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Denoising applied to spectroscopies – part I: concept and limits

Some spectroscopies are intrinsically poorly sensitive, such as Nuclear Magnetic 

Resonance (NMR) and Raman spectroscopy. This drawback can be overcome by 

using  Singular  Value  Decomposition  (SVD)  and  low-rank  approximation  to 

denoise spectra and consequently increase sensitivity. However SVD limits have 

not been deeply investigated until now. We applied SVD to NMR and Raman 

spectra and showed that best results were obtained with a square data set in time 

domain.  Automatic  thresholding  was  applied  using  Malinowski’s  indicators. 

6×7380 noisy spectra with 41 signal-to-noise ratios were compared to their non-

noisy  counterparts,  highlighting  that  SVD  induces  a  systematic  error  for 

Gaussian  peaks  but  faithfully  reproduces  shape  of  Lorentzian  peaks,  thus 

allowing quantification. Used carefully, SVD can decrease experimental time by 

a factor of 2.3 for spectroscopies. This study may help scientists to apply SVD to 

denoise spectra in a more efficient way, without falling into pitfalls.

Keywords:  spectroscopy,  sensitivity,  signal  processing,  Cadzow  denoising, 

Singular Value Decomposition (SVD)

Graphical abstract
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A. Introduction

Spectroscopic techniques are of outmost importance in the field of materials analysis. 

Among them, Nuclear Magnetic Resonance (NMR) (1) and Raman (2) spectroscopies 

are  very  powerful  local  probes  of  the  chemical  structure.  Especially,  they  allow to 

analyse liquid-state, solid-state, or even gas-state samples. While NMR informs about 

chemical  and magnetic  environment of atomic nuclei,  Raman spectroscopy provides 

vibrational  and  rotational  information  on  chemical  entities.  Unfortunately,  these 

techniques  suffer  from  a  major  drawback,  namely  their  intrinsic  low  sensitivity. 

Although focused on NMR and Raman approaches, this work can be easily extended to 

other spectroscopies.

In  the  case  of  NMR,  only  one  nucleus  over  105 is  detected  under  usual 

conditions (3). This is due to the low population difference between nuclear spin energy 

levels,  which  results  from  Boltzmann  equilibrium.  Many  factors  influence  NMR 

sensitivity:  magnetic  field  strength,  sample  volume,  sample  temperature,  electronics 

temperature,  radio-frequency  coil  quality  factor  and  coil  filling  factor  (4).  When 

studying  a  solid-state  sample,  situation  gets  worse  due  to  spectral  line  broadening, 

which results either from environment distribution or from relaxation (5). Indeed, NMR 

relevant  anisotropic  interactions,  as  chemical  shift  anisotropy,  dipolar  coupling  and 

quadrupolar coupling, are no longer averaged to zero by fast and isotropic molecular 

motions, leading to spectra spreading over hundreds of ppm or a few megahertz (6). 

During the last decades, numerous technical progress has allowed to increase sensitivity 

of  solid-state  NMR:  Magic  Angle  Spinning  (MAS)  up  to  110 kHz  (7–9),  Cross 

Polarisation  (CP)  (10),  high  performance  heteronuclear  decoupling  (11)  and  NMR 

magnetic field strength increase (12). Additionally, new very sensitive techniques were 
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developed,  for  instance  micro-coils  and  microresonators  adapted  to  MAS  (13)  or 

Dynamic Nuclear Polarisation (DNP) (14–16), with which a gain of up to 320 per unit 

of time was achieved (17).

