motif, a 20 amino acid-conserved sequence
known to occur in ABC transporter type 1 (https://
www.ebi.ac.uk/interpro/entry/IPR000515) (See motif 9 in
Additional file 1: Table S7; strictly speaking, we found
a portion of the known EAA motif, where the submotif
EAA− − −−G occurs [69].). The consensus sequences of
the 10motifs (for example,FNLLGDGLRDALDPR formotif
1 and GAILTEAALSFLGLG formotif 9 in Additional file 1:
Table S7) were used as query to search the NR database.
For all consensus sequences, most of the hits found

(> 95%) matched ABC transporters. In rare cases, BLAST
[70] retrieved, in addition to the great majority of ABC
transporters, other transport systems permeases or hypo-
thetical proteins.
The presence of known motifs favourably supports the

finding, andMetaCLADE proves to be able to extract use-
ful functional information even from very short reads.
In this respect, Additional file 1: Table S6 shows that
MetaCLADE annotations can substantially change the
estimations of domain abundance in MG samples com-
pared to estimations realised with HMMer. This confirms
what was already observed for the ocean MT datasets,
where MetaCLADE allowed for a more precise functional
comparison.

Sensitivity of MetaCLADE on the distribution of species
generating the models
To analyse MetaCLADE’s sensitivity on the distribution
of species from which models have been generated com-
pared to species where reads come from, we verified the
distribution of species generating models used for the
annotation of nine simulated datasets of reads. These
datasets contain short fragments coming from species
belonging to bacteria, viruses, archaea and eukaryotes.
Specifically, they are constructed by gradually increment-
ing (by 10%) the number of eukaryotic sequences in them
(see the “Methods” section). The nine resulting datasets
have been annotated with MetaCLADE, and the origin
of the CCMs used is reported in Fig. 5. As expected, in
the annotation process, MetaCLADE tends to use mod-
els close to the communities represented in the dataset;
namely, the number of models generated from eukary-
otic sequences used for annotation is proportional to the
quantity of eukaryotic reads in the datasets. This observa-
tion holds true for real datasets as illustrated in Figs. 2e
and 4b (see also Additional file 1: Figures S7B-S10B).

Comparison with UProC
UProC is a very fast protein classification tool designed
for large-scale sequence analysis. It is much faster than
profile-based methods, like MetaCLADE, and in MG
datasets was demonstrated to achieve high sensitivity
[38]. We tested whether MetaCLADE, on real datasets,
is identifying more domains than UProC or not. The
answer depends on the average length of the reads in
the dataset. We took the five environmental samples con-
sidered in the section “Improved annotation of MG/MT
datasets compared to InterProScan” (see Additional file 1:
Table S4), ran UProC on them and compared to Meta-
CLADE results. For the Rainforest MG dataset, the analy-
sis is reported in Fig. 6a. As illustrated in Fig. 6b, the 5439
reads that are uniquely annotated by UProC are either of
very small size, < 50 aa, or much larger, > 150 aa. In con-
trast, the 22,059 MetaCLADE exclusive annotations do

https://www.ebi.ac.uk/interpro/entry/IPR000515
https://www.ebi.ac.uk/interpro/entry/IPR000515
https://www.ebi.ac.uk/interpro/entry/IPR000515
https://www.ebi.ac.uk/interpro/entry/IPR000515
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Fig. 5 Distributions of species whose sequences generated models for MetaCLADE annotation. Analysis of nine simulated datasets named “Eukx”
containing x% of reads coming from eukaryotic sequences. For increasing values of x, one observes a proportionally higher number of CCMs
coming from eukaryotes (red) that have been used for the annotation of the dataset. The proportion of bacteria (violet), archaea (yellow) and viruses
(green) is reported for each dataset

not concern very small reads but rather reads with larger
size > 50 aa, and particularly > 150 aa. The E value den-
sity distribution curve of UProC annotations (see Fig. 6c
and “Methods” section) highlights reasonably low E values
showing a high confidence in most UProC domain anno-
tations. The second best curve is MetaCLADE’s curve,
placed on its left, followed by the InterProScan curves.
A quite large number of reads exclusively predicted by

UProC is also predicted by MetaCLADE but not selected
by MetaCLADE because of its probability threshold set at
0.9. More precisely, they cover less than 50% of the UProC
exclusively predicted reads. By looking at the confidence
of these domain predictions, a large number of these pre-
dicted reads have very low probability (see Fig. 6d). This
observation suggests that, for these domains, the CLADE’s
library does not cover properly the spread of evolutionary
variability of the domains.
In Additional file 1: Figures S12-S15, we report the anal-

ysis of the other four MG and MT datasets. All these
datasets confirm that most uniquely annotated UProC
reads are very short (< 50 aa) compared to reads
uniquely annotated by MetaCLADE (see Additional file 1:
Figures S12B-S15B). The density curves of the UProC’s
associated E values occupy the right-hand side of the
plots (see Additional file 1: Figures S12C-S15C) with
a peak that indicates an optimal average E value for
UProC reads. Moreover, from the distribution of domain
lengths for uniquely annotated reads in Additional file 1:
Figure S16, we observe that, depending on the dataset,
for a given domain, the read multiplicity can be much
larger for MetaCLADE than for UProC. The reason is
anchored on the way UProC and MetaCLADE handle

sequence information. Indeed, if the space of sequences
in the FULL Pfam dataset associated to a domain spans
well over diversified homologous sequences, then UProC,
which exploits all FULL Pfam sequences, can produce
highly confident predictions. If the number of Meta-
CLADE models is small compared to the number of
diversified FULL Pfam sequences, it might represent well
only a part of the diversification and fail in predicting
homology on the unrepresented pool of sequences. In
contrast, if the FULL Pfam dataset does not span well
over the entire set of homologous sequences, then Meta-
CLADE might be able to reach those diverged sequences
that cannot be reached by UProC by exploiting its
probabilistic models.

A first comparison with HMM-GRASPx using an
assembly-based approach
Assembly algorithms can be used prior to functional
annotation of a given MG dataset. We evaluated
MetaCLADE’s performance against HMM-GRASPx [37],
a state-of-the-art assembly-based annotation method.
HMM-GRASPx is characterised by a profile-guided
assembly phase in which assembled protein contigs are
verified through a HMMER realignment of Pfam pro-
files. Hence, a domain family is assigned to the reads by
mapping them back to verified contigs. In order to pro-
vide a fair comparison of the two methods, we decided to
annotate the assembly generated by HMM-GRASPx with
MetaCLADE and transfer this annotation on the reads by
mapping them back to the assembly as done by HMM-
GRASPx. Unmapped reads were also separately annotated
with MetaCLADE. In parallel, we considered another
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a b

c d

e f

Fig. 6 Read annotations of the Puerto Rico Rainforest MG dataset obtained with InterProScan, UProC and MetaCLADE. a Domain annotation of five
tools: Pfam (yellow), Gene3D (blue), TIGRFAM (purple), UProC (orange) and MetaCLADE (green). The Venn diagram representing the number of
reads annotated by one or several tools is reported. b Length distribution of reads annotated exclusively by either UProC or MetaCLADE. c
Distributions of E values associated to the sets of domains identified in an exclusive manner by each tool. For instance, for MetaCLADE, we
considered 22,059 domains (see a). E values are plotted on the x-axis using a − log10 scale. d Distribution of probabilities associated to those
exclusive UProC domain annotations that have been detected by MetaCLADE but discarded because of the probability threshold 0.9. e Venn
diagram as in a of Fig. 4, but where MetaClade is replaced by MetaCLADE+UProC. f As in c, but where MetaCLADE is replaced by MetaCLADE+UProC
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assembly approach, based on the construction and
annotation of a gene catalog [71, 72], where input reads
are assembled using a canonical assembly pipeline, ORFs
are predicted and putative gene sequences are clustered in
order to create a non-redundant set (i.e. the gene catalog).
The latter was annotated with MetaCLADE. Reads were
finally mapped back to the catalog and the annotation
transferred accordingly. Unmapped reads were also
separately annotated with MetaCLADE. We compared
MetaCLADE based on both assembly approaches against
HMM-GRASPx.
To assess annotation performances, the experiment was