In the case of Raman spectroscopy, only one photon over 106 is detected (18), 

due to its low scattering cross-section of ≈ 10-30 cm2 per molecule, to be compared with 

≈ 10-20 cm2 for  infrared  absorption  spectroscopy  and  ≈ 10-16 cm2 for  fluorescence 

spectroscopy (19). Furthermore, some samples are fluorescent, thus hiding their Raman 

spectrum, or can be locally damaged by the laser light during analysis (20). A major 

advancement  in  Raman  analysis  has  been  achieved  with  the  discovery  of  Surface-

Enhanced Raman Scattering (SERS) (21, 22) with an enhancement factor of 104-106 

(23). However, this effect applies only to transition metals (24) and strongly depends on 

surface roughness (25). To circumvent these limitations, Raman equipment has been 

hyphenated with an atomic force microscope or a tunnel effect microscope, leading to 

Tip-Enhanced Raman Spectroscopy (TERS) (26, 27). Another important progress has 

been achieved through the use of non-linear light sources and picosecond lasers (28, 

29). Thanks to such improvements, it is now possible to study artworks (30), to map a 

surface (31) and even to follow cure kinetics of an epoxy resin (32).

In  parallel  with  these  instrumental  and  methodological  developments, 

mathematical and computer tools have become increasingly widespread in the field of 

data  processing  (33).  In  addition  to  Fourier  transform revolution  (34,  35),  other 

treatments  have  emerged  in  NMR  spectroscopy  and  Magnetic  Resonance  Imaging 

(MRI). As examples, one may cite Hadamard transform (36), compressed sensing (37), 

non-uniform sampling (38), or quantitative signal reconstruction from multiple echoes 

(39). In Raman spectroscopy, pre-processing became of paramount importance to obtain 
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quantitative  measurements  (40):  it  is  now  recommended  to  suppress  fluorescence 

background (41), to correct cosmic ray spikes (42) and to normalise spectra (43).

Furthermore,  a  very  important  mathematical  tool  family  concerns  noise 

reduction  (44).  Indeed,  the  above  mentioned  sensitivity-enhanced  spectroscopic 

equipments  are  costly  and are  not  accessible  to  all  laboratories,  hence  the  need  to 

denoise. Moreover, even with hardware and methodological improvements, spectra can 

still  be  noisy,  especially  when  studying  amorphous  materials  (45,  46),  for  which 

distribution of bond lengths and bond angles broadens signals and reduce sensitivity. In 

order to decrease experimental time or in case of unstable samples, signal processing is 

mandatory to get a reasonable Signal-to-Noise Ratio (SNR). The easiest way to perform 

noise  reduction  is  smoothing.  In  NMR,  apodisation,  especially  exponential 

multiplication,  is  used  prior  to  Fourier  transform  (47).  In  Raman  spectroscopy,  a 

polynomial algorithm named Savitzky–Golay is preferred (48). Other options to reduce 

noise are  maximum entropy (49),  covariance matrix  (50),  Wiener’s  estimation (51), 

wavelet transform (52), uncoiled random QR denoising (53), and the method initially 

proposed by Tufts et al. (54) and generalised by Cadzow (55).

Singular  Value  Decomposition  (SVD)  is  an  important  part  of  Cadzow's 

denoising algorithm and its related low-rank approximation (56). An history of SVD 

can be found in (57). It has been discovered independently by Beltrami in 1873 (58), by 

Jordan in 1874 (59) and rediscovered by Lanczos in 1958 (60).  It  is preferred over 

eingenvalue  decomposition,  which  is  less  precise,  as  demonstrated  by  Laüchli  (61). 

Though quite old, Cadzow's procedure is currently a research domain of vivid interest 

(62), especially using sparse data, i.e. partially empty matrix (63). SVD is widely used 

in  several  domains  including  acoustics  (64),  geophysics  (65),  air  quality  (66), 

electrocardiograms (67), image compression (68), video surveillance (69), MRI (70), 
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data  mining (71) and  even  on  Facebook  (72).  Nevertheless,  SVD  is  still  not  so 

commonly used in spectroscopies like NMR (73–76) and Raman spectroscopy(77–80), 

despite its use could significantly reduce experimental time and be of particular interest 

for the scientific community.

Recently, Man  et al. developed  a new SVD application for NMR (81). It was 

programmed under Java and two versions are currently available: one for processors 

(82) and the other one for Nvidia graphic cards (83) using CUDA (84). Indeed, graphic 

cards allow very efficient parallel computations. However, the limits of this approach 

are not  clear:  (i)  which  matrix  shape should be preferred? (ii)  what  is  the  minimal 

experimental SNR? (iii) Are denoised spectra quantitative? (iv) is it suitable for other 

spectroscopies?

Following a previous communication (85), we tried to address these questions. 

This work is divided into two parts.  In this first  contribution (I),  we focus on SVD 

concept  and limits.  Experimental  details  will  be provided in  Section  B.  Theoretical 

background on SVD and low-rank approximation concepts is developed in Section C.1. 

Hankel and Toeplitz matrices are explored in Section C.2. SNR definitions are given in 

Section C.3. Section D.1 is devoted to experimental results by applying SVD to solid-

state  NMR  and  Raman  spectroscopies.  The  influence  of  both  matrix  shape  and 

thresholding are studied in  Sections  D.2 and  D.3,  respectively.  Time and frequency 

denoising are compared in Section  D.4. The minimum SNR needed to have accurate 

results is investigated in Section D.5. The impact of SVD on peak shape is considered in 

Section D.6. Finally, denoising on a real NMR spectrum is analysed in Section D.7.

In  a  second  part  (II)  (86)  we will  benchmark  SVD using  Java,  Matlab  and 

Python, on various processors and nvidia graphic cards ranging over 10 and 6 years, 
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respectively.  We  will  try  to  optimise  algorithms,  software  libraries  and  hardware 

capabilities to achieve the fastest possible denoising computation.

B. Materials and methods

B.1. Synthesis of the 50 / 50 MTEOS / TEOS sample

This sample is representative of typical materials obtained by sol-gel chemistry (87–89). 

This soft chemistry synthetic approach is a suitable route to design hybrid materials that 

contain  both  organic  (methyltriethoxysilane,  MTEOS,  T  species)  and  inorganic 

functions  (tetraethylorthosilicate,  TEOS,  Q  species),  combining  for  instance 

hydrophobicity and high mechanical stability (90). T and Q stand for the number of 

oxygen  on  each  silicon,  namely  Tri  (3)  and  Quadri  (4),  for  MTEOS  and  TEOS, 

respectively.  The  letter  is  associated  with  a  superscript  indicating  the  number  of 

condensed  Si-O-Si  bridges.  It  is  important  to  quantify  the  ratio  T / Q and  the 

condensation degree, mainly by 29Si MAS NMR, in order to properly characterise such 

hybrid materials. This nucleus suffers from a low natural abundance of 4.7 % and an 

intermediate resonating frequency at  1 / 5th  of  1H one, both lowering SNR. It is thus 

current to average noise over one night or one weekend for a single spectrum. Using 

denoising is an interesting approach to decrease acquisition time.

Every chemical was used as received with no further purification. The solution 

was prepared by adding 10.18 g of MTEOS (98 %, Alfa Aesar;  M = 178.30 g.mol-1, 

57.1 mmol)  and 11.89 g of TEOS (>99 %, Aldrich; M = 208.33 g.mol-1,  57.1 mmol), 

29 mL of milliQ water and 50 mg of a 37 % w/w aqueous solution of hydrochloric acid 

(HCl, VWR; M = 36.46 g.mol-1).

The solution was stirred at room temperature for at least one hour at 500 rpm to 

ensure  hydrolysis  of  the  precursors.  Controlled  condensation  occurred  during  spray 
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drying of the sample, performed using a mini spray dryer B-290 (BUCHI) fitted with an 

atomiser (nozzle tip diameter = 0.7 mm) and a peristaltic pump. The temperatures at the 

inlet  and  outlet  of  the  spray  dryer  were  fixed  at  220 °C  and  within  the  range  of 

95-120 °C, respectively. Polydisperse spherical particles of hybrid organic / inorganic 

amorphous silica (characteristic size: 1-10 µm) were obtained.