run on the dataset used in [37] which was augmented in
order to better reflect the size of modern metagenomic
datasets. More precisely, a set of 20 million paired-end
reads was generated from a simulated marine dataset with
uneven coverage and read length of 100 bp. A total of 303
Pfam domain families that are involved in some important
metabolic pathways were selected as input for HMM-
GRASPx and MetaCLADE as in [37] (details are reported
in the “Methods” section).
The results of our comparison are reported in Table 2

showing that MetaCLADE always outperforms HMM-
GRASPx regardless of the assembly method considered.
MetaCLADE, however, performed better considering the
gene catalog as a reference. The same observation still
holds when clans are evaluated, that is when domain hits
of the same clan (with respect to the gold standard) are
counted as true positives.
The same comparison had also been carried out on a

simulated dataset of about 10 million 200-bp paired-end
reads (keeping the same average coverage and compo-
sition of the 100-bp read dataset). Here again, Meta-
CLADE outperformed HMM-GRASPx (Additional file 1:
Table S13), especially when considering HMM-GRASPx’s
assembly as a reference for MetaCLADE. As a matter of
fact, the lower number of reads led to a more fragmented
gene catalog and a lower performance of MetaCLADE on
these assembled sequences. However, it was not possible
to increase the read number (e.g. to 20 million) due to
the excessive amount of computational resources (more
than 128 GB of RAM) demanded by HMM-GRASPx. In
fact, the application of HMM-GRASPx seems limited to
datasets of modest size (in terms of both read and profile
number).
Overall, even though MetaCLADE achieved very good

performances in this assembly-based scenario, we should
emphasise that it had been specifically tailored to work
with relatively short fragments. Nevertheless, it can def-
initely benefit from read assembly (possibly in com-
bination with CLADE [43] for the treatment of long
sequences). For this reason, we envisage the intro-
duction of a preliminary assembly phase in a future
implementation of our tool.

Comparison with HMM-GRASPx and UProC on datasets of
100- and 200-bp reads
To investigate further MetaCLADE performance with
very short reads, characterising the growing number of
Illumina sequencing MG datasets available, we gener-
ated two sets of sequences, 100 bp (1,226,882 reads)
and 200 bp (682,380 reads) long, from the Guerrero
Negro Hypersaline Microbial Mats dataset (GNHM; see
Additional file 1). GNHMwas used in [38] to demonstrate
UProC performance on short reads versus profile-based
methods and, indeed, in [42], it was shown that profile
hidden Markov models substantially lose sensitivity on
shorter reads. The two datasets have been evaluated by
considering the annotations obtained either with Pfam
(version 27) or with CLADE domain library (also based on
Pfam27).
Table 3 shows a slightly better performance of

UProC compared to HMM-GRASPx andMetaCLADE on
GNHM for 100-bp reads with a gold standard set by Pfam
annotation. The behaviour becomes less sharp when the
gold standard is CLADE, characterised by a larger num-
ber of domains. In particular, when clans are considered,
MetaCLADE and UProC produce comparable F1-scores,
of 57.7 and 58.9 respectively. As 200-bp reads are con-
cerned, MetaCLADE outperforms UProC and HMM-
GRASPx regardless of whether clans are considered
or not. Notice the high F-scores reached by Meta-
CLADE, 84.6 and 81.7 versus 74 and 68.9 reached
by UProC on the two gold standards when clans
are considered (Table 4). It is also interesting to
notice that for the 200-bp reads, MetaCLADE iden-
tifies a much larger number of true positives and a
smaller number of false negatives than UProC, for both
gold standards and independently on whether clans
are considered or not. In particular, when consider-
ing the gold standard set by CLADE and clans, Meta-
CLADE identifies 80,000 domains more than UProC,
and a smaller number of false negatives and false
positives.
The two plots in Additional file 1: Figure S17 dis-

play the relation between precision and recall, in order
to evaluate the performance of the two tools on the
two datasets, when the gold standard is CLADE and
clans are considered. MetaCLADE displays a slightly
better behaviour than UProC for fixed recall values.
Notice that for very small recall values and, hence,
very high hit scores, UProC detects a higher num-
ber of false positives (yet quite small) compared to
MetaCLADE. This is seen with the behaviour of the
curves in the zoomed plots in Additional file 1:
Figure S17, bottom. Precision-recall curves for UProC
and MetaCLADE with Pfam-based gold standard and
clan-based annotation are shown in Additional file 1:
Figure S18.
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Table 3 Comparison of UProC, HMM-GRASPx and MetaCLADE on the Guerrero Negro Hypersaline microbial Mat project (100-bp reads)

Tool TP FP FN Recall Precision F-score

Pfam gold standard

UProC 323 659 31 539 357 182 47.5 91.1 62.5

MetaCLADE 291 896 57 955 388 945 42.9 83.4 56.6

HMM-GRASPx 325 689 41 155 355 152 47.8 88.8 62.2

MetaCLADE+UProC 370 274 72 132 310 567 54.4 83.7 65.9

UProC+MetaCLADE 378 449 70 063 302 392 55.6 84.4 67.0

UProCclan 328 910 26 288 351 931 48.3 92.6 63.5

MetaCLADEclan 309 629 40 222 371 212 45.5 88.5 60.1

HMM-GRASPxclan 334 480 32 364 346 361 49.1 91.2 63.9

MetaCLADE+UProCclan 389 454 52 952 291 387 57.2 88.0 69.3

UProC+MetaCLADEclan 390 388 58 124 290 453 57.3 87.0 69.1

CLADE gold standard

UProC 308 483 48 077 476 068 39.3 86.5 54.1

MetaCLADE 286 458 48 696 498 093 36.5 85.5 51.2

HMM-GRASPx 296 742 69 211 487 809 37.8 81.1 51.6

MetaCLADE+UProC 361 794 64 085 422 757 46.1 85.0 59.8

UProC+MetaCLADE 366 221 66 114 418 330 46.7 84.7 60.2

UProCclan 336 302 20 258 448 249 42.9 94.3 58.9

MetaCLADEclan 323 009 12 145 461 542 41.2 96.4 57.7

HMM-GRASPxclan 328 729 37 224 455 822 41.9 89.8 57.1

MetaCLADE+UProCclan 405 734 20 145 378 817 51.7 95.3 67.0

UProC+MetaCLADEclan 406 370 25 965 378 181 51.8 94.0 66.8

The first table considers Pfam27 annotations as gold standard, while the second one uses CLADE27. Each table is made of two sub-tables where we evaluate annotation on
exact domains (top) and on clans (bottom). Annotations with domains of the same clan are counted as true positives
Largest values are reported in italics

Ameasure of the improvement obtained by combining
MetaCLADE and UProC
By combining MetaCLADE and UProC, we obtain
an improved quality of the functional assignments of
sequences of GNHM on both the 100-bp and the 200-bp
datasets. Indeed, for the two datasets, we consid-
ered the annotation realised by MetaCLADE augmented
with UProC annotation on those reads left unanno-
tated by MetaCLADE, and called this approach Meta-
CLADE+UProC (see the “Methods” section). Vice versa,
we considered the annotation realised by UProC aug-
mented with MetaCLADE annotation on those reads
left unannotated by UProC, and called this approach
UProC+MetaCLADE (see the “Methods” section). On
both GNHM datasets, for the 100- and 200-bp reads,
UProC+MetaCLADE outperformed on exact domain
annotation and MetaCLADE+UProC on clan annota-
tion. This is expected because UProC, based on word
matching, is intuitively similar to very conserved CCMs
that are very close to known sequences. Most impor-
tantly, the performance of their combination is bringing

a clear improvement in terms of number of correctly
predicted domains independently on the gold standard
and on the dataset (Tables 3 and 4). In Additional
file 1: Figure S17, the precision-recall curve for Meta-
CLADE+UProC shows that the addition of unique UProC
annotations to MetaCLADE increases the number of false
positives and therefore decreases precisions, as also seen
in Table 3. The advantage in using a combined approach
like MetaCLADE+UProC relies on the increase of the
recall (since false negatives decrease) counterbalanced by
a small decrease in precision (since false positives slightly
increase).
The combination MetaCLADE+UProC has been tested

also on the Rainforest MG dataset, where it produced
a much larger number of read predictions as illus-
trated in Fig. 6e, accompanied by a distribution of E
values showing high confidence (see Fig. 6f and com-
pare it to Fig. 4a, c). MetaCLADE+UProC behaviour
on the other four MG/MT samples in Table 1 is
reported in Additional file 1: Figures S12E-S15E and
shows a high improvement in performance associated
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Table 4 Comparison of UProC, HMM-GRASPx and MetaCLADE on the Guerrero Negro Hypersaline microbial Mat project (200-bp reads)

Tool TP FP FN Recall Precision F-score

Pfam gold standard

UProC 252 245 28 101 161 239 61.0 90.0 72.7

MetaCLADE 307 711 50 380 105 773 74.4 85.9 79.8

HMM-GRASPx 288 152 38 152 125 332 69.7 88.3 77.9

MetaCLADE+UProC 319 829 55 189 93 655 77.3 85.3 81.1

UProC+MetaCLADE 326 133 56 556 87 351 78.9 85.2 81.9

UProCclan 256 847 23 499 156 637 62.1 91.6 74.0

MetaCLADEclan 326 217 31 874 87 267 78.9 91.1 84.6

HMM-GRASPxclan 293 267 33 037 120 217 70.9 89.9 79.3

MetaCLADE+UProCclan 338 609 36 409 74 875 81.9 90.3 85.9

UProC+MetaCLADEclan 339 285 43 404 74 199 82.1 88.7 85.2

CLADE gold standard

UProC 240 762 43 085 244 393 49.6 84.8 62.6

MetaCLADE 302 583 63 491 182 572 62.4 82.7 71.1

HMM-GRASPx 262 511 64 833 222 644 54.1 80.2 64.6

MetaCLADE+UProC 316 656 68 490 168 499 65.3 82.2 72.8

UProC+MetaCLADE 322 760 70 325 162 395 66.5 82.1 73.5

UProCclan 264 787 19 060 220 368 54.6 93.3 68.9

MetaCLADEclan 347 936 18 138 137 219 71.7 95.0 81.7

HMM-GRASPxclan 290 155 37 189 195 000 59.8 88.6 71.4

MetaCLADE+UProCclan 363 667 21 479 121 488 75.0 94.4 83.6

UProC+MetaCLADEclan 364 641 28 444 120 514 75.2 92.8 83.0

The first table considers Pfam27 annotations as gold standard, while the second one uses CLADE27. Each table is made of two sub-tables where we evaluate annotation on
exact domains (top) and on clans (bottom). Annotations with domains of the same clan are counted as true positives
Largest values are reported in italics

to high confidence E values (Additional file 1: Figures
S12F-S15F).

Discussion
MetaCLADE was especially designed to consider the
partial information contained in domain fragments,
localised in reads. For this, we defined a powerful two-
dimensional domain-dependent gathering threshold and
we use multiple models to represent each domain, possi-
bly characterising small conserved motifs for the domain.
In future development, we foresee to improve the tool in
several ways (see also [43]):

More domains and new models for an improved
MetaCLADE annotation. New CCMs could be added
to the library with the hope to reach novel and unrep-
resented evolutionary solutions for a domain. An obvi-
ous improvement could be obtained by extending the
library with the set of new domains included in Gene3D
and TIGRFAM. The motifs represented in PRINTS and
ProSite could be also considered and the associated

profiles handled in MetaCLADE. Note that MetaCLADE
package provides the program to pre-compute gathering
thresholds for all domain models. This allows the user to
compute appropriate thresholds based on new CCMs.

Constructing a library of conserved small motifs. The
search for sequence motifs in an environmental sample
might be realised with a computationally costly “all against
all” read comparison. Alternatively, starting from themost
conserved patterns comprised in CCMs, we can generate
a repertoire of significant motifs specific of each domain
in order to improve hit selection criteria. A systematic
classification of these motifs might lead to datasets of
motifs that could be used as environmental signatures of
metabolic activities.
These “environmental patterns” could be also used to

find new domains in environmental samples with Meta-
CLADE. The advantage in this search approach, com-
pared to an “all against all” strategy, is that patterns are
constructed starting from domains, possibly function-
ally annotated and that this annotation could be used
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to associate a potential functional role to new domains
discovered through the pattern.

Annotation of longer sequences. Availability of long
reads and read assembly in contigs allow reconstruct-
ing longer stretches, and possibly entire, ORF sequences.
In this case, one could replace the third filter in Meta-
CLADE with DAMA [73], to reconstruct the best domain
architecture as done in CLADE.

Reduction of the number of redundant models in
MetaCLADE. Some of the probabilistic models in Meta-
CLADE library are expected to be redundant, and a suit-
able handling of these models, after clustering, should
help to increase the speed of the method and to pre-
serve the same predictive power. Future development of
MetaCLADEwill reduce the number of redundantmodels
representing domains.

New criteria to filter overlapping hits in MetaCLADE.
Different domain hits could be selected by exploiting fur-
ther the characteristics of the two-dimensional space of
sequences pre-computed for the domains. For instance,
one could privilege the domain hits with larger bit-
score/mean-bit-score distance from the closest negative
in the space. These filtering conditions could improve the
annotation and need to be tested at large scale.

MetaCLADE differences with CLADE. MetaCLADE
has been designed with the purpose of annotatingMG and
MT reads. It exploits the multi-source annotation strat-
egy introduced in CLADE and the CLADE model library,
but it handles the models and their output in a differ-
ent manner. Indeed, the CLADE pipeline combines the
output of its rich database of probabilistic models with a
machine-learning strategy in order to determine a set of
best predictions for each domain sequence. Then, DAMA
[73] is used to find the best domain architecture, by using
information on domain co-occurrence and by exploiting
multi-objective optimisation criteria.
Neither CLADE machine-learning algorithm nor

DAMA are used in MetaCLADE. In fact, the charac-
teristics of MG and MT reads, compared to full protein
sequences, are their short lengths and the presence of
multiple sequencing errors in them compared to full-
length ORFs. Hence, they demand the design of a special
computational protocol taking into account the particular
nature of the data; namely:

1. CCMs cannot be used with tailored GA thresholds as
in CLADE. Instead, we introduce an original
bi-dimensional gathering threshold that is
specifically designed for evaluating short hits. For
each domain, we compute a probability space on

which to evaluate hits. This is done with a naïve
Bayes classifier. Note that the computation of such a
probability space depends on an appropriate
generation of positive and negative sequences on
which evaluate models for a domain.

2. CLADE machine-learning algorithm cannot be used
for protein fragment identification. Indeed, CLADE
works well with the full domain annotation of known
genomes. In its design, it explicitly considers E value,
hit length, consensus on multiple domain hits and
clade-specific hits. On the other hand, read
annotation should be less sensitive to sequence errors
and hit length and should disregard the species the
sequence comes from. In MetaCLADE, we do not
use a SVM combining the above characteristics but
instead we create a simpler pipeline of hit selection.