B.2. Solid-state NMR experiments

29Si solid-state NMR experiments were performed on a Bruker Avance III spectrometer 

operating at 300.29 MHz for 1H and 59.65 MHz for 29Si with 4 mm zirconia rotors spun 

at 14 kHz (MAS broadband dual probe). Unless otherwise stated, CP was used with a 

contact  time  of  5 ms,  a  relaxation  delay  of  1 s,  NS = 2048  scans.  Low-power  1H 

SPINAL-64 decoupling (ν1H = 2.4 kHz) (91) was checked to be sufficient and was used 

to protect the probe as the total acquisition time of 197 ms was too long for high-power 

decoupling.  During  acquisition,  4096  complex  points  were  acquired  with  24 

Carr-Purcell-Meiboom-Gill (CPMG) echoes (39) and a full echo delay of 8 ms.

SVD was applied on Free Induction Decay (FID, time domain) after removal of 

the first 68 points corresponding to oversampled digitalisation. Zero-filling to 16384 

complex points  and cosine  multiplication  were  applied  after  SVD.  This  apodisation 

limits both signal truncation and broadening effects. One may note that SVD was not 

directly  applied  to  spectra  (SPC,  frequency  domain)  because  zero-filling  increases 

matrix size and thus computation time.

B.3. Simulation of kinetics studied by Raman spectroscopy under Python

2000 Raman spectra of 2000 points each were calculated in silico using four Gaussian 

lines  at  450,  510,  750  and  900 cm-1,  respectively.  Full  Widths  at  Half  Maximum 
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(FWHM) ranged from 118 to 212 cm-1. Such high FWHM are typical of amorphous 

materials like glasses (45). In order to reflect a kinetic evolution, the amplitude of peaks 

at 510 and 750 cm-1 were linearly decreased across the series while amplitude of peaks 

at 450 and 900 cm-1 were linearly increased. This series of spectra may mimic ageing of 

a  material  for  instance.  Homoscedastic  white  Gaussian  noise  was  added  on  each 

spectrum. SVD was applied using Principal Component Analysis (PCA) function from 

Python Scikit-learn package (92). Computation took only a few seconds under Python 

Anaconda 3.5. The source code is available in file Figure_I.4a.py of (93).

B.4. Simulation of NMR spectra with known noise under Matlab

NMR complex  FID  were  simulated  in  silico under  Matlab  (The  MathWorks,  Inc., 

Natick, MA, USA) with a complex exponential at the expected frequency ν and either 

an  exponential  decay  (Equation  1)  or  a  Gaussian  decay  (Equation  2),  leading  to  a 

Lorentzian or a Gaussian peak on spectra after Fourier transform, respectively. While 

the former is typical of a relaxation-driven shape, the latter highlights a distribution of 

chemical environments (94) or more complex relaxation phenomena, e.g., strong dipoar 

coupling. To obtain a Gaussian peak with the same FWHM as a Lorentzian peak, the 

shape is defined according to Equation 3.

y=e i 2 πν t
⋅e

−t
T 2 (1)

y=e i 2 πν t
⋅e

−t2

2σ
2

(2)

σ=T 2 √ 2 ln(2) (3)

7380 NMR FID were simulated, grouped as follows:
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• 2 shapes for decay: exponential and Gaussian;

• 3  T2 values  of  10,  1.0  and  0.10 ms  corresponding  to  narrow (32 Hz), 

intermediate (320 Hz)  and  broad peaks  (3200 Hz),  respectively,  which  are 

typical values obtained by 13C, 29Si or 31P solid-state NMR, for various types of 

crystalline or amorphous materials;

• 41  levels  of  homoscedastic  white  Gaussian  noise  ranging  from  -20 dB  to 

+20 dB;

• 30 random noise patterns at the same noise level.

Additionally,  each  data  set  was  repeated  6  times  with  different  processing 

parameters:

• 2 with truncation or not, at 5 T2, time above which signal is almost no longer 

existent;

• 3 Significance Level (SL, see Section  D.3) for SVD automatic thresholding at 

error level of 5, 7.5 or 10 %.