3. DAMA, the tool used in CLADE to reconstruct
protein architectures, cannot be used on short reads.
Indeed, reads might be long enough to contain at
most one adjacent pair of domains and certainly
cannot provide information to evaluate the
contextual annotation of a domain within a potential
domain architecture. In MetaCLADE, knowledge of
adjacent pairs of domains could be considered but we
left it for future developments.

Conclusion
MG and MT datasets have been explored mostly to learn
about which and in what abundance species are present
in the community. Learning about the functional activ-
ity of the community and its subcommunities is a crucial
step to understand species interactions and large-scale
environmental impact. Ecological questions, such as how
limited availability of abiotic factors in an ocean shape
most abundant genes in a community, or how tempera-
ture affects eukaryotic phytoplankton growth strategies,
for example, can be approached with an accurate domain
annotation and a precise functional mapping. In this
respect, one might need to zoom into functional activities
and metabolic pathways employed by the environmen-
tal communities that might involve non-highly expressed
genes. This means searching for lowly abundant domains
that, through cooperation, might imply important func-
tional effects. In order to capture common and rare
entities in a given environment, functional annotation
methods need to be as precise as possible in identifying
remote homology.
Nowadays, the bottleneck resides in the annotation step,

directly influencing an appropriate quantitative estima-
tion of the domains. Here, we show how MetaCLADE,
based on a multi-source annotation strategy especially
designed for MG/MT data, allows for the discovery of
patterns in very divergent sequences and provides a way
to overcome this fundamental barrier. With the ongoing
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generation of newMG/MT data, unknown sequences will
augment in number and probabilistic models are expected
to play a major role in the annotation of sequences that
span unrepresented sequence spaces. This point is clearly
shown in our comparison with UProC, which is based
on k-mer recognition, and therefore particularly adapted
to the identification of already known domain sequences.
By construction, UProC approach cannot be successful
on unknown diverged domain sequences, a context where
probabilistic domain modelling fully reveals its predictive
power.

Methods
This section explains MetaCLADE’s methodology and the
datasets used in the analyses. The differences between
MetaCLADE and CLADE [43] are presented in the
“Discussion” section. The time complexity is explained in
Additional file 1.
The testing datasets were designed to fit current tech-

nological characteristics. We considered that Illumina
represents nowadays the dominant technology in most
sequencing projects. Currently, the HiSeq and MiSeq
platforms are able to produce pair-end reads of 150 bp
and 300 bp, respectively (with a much higher through-
put for the first one). Such fragments in practice might
be even shorter after the required low-quality-base trim-
ming. For these reasons, we considered testing datasets
of reads of increasing lengths. More precisely, we chose
100 bp and 200 bp as read lengths. However, we also
chose to test MetaCLADE on simulated 454 fragments
(mean length 523 bp) in order to prove its versatil-
ity and to show the annotation improvement as read
length increases. This test is particularly important in
view of the efforts from current technologies to increase
read length.

The multi-source annotation strategy and the CLADE
library
Widely used search methods based on sequence-profile
and profile-profile comparison, such as PSI-BLAST [45],
HMMer [47] and HHblits [49], are based on a mono-
source annotation strategy, where a single probabilistic
model, generated from the consensus of a set of homol-
ogous sequences, is used to represent a protein domain.
The mono-source strategy typically performs well when
sequences are highly conserved. In this case, the consen-
susmodel captures themost conserved features in domain
sequences and it can be successfully used to find new
domains in databases of sequences, sharing the same fea-
tures as the original sequence. However, when sequences
have highly diverged, consensus signals become too weak
to generate a useful probabilistic representation and mod-
els constructed by global consensus do not characterise
domain features properly.

To overcome this fundamental bottleneck, CLADE [43],
a domain annotation tool tailored to full genomes, intro-
duced a multi-source annotation strategy, where sev-
eral probabilistic models are used to represent a protein
domain. For each Pfam domain Di, CLADE considers the
FULL set of homologous sequences Si in Pfam [61] asso-
ciated to Di, and for some representative sequences sj in
Si (see below), it constructs a model by retrieving with
PSI-BLAST [45] a set of sequences similar to sj from
the NCBI NR database. The probabilistic model gener-
ated in this way displays features that are characteristic
of the sequence sj and that might be very different for
other sequences sk in Si. The more divergent the homol-
ogous domain sequences sj and sk are, the more models
constructed from these sequences are expected to display
different features. It is therefore important for a domainDi

to be represented by several models that can characterise
its different pathways of evolution within different clades.
These probabilisticmodels are called clade-centeredmod-
els (CCMs). The multi-source annotation strategy has
proven more efficient than the mono-source annotation
strategy when applied to full genomes [43]. In particu-
lar, due to their closeness to actual protein sequences,
CLADE’s CCMs are shown to be more specific and
functionally predictive than the broadly used consensus
models.
MetaCLADE is based on the multi-source annotation

strategy and employs the CLADE library that includes
the Pfam sequence consensus models (SCM) and at most
350 clade-centered models (CCM), with an average of
161 models per domain. The representative sequences
associated to these models are selected in order to span
most of the tree of life, the underlying idea being that
evolutionary patterns can be found in species that are
very far apart in the tree. This amounts to more than 2.5
millions probabilistic models.

The MetaCLADE’s pipeline
MetaCLADE’s pipeline is illustrated in Fig. 1. It is based on
two main steps, dedicated to the identification of domain
hits and on their selection, and on a pre-computed learn-
ing step setting domain-specific two-dimensional thresh-
olds used in domain selection.

Identification of domain hits
MetaCLADE takes as input a set of MG/MT sequences to
be annotated and the CLADE model library. More specif-
ically, the input sequences coming from a dataset of reads
are expected to be (subsequences of ) open reading frames
(ORFs). Alternatively, one can use MetaCLADE on the six
reading frame translations of the reads.
Each sequence is scanned with the model library in

order to identify all domain hits. Each hit is defined by a
bit-score, that is the PSI-BLAST/HMMer score associated



Ugarte et al. Microbiome  (2018) 6:149 Page 19 of 27

to the match, and by a mean-bit-score, that is the bit-
score of the hit divided by its length. These two scores
are used to evaluate the likelihood of the hit to repre-
sent a true annotation (see the “Selection of domain hits”
section; for the computation of the likelihood see the
“Pre-computed two-dimensional gathering thresholds for
domain identification” section).
The output of this first step of MetaCLADE is a set

of hits, each one defined by a domain family D, a prob-
abilistic model M associated to D, a bit-score and a
mean-bit-score.

Selection of domain hits
The second step of the pipeline filters the set of hits as
follows:

1. All pairs of overlapping hits associated to the same
domain (i.e. the overlap region covers at least 85% of
both hit lengths) are processed with the intention of
eliminating their redundancy. Therefore, for each
overlapping pair, we retain only the best hit (i.e. with
the higher bit score). The filtering is realised
independently for CCMs and for SCMs.

2. Based on the probability obtained with the naive
Bayes classifier [74] applied to each Pfam domain (see
the “A naive Bayes classifier sets two-dimensional
thresholds for fragmented domains” section),
MetaCLADE retains only those hits whose bit-score
is greater than a domain-specific lower bound
identified by the classifier and whose probability p of
being a true positive is greater than 0.9. More precisely,
such a lower bound is defined as the smallest bit-score
of the negative sequences used by the classifier during
its training (see the “Pre-computed two-dimensional
gathering thresholds for domain identification” section).

3. Hits are filtered according to a ranking function
based on the bit-score and the identity percentage
computed with respect to the model consensus
sequence. Specifically, we associate to each hit a real
number in the interval [ 0, 1] representing the
statistical significance of the bit-score. Such a value is
thenmultiplied by the identity percentage of the hit in
order to define the ranking score. Therefore, domain
hits are ordered by decreasing values of their ranking
scores and iteratively discarded if they share at least
10 residues with some domain with a higher scoring
hit. Eventually, this allows us to provide a small
architecture (usually involving up to two domains,
due to read length) for each annotated sequence.

Note that in the third point, the ranking score com-
bines the (statistical significance of the) bit-score and the
percentage identity of the match in a product and that
these two values are highly correlated. Indeed, one expects

higher bit-scores to be associated to higher sequence iden-
tities. This means that when two matches differ strongly
on their bit-scores, the respective products will not be
affected by the percentage identity of the matches. On
the contrary, it is when the bit-scores are close to each
other that the percentage identity of the matches will play
a role by favouring matches with higher sequence identity.
Intuitively, MetaCLADE prioritises bit-scores while let-
ting percentage identity play a discriminative role between
very close bit-score values.
The output of this filtering step is the ORF annota-

tion with non-overlapping domain hits. Due to the short
length of the reads, one expects at most two domains per
read, possibly flanked by domain fragments on the right
and/or the left. Consequently and in contrast to CLADE,
there is no reconstruction of the best architecture with
DAMA.
Also, note that the first filter is used to reduce the size

of the set of domain hits, possibly huge at the beginning
due to redundant predictions of the high number of mod-
els. The second filter is used to identify hits having a high
probability to be true hits, and it constitutes the core of the
filtering process. The third filter is used to identify the best
solution, among the ones with highest bit-score, based on
motif conservation.
As a consequence of the construction of the probabil-

ity space for a domain, the second filter asks for domain
hits to have a bit-score greater than the smallest bit-
score of the negative sequences in the space. This is
because negative sequences considered by the classifier
are a selected sampling of the space of negatives (see
the “Generation of negative sequences” section below);
namely, among all negatives generated by the algorithmic
procedure, we selected those that lie further away from the
origin and that, in consequence, have the highest statis-
tical significance. These selected negative sequences tend
to group together further from the origin of the space and
to lie at the borderline of regions characterised by posi-
tive sequences. Hence, one should properly evaluate the
acceptance threshold against this specificity.

Pre-computed two-dimensional gathering thresholds for
domain identification
MG and MT samples demand to annotate domain frag-
ments, possibly of small length. In order to explicitly dis-
tinguish small hits from long ones, MetaCLADE directly
estimates the likelihood for a small hit to be a positive
sequence by considering the bit-score of the hit and also
its mean-bit-score; namely, it defines a two-dimensional
gathering threshold (GA) for each domain by combining
bit-score and mean-bit-score and by identifying multiple
regions in the two-dimensional sequence space that, with
a high probability, provide reliable annotations for short
sequences. Probabilities are estimated with a naive Bayes
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classifier [74] , and the statistical procedure is explained
below.

Construction of positive and negative training sets
For each domain, MetaCLADE estimates bit-score and
mean-bit-score domain-sensitive thresholds. More pre-
cisely, it constructs a sequence space for each domain,
by defining a set of positive sequences (i.e. actual frag-
ments of the domain) and by generating a set of negative
sequences (i.e. sequences wrongly annotated with the
domain). Ideally, for each domain, one would like to have a
training set comprised of a comparable number of positive
and negative sequences.

Definition of positive sequences. The training set of
positive sequences was constructed as follows. For each
domain Di and for each sequence in the Pfam SEED set of
homologous sequences for Di, we created a set of prefixes
and suffixes of the sequence to simulate small domain por-
tions coming from the beginning or the end of the domain
sequence that may be found in MG reads. The maximum
sizeM of prefixes and suffixes was set to 30% of the entire
domain sequence length and to a maximum of 100 aa.
Hence, fragments were determined by increasing lengths
n · L, where L is a constant depending on domain size and
n = 1, 2, 3 . . .N is a multiplicative factor where N corre-
sponds to the smallest integer such that M ≤ N · L. For
domains of length between 15 and 75 aa, the constant L
was set at 5 aa, for sizes > 75 aa it was set to 10 aa, and
for sizes < 15 aa it was set to 1 aa. For large domains,
> 270 aa (this corresponds to one standard deviation away
from the mean in the distribution of domain model sizes
as reported in Additional file 1: Figure S1), we expect that
reads may lie somewhere in the middle of the domain
and therefore we extracted random sequences from the
original sequence that were not already covered by small
fragmentations of the extremes. Fragment positions were
set by randomly choosing their first position along the
middle part of the sequence, and fragment lengths were
randomly picked from a normal distribution with mean
50 and standard deviation 25. The number of fragments
corresponds to ten.

Generation of negative sequences. In order to define a
set of negative sequences for each model (CCM or SCM)
associated to a domain, we generate a large amount of
decoy sequences and select as negatives those where the
original domain is identified by the model (with an E value
< 1 for CCMs and a positive bit-score for SCMs).
The algorithm generates first sequences with two differ-

ent methods:

1. A random shuffling of the 2-mers of each SEED
sequence

2. The reversal of SEED sequences and checks whether
they are negatives or not. If the number of negatives
reaches at least the 50% of the positive sequences,
then the algorithm stops the search. Otherwise, new
sequences are generated with a third method:

3. By constructing a Markov model of order 3 for each
domain and by using it to generate random
sequences with positional probabilities

Note that in 3, the space of 160,000
(
204

)
4-tuples

is evaluated by assigning a probability to appear in a
domain sequence to each 4-tuple. This is done with a
pseudo-count, by considering each 4-tuple to appear at
least once and by counting the number of occurrences
n of the 4-tuple in the SEED sequences of the domain.
The probability of a 4-tuple is set to n+1

160 000+N , where N
is the total number of 4-tuple occurrences in the SEED
sequences. The Markov model of order 3 is defined on
these probability estimations.
Only generated sequences whose original domain has

been correctly identified by PSI-BLAST (for CCMs) with
an E value < 1 or by HMMer (for SCMs) with a posi-
tive bit-score are considered as negative sequences for the
MetaCLADE models (CCMs or SCM, respectively) and
are included in their training sets. The usage of differ-
ent threshold for the two tools, PSI-BLAST and HMMer,
is due to the observation that it is easier to produce
negatives with PSI-BLAST than with HMMer; therefore,
an E value threshold < 1, much more selective than
a positive bit-score, would reduce the large number of
accepted negatives for CCMs. The statistical significance
and the impact of these thresholds on the space of pos-
itive and negative sequences is discussed below (see the
“A naive Bayes classifier sets two-dimensional thresholds
for fragmented domains” section).
The algorithm estimates the number of decoy sequences

that should be generated to obtain the 50% of nega-
tive sequences and stops when this estimated number of
sequences is generated. For example, supposing there are
100 positive sequences for a domain, then we seek to
generate at least 50 negative sequences. If random reshuf-
fling and reversal generate only 10 negative sequences, a
Markovmodel is expected to generate 40 sequences. Since
most decoys generated by the Markov model will not be
selected as negatives, one estimates the number of decoys
that should be generated by the Markov model to obtain
40 negatives and stops the algorithm after such number.
The estimation has been realised based on the observa-
tion that false positives are found after a very large number
of decoy generations: roughly one expects to obtain 1–10
false positives out of 10,000 decoys for SCMs and out
of 1000 decoys for CCMs. CCMs lie very close to actual
sequences, and for this reason, we expect them to be
much more effective in recognising a domain in a random
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sequence generated by a Markov model of that domain
than a SCM. If a domain contains only a few sequences
in its SEED set, n would be too small to produce a
significant bias in the 4-mer probability emission. There-
fore, n is multiplied by a factor W with initial value
at 10 and incremented by one until we reach the gen-
eration rate of 1–10 negative sequences out of 10,000
decoys for the domain and its SCM. (To estimate the
weight, we only use the SCM and no CCMs.) This leads
to emission probabilities (n+1)×W

160,000+N×W . Note that each
decoy is tested against both SCM and CCMs associ-
ated to the domain and that it is considered as nega-
tive if at least one model identifies the domain in it. If
too many negative sequences were produced, then only
those that are the most distant from the origin of the
sequence space (that is the euclidean distance of the
point, defined by the bit-score and the mean-bit-score
of a hit, from the origin of the two-dimensional space)
are retained, limiting their amount to the number of
positive sequences. Note that sequences that are most
distant from the origin are those with higher statisti-
cal significance. The distribution of sequences generated
with Markov models is reported in Additional file 1:
Figure S2. They make a total of 39,241,830,000 sequences.
In contrast, the first two methods generated a total of
22,816,657.
Positive and negative sequences are described by

a bit-score and a mean-bit-score. To avoid an over-
representation of sequences with the same bit-score
and mean-bit-score, we consider only one representative
per fixed values of bit-score and mean-bit-score. This
makes the two sets of positive and negative sequences,
all domain confounded, to be numerically compara-
ble. The total amount of non-redundant (in terms of
their bit-score and mean-bit-score) positive matches is
13,697,142 for SCMs and 7,548,890 for CCMs while the
total amount of negatives is 7,569,171 and 6,342,944,
for SCMs and CCMs respectively (Additional file 1:
Figure S3).
Globally, we ensure the full training set is comprised

of roughly 50% of positive sequences and 50% of neg-
ative ones (Additional file 1: Figure S4B). This propor-
tion varies from domain to domain and depends on
the difficulty to generate correctly annotated random
sequences. In Additional file 1: Figure S4, we report
the proportions of negative sequences for CCMs and
SCMs generated by the first two methods (Additional
file 1: Figure S4A) and compare them to the distri-
butions of sequences generated by all three methods
(Additional file 1: Figure S4B). Clearly, the third method
contributes to the largest number of negative sequences
for each domain and establishes the expected numeri-
cal balance between the two training sets; all domains
confounded.

A naive Bayes classifier sets two-dimensional thresholds for
fragmented domains
Positive and negative sequences are put together and
analysed to obtain best separation parameters for CCMs
and SCMs; namely, we use a discrete version of the
naive Bayes classifier [74] (downloadable from http://
www.cs.waikato.ac.nz/ml/weka/citing.html) to construct
learning models for each Pfam domain. The discrete ver-
sion of the naive Bayes classifier provides a finite par-
tition of the sequence space and an estimation of the
probability for a sequence to be a positive or a nega-
tive hit. Notice that we realise two different analyses, one
on CCMs (generated by PSI-BLAST) and the other on
SCMs (pHMMs generated by HMMer), because we can-
not immediately compare their bit-scores. By so doing,
we determine two distinct separation spaces and appro-
priate parameters for the two model predictions. In par-
ticular, only one probability space is estimated for all
CCMs of a domain. All positive and negative sequences,
generated for all CCMs, are considered in the same
sequence space and the associated probability space is
computed.
Figure 7a illustrates an example of separation of the

spaces of positive and negative hits for the CCMs and
SCM of a Pfam domain (PF01036), analysed with the
naive Bayes classifier. Note that short fragments have
small bit-scores with a possibly large mean-bit-score and
that negative sequences are characterised by small bit-
scores and small mean-bit-scores. Also, the identifica-
tion of fragmented coding regions (especially important
for the annotation of MG/MT datasets, where ORFs
that are present in MG/MT reads are fragmented) will
only be realised through very low bit-scores because
only parts of domains are present. These sequences can
be seen in the blue region of positive hits in Fig. 7a,
where successively larger fragments appear associated to
successively larger scores. They are represented by trails
of points in the figure, where small fragments have small
scores.
A comparison between the two spaces illustrated in

Fig. 7a shows a basic difference between CCM and SCM
models. First, notice the much smaller number of nega-
tive sequences obtained for the SCM space compared to
the CCM space (see “Construction of positive and nega-
tive training sets” section). In the CCM space, negative
sequences are more clearly separated by both bit-scores
and mean-bit-scores from positive ones than in the SCM
space. In fact, since CCMs are “closer” to sequences
than SCMs, one expects their scores to be higher for
positive sequences in CCMs than in SCMs. Also, the
usage of a two-dimensional sequence space, determined
by bit-scores and mean-bit-scores, improves the separa-
tion of positive and negative sequences in MetaCLADE
compared to HMMer (hmmscan). In the plot describing

http://www.cs.waikato.ac.nz/ml/weka/citing.html
http://www.cs.waikato.ac.nz/ml/weka/citing.html
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a

b

Fig. 7 Naive Bayes classifier analysis of Pfam domains. a Naive Bayes classifier analysis of the training set evaluating thresholds for positive (cyan
dots) and negative (orange dots) hits discrimination of the Pfam domain “bacteriorhodopsin-like protein” (PF01036). The space of positive hits is
coloured blue, and the space of negative hits is the complementary one, coloured from green to dark red (see colour scaling). From dark red to blue,
each coloured area is characterised by a different probability for a sequence to be a positive sequence. The space of solutions for all CCMs
confounded (left) and the SCM (pHMM; right) are described. The red dots correspond to the MG sequences identified by the models in the
Equatorial Pacific (EPAC) MT dataset discussed below [57]. The green vertical line on the SCM plot (right) corresponds to hmmscan GA threshold
(= 24, for this domain). Note that the grid is discrete and that rectangular regions are coloured with respect to probability intervals. This means that
two adjacent regions with the same colour might have associated two different probabilities. b The probability space of CCMs and SCMs generated
for MetaCLADE; all domains included. Each point of the plot is the average of the corresponding points in all spaces of solutions computed for CCMs
and SCMs, respectively. Examples of such spaces of solutions are reported in a for the Pfam domain PF01036. The colour scale is defined with respect
to probability values associated to the regions. The green vertical line in the SCM plot (right) corresponds to the average hmmscan GA threshold; all
domain confounded. Note that if we take the bit-score only as a threshold in our database, we obtain that an average bit-score at 25 in a is statistically
meaningful, independently of the mean-bit-score. This value is used as a default threshold in http://www.ebi.ac.uk/Tools/hmmer/search/phmmer

the SCM space (Fig. 7a, right), the Pfam GA thresh-
old excludes most of the Bacteriorhodopsin-like protein
sequences detected by CCMs.More generally, for all Pfam
domains, we computed the difference between the GA
threshold associated to the SCM and the mean of the bit-
scores for the five best negative sequences identified by
the SCM. The distribution of the differences, displayed
in Additional file 1: Figure S5, shows a small standard
deviation suggesting thatMetaCLADE and Pfam/HMMer
estimation of the (one dimensional) cutoff is similar. This
control shows that naive Bayes classification produces
reasonable thresholds when projected in one dimension.
Figure 7b illustrates the general behaviour of the prob-

ability spaces for all CCMs and SCMs, all domains con-
founded. It shows the coherence of the spaces across

models of the same domain and highlights bit-scores and
mean bit-scores intervals defining rejecting and accept-
ing regions. One observes large regions associated to high
probability values (> 0.9) accepting true positives.

Comparison to InterProScan
To compare MetaCLADE to InterProScan, we used
several tools and domain model libraries: Pfam [61],
TIGRFAM [64], Gene3D [63] and PRINTS & ProSite
[65, 66]. Annotations produced by these tools were
downloaded from available annotation files provided
by the EBI metagenomics pipeline http://www.ebi.ac.uk/
metagenomics/pipelines/ (versions 1.0 or 2.0 depending
on the dataset). The EBI metagenomics pipeline uses
InterProScan (v5.0 for pipeline 1.0 and 5.9-50 for pipeline

http://www.ebi.ac.uk/Tools/hmmer/search/phmmer
http://www.ebi.ac.uk/metagenomics/pipelines/
http://www.ebi.ac.uk/metagenomics/pipelines/
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2.0) as tool to annotate predicted ORF (using FragGe-
neScan 1.15) using the domain libraries above. HMMer
v3.0 was downloaded from http://hmmer.org and run
with default parameters and curated inclusion thresholds
(option -cut_ga).

Comparison to UProC and a combination of UProC and
MetaCLADE
UProC [38] (version 1.2.0, downloaded at https://github.
com/gobics/UProC) is a tool designed for large-scale
sequence analysis. Given a read dataset, UProC decides
whether a domain is present or not in a sequence, but it
does not point out precisely where the domain is localised
in the sequence by defining starting and ending positions,
nor it associates an E value to the matching. The com-
plementary performance of UProC compared to Meta-
CLADE suggests to combine the two tools in order to
achieve best performance in terms of number of correctly
predicted domains. For this reason, we define “Meta-
CLADE+UProC” by adding to MetaCLADE’s annotations
all those obtained by UProC on reads left unannotated by
MetaCLADE. In a similar way, we define the symmetric
“UProC+MetaCLADE” annotation.
In order to evaluate UProC, we looked for the position

of the domain in a read and associated an E value to it
as follows. For each read annotated with a domain D by
UProC, we used BLAST (with default parameters) to map
it against all Pfam FULL sequences representing D and
we selected the best hit, if it existed. The E value asso-
ciated to this hit was considered as the UProC E value
score.

Comparison to HMM-GRASPx
MetaCLADE was compared to HMM-GRASPx version
0.0.1 [37] (downloaded at http://sourceforge.net/projects/
hmm-graspx); other successive beta versions have been
tested, but they did not provide better results. HMM-
GRASPx is a profile-based method, like MetaCLADE.
It considers profile HMMs of protein families as refer-
ences and uses them to guide the assembly of complete
or near-complete genes and protein sequences related to
a particular family. The annotation is realised after the
assembly with amapping of the reads on validated contigs.

The use of clans and InterPro families
In order to evaluate MetaCLADE performance on
datasets of simulated sequences, we identify domains at
the Pfam clan [55] or InterPro family [56] level. This is
done because sequence similarity within domains in the
same Pfam clan is usually high and genome annotation is
oftenmislead by domains belonging to the same clan. This
is even more true in MG datasets, where one often needs
to annotate fragments of a domain displaying a weaker
signal due to the reduced length.

Pfam clans are groups of proteins for which com-
mon ancestry can be inferred by similarity of sequence,
structure or profile HMM [55]. The list of Pfam clans
was retrieved at http://ftp://ftp.ebi.ac.uk/pub/databases/
Pfam/releases/Pfam27.0/Pfam-A.clans.tsv.gz.
InterPro families represent groups of evolutionarily

related proteins that share common functions. Such
entries tend to be near full length and typically do not
undergo recombination, in contrast to domains [56]. The
list of InterPro families was retrieved at https://www.ebi.
ac.uk/interpro/download.html.

Domain abundance
The functional analysis of a MG/MT sample is realised
by characterising domain abundance within a functional
class with a normalised value between 0 and 1. This nor-
malisation is done by dividing the number of domains
detected in a functional class by the total number of
domains belonging to the most represented class in
the environmental sample. We speak about “normalised
abundance”.
A second kind of normalisation is realised with respect

to multiple environments, and it is used for comparing
domain abundance within the same functional class across
these environments. A normalised domain abundanceNS

I ,
where S is the sample and I is the domain, is computed as
the product of the actual domain abundance permegabase
by the average size of all samples. By multiplying by the
average size of all samples, we provide an indication of the
expected number of domains if all environments had the
same size and can compare environments with respect to
such estimations.

Functional analysis of annotated real datasets
In order to validate MetaCLADE on all real MT
and MG datasets, we associated a function based on
GO classification to both the domains identified with
MetaCLADE and the domains identified with HMMer
(hmmscan). We used Pfam2GO [75] and annotated bio-
logical process terms of GO-Slim [56, 76]. Pfam2GO
was retrieved from http://geneontology.org/external2go/
pfam2go, and GO-Slim classification for MG was
retrieved from http://geneontology.org/page/download-
ontology. To highlight the differences between Meta-
CLADE and HMMer, we compared domain abundance
in all GO-term classes. For this, we normalised domain
count in each MT dataset with respect to the size of the
sample as described above.

Motif validation
To validate motifs identified by MetaCLADE on the
O’Connor lake dataset, we run MEME [68] with default
parameters on the MEME Suite 4.11.2 server at http://
meme-suite.org/tools/meme.

http://hmmer.org
https://github.com/gobics/UProC
https://github.com/gobics/UProC
http://sourceforge.net/projects/hmm-graspx
http://sourceforge.net/projects/hmm-graspx
http://ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam27.0/Pfam-A.clans.tsv.gz
http://ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam27.0/Pfam-A.clans.tsv.gz
https://www.ebi.ac.uk/interpro/download.html
https://www.ebi.ac.uk/interpro/download.html
http://geneontology.org/external2go/pfam2go
http://geneontology.org/external2go/pfam2go
http://geneontology.org/page/download-ontology
http://geneontology.org/page/download-ontology
http://meme-suite.org/tools/meme
http://meme-suite.org/tools/meme
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MG/MT datasets used in the analyses
A dataset of simulated reads generated from bacterial and
archaeal genomes
We generated a set of fragmented sequences from a set
of 11 archaeal and 44 bacterial fully sequenced genomes.
The list of species, NCBI accession numbers and genome
lengths is reported in Additional file 1: Table S2. We
assumed all species be equally abundant.
In order to generate a set of 500,000 clones, we first

used MetaSim [53], according to a normal distribution
with a mean of 800 bp and a standard deviation of
100 bp. Then, we applied FlowSim [77] to the set of clones
to obtain actual reads simulated with realistic insertion
and deletion errors expected during DNA sequencing.
More precisely, the simulation was performed according
to the FlowSim platform 454 GS-FLX Titanium (error
rate ∼ 1%). The read dataset, which contained sequences
of ∼ 523 bp on average, was finally processed with
FragGeneScan [78] in order to predict the ORFs. This
resulted in about 500,000 reads that were given as input to
MetaCLADE.
In parallel, we used information available in the

XML file associated to each genome in the EBI
site (http://www.ebi.ac.uk/genomes/) to identify cod-
ing sequences included in the SwissProt database. For
these coding sequences, we retrieved annotated domains
and their positions from the InterPro site through
the UniProtKB proteins file (http://ftp.ebi.ac.uk/pub/
databases/interpro/protein2ipr.dat.gz). Domain annota-
tion of coding sequences was used to evaluate Meta-
CLADE performance. For this simulated dataset, we
selected positive domain hits with a probability threshold
of 0.85 estimated by the naive Bayes classifier.
The dataset is available at http://www.lcqb.upmc.fr/

metaclade/.

Three datasets of simulated reads to compare with UProC
and HMM-GRASPx
MetaCLADE was compared to HMM-GRASPx and
UProC on the Guerrero Negro Hypersaline Microbial
Mats (GNHM) MG dataset [79] used in [38] to demon-
strate UProC performance versus profile-based methods
on short reads. GNHM was downloaded from http://
uproc.gobics.de. GNHM is a dataset presenting a large
variety of species of low abundance, with archaeal and
eukaryotic species much less abundant than bacterial
ones. From GNHM data, following the protocol in
[38], we generated two sets of short reads simulating
different read lengths of 100 bp and 200 bp, respectively.
The only difference with the described protocol was in the
latest HMMer, version 3.1b2 was used instead of the pre-
vious one (3.0) that was used in [38]. For the two sets of
reads, we considered two annotations as gold standard,
one realised with HMMer (hmmscanwith GA cutoff ) and

the other with CLADE [43]. Both annotations are based
on domains known in Pfam 27.
The comparison between MetaCLADE and HMM-

GRASPx was realised on two simulated datasets of
reads of length 100 bp and 200 bp, generated from
a marine MG dataset containing 23 marine micro-
bial genomes from the Alteromonas, Candidatus,
Erythrobacter, Flavobacteriales, Nitrosococcus, Photo-
bacterium, Prochlorococcus, Roseobacter, Shewanella,
Synechococcus and Vibrio groups. Relative abundances
of these bacteria were simulated according to their envi-
ronmental composition [37] with an average coverage
of ∼ 27.5X (Additional file 1: Table S11). We considered
these 23 bacterial genomes along with a selected num-
ber of important metabolic pathways (see Additional
file 1: Table S12). Only those Pfam (version 27) domain
families involved in each one of these pathways
were finally considered (family-pathway association
was performed in [37] using KEGG’s release 73.0 of
January 2015). The same domain families were taken into
account in HMM-GRASPx and MetaCLADE. Illumina-
like paired-end nucleotide reads were generated with
wgsim (version 0.3.1-r13 obtained from http://github.
com/lh3/wgsim, with error rate parameter -e 0.01)
and translated into short peptide reads using FragGeneS-
can [78] (version 1.30, with parameters -complete=0
-train=illumina_10). For each pathway, the gold
standard was defined by searching the corresponding
Pfam models against the complete proteomes and trans-
ferring the annotation to those reads that mapped to a
domain hit for at least the 60% of their length. Finally,
gene catalogs were built using MOCAT2’s pipeline [30]
with default parameters.
The datasets are available at http://www.lcqb.upmc.fr/

metaclade/.

Nine simulated datasets to test MetaCLADE’s sensitivity to
sequence origin
In order to test how MetaCLADE is sensitive to the
distribution of species in a dataset, we created nine sim-
ulated datasets with increasing percentages of eukaryotic
sequences, and we annotated them in order to examine
the origin of the CCMs used by MetaCLADE. Specifi-
cally, each dataset is composed by 75,000 randomly cho-
sen UniProt coding sequences that had not been picked
to build any model of CLADE’s library. The percent-
age of eukaryotic CDS among the datasets varies from
10 to 90% with steps of 10%. From such CDS, a set of
50 aa fragments has been uniformly extracted in order
to reach a 1.5X coverage. Additional file 1: Table S9
describes the simulated datasets (e.g. average CDS length,
number of generated fragments). Overall, we employed
3128 bacterial, 9403 eukariotic, 218 archaeal and 2127
viral species and we annotated with 1,397,356 bacterial,

http://www.ebi.ac.uk/genomes/
http://ftp.ebi.ac.uk/pub/databases/interpro/protein2ipr.dat.gz
http://ftp.ebi.ac.uk/pub/databases/interpro/protein2ipr.dat.gz
http://www.lcqb.upmc.fr/metaclade/
http://www.lcqb.upmc.fr/metaclade/
http://uproc.gobics.de
http://uproc.gobics.de
http://github.com/lh3/wgsim
http://github.com/lh3/wgsim
http://www.lcqb.upmc.fr/metaclade/
http://www.lcqb.upmc.fr/metaclade/
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858,908 eukaryotic, 101,171 archaeal and 31,799 viral
models (see Additional file 1: Table S10).

Real metagenomics andmetatranscriptomic datasets
In order to validateMetaCLADE on real data, we analysed
eleven MG and MT samples. The characteristics of these
eleven datasets, such as number of reads, average read size
and sequencing technique used to generate the dataset,
whether it is a MG or a MT dataset, are provided in
Additional file 1: Table S3. Available websites for down-
load are given in Additional file 1: Table S4.
Five MT samples come from different geographic loca-

tions in the oceans, Antarctic (ANT), North Pacific
(NPAC), Equatorial Pacific (EPAC), Arctic (ARC) and
North Atlantic (NATL) [57]. We have identified ORFs on
the reads by analysing six reading frames and annotated
them with HMMer and MetaCLADE. These datasets are
available upon request addressed to the authors of [57].
Four published MG datasets come from very different

environments: soil, ocean, ancient bones and guts. For
the gut environment, we also considered a MT sample.
These five sets of reads were previously analysed for
ORF identification by EBI with FragGeneScan [78]. ORF
sequences have been annotated by EBI based on five
different domain databases found in InterPro [56]: Pfam
[61], TIGRFAM [64], Gene3D [63] and PRINTS & ProSite
[65, 66]. The search was realised with InterProScan
[80] as the final step of the EBI MG pipeline (http://
www.ebi.ac.uk/metagenomics/about). These tools
are accessible from http://www.ebi.ac.uk/services/
proteins. Comparison with UProC was realised on these
five sets.
The O’Connor lake MG dataset (ERP009498) was

downloaded from the EBI Metagenomics portal (https://
www.ebi.ac.uk/metagenomics/projects/ERP009498). It
was realised with Illumina HiSeq 2000 technology and
contains 1,315,435 very short reads (123 nt average
length). ORFs were identified by EBI.
MetaCLADE positive domain hits are selected with a

probability threshold of 0.9.

Time complexity
MetaCLADE was run on a High Performance Comput-
ing architecture. In all analyses reported here, parallel
computation is exploited in MetaCLADE first main step
and in the first two sub-steps of the second main step.
Notice that MetaCLADE can be run on a desktop com-
puter, especially when restricting the analysis to a small
subset of domains. However, when considering the full
domain library on a large-size dataset of sequences, Meta-
CLADE can take a large amount of time as highlighted in
Additional file 1: Table S7 for all MG/MT samples con-
sidered in the article. For further details, see Additional
file 1.

Evaluationmeasures
In order to evaluate the annotation tools, we used the
standard measures of precision (also named positive pre-
dictive value, PPV), accounting for howmany annotations
are correct and defined as TP

TP+FP , and recall (also named
sensitivity or true positive rate, TPR), accounting for how
many correct annotations are selected and defined as

TP
TP+FN , where TP indicates the number of domains that
have been correctly annotated, FN indicates the number
of domains which are in the gold standard but were not
found by the tool and FP indicates the number of domains
that have been wrongly annotated (because they do not
appear in the gold standard). The F-score is the harmonic
mean of precision and recall, defined as 2 · precision · recall

precision + recall
(= 2TP

2TP+FP+FN ).
In order to plot the precision-recall curves

(Additional file 1: Figure S16), we consider those subsets
of reads that are annotated by the tool at a fixed thresh-
old. The curve is constructed by varying a threshold that
in MetaCLADE and MetaCLADE+UProC runs over E
values and in UProC runs over UProC scores.

MetaCLADE software
The pipeline is implemented in Python 2.7 and is avail-
able at http://www.lcqb.upmc.fr/metaclade or at https://
sourcesup.renater.fr/projects/metaclade/ under the
CeCILL Free Software Licence. This includes the anno-
tation tool (MetaCLADE two main steps in Fig. 1) and
the program pre-computing domain-specific gathering
thresholds (MetaCLADE pre-computed step in Fig. 1).
The CLADE model library used in MetaCLADE was
constructed based on Pfam database v27 and was released
with CLADE [43]. It can be found at http://www.lcqb.
upmc.fr/CLADE.
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