Each FID was composed of  1024 points  for  a  duration of  49 ms.  SVD was 

applied before zero-filling (if truncation was applied) and Fourier transform. As peak 

was not at the middle of the spectrum,  signal region was defined as the 512 points 

centred at peak frequency. Noise region corresponded to the other 512 points. Baseline 

zero-order  offset  was  preliminary  corrected  by  subtracting  the  mean value  of  noise 

region. This step was essential  to avoid spectrum aliasing due to Fourier transform, 

especially for broad peaks. The source codes of SVD automatic thresholding and FID 

simulations are available in files sfa.m and Figure_I.7_I.8_I.S2.m of (93), respectively. 

Computation  of  the  full  set  of  6 × 7380 = 44280 spectra  took  30  minutes  with  an 

overclocked Intel Core i5 4670K @ 4.4 GHz processor with Matlab R2016b.
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C. Theoretical background

In  this  section,  SVD  and  low-rank  approximation  are  first  developed.  Hankel  and 

Toeplitz matrices are then presented. Finally, SNR is defined.

C.1. SVD and low-rank approximation

SVD is a mathematical tool used to decompose a matrix X with m rows and n columns, 

whatever  its  size  or  shape,  into  the  product  of  three  other  matrices U,  Σ and  VT 

(Equation 4). This is illustrated in Figure 1 by orange hatched rectangles. U and V are 

unitary square matrices, of size m × m and n × n, respectively. If complex numbers are 

used, VT, the transpose of matrix V, is replaced by V*, its conjugate transpose. SVD can 

indifferently be applied on real or complex matrices, the only difference being a double 

computation time for complex matrices (see part (II) of this work (86)). The central 

matrix Σ has the same shape as the original matrix X. Nevertheless, it has values only 

on its main diagonal (green rectangle), sorted by amplitude. These diagonal entries are 

called singular values and are the non-negative square roots of the eigenvalues of XTX 

or XXT (95).  One can notice that the more elongated is  matrix X, the less singular 

values it has.

X =U⋅Σ⋅V T (4)

X≈X k=U k Σk V k
T (5)
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Figure  1:  Singular  value  decomposition  (orange  hatched  rectangles)  and  low-rank 

approximation  (blue  filled  rectangles).  The k  singular  values  are  sorted  by  size  (in 

green).

Using low-rank k, matrix X can be approximated to Xk according to Equation 5, 

where Uk, Σk and Vk
T are the matrices U, Σ and VT truncated at k values, represented as 

blue filled rectangles in Figure  1.  This process is really useful to compress large data 

sets (68). In the case of noise-containing data, true signals correspond to low-k values 

while  noise  signals  are  related  to  high-k  values.  Thus,  selecting  the  correct  k-limit 

allows  to  keep  all  true  signals  while  rejecting  noise,  including  t1-noise  (73). 

Additionally, when a baseline distortion is present, its intense signal correspond to the 

first singular value which may be removed (96). The following section describes how to 

apply SVD on one-dimensional (1D) data.

C.2. Hankel and Toeplitz matrices

As stated above, SVD can only be applied to matrices. However, 1D data form only a 

(complex) row or column but not a matrix.  In such a case,  a transformation step is 

required.  This  can  be  performed  thanks  to  Hankel  matrix,  or  similarly  to  Toeplitz 

matrix. The former is defined by its first row and its last column. All anti-diagonal 

values are filled identically to the first ones (Figure 2). Toeplitz matrix is defined by its 

first column and its first row, all diagonal values being identical (97). Circulant matrices 
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are a special case of Hankel or Toeplitz matrices, where every row of the matrix is a 

cyclic shift of the row above (98). However, in general case, these are semi-circulant 

matrices, with one value being replaced from one row to the next one.

Hankel and Toeplitz matrices are not necessarily square,  and are the vertical 

reflection of each other. From a programming point of view, extracting anti-diagonals 

needs a matrix vertical reflection. Although this step is computationally inexpensive, 

Toeplitz  matrices  were  preferred  for  the  sake  of  simplicity  when using  Python and 

Matlab. The Java application developed by Man et al. (81–83) used a Hankel matrix. It 

should be noted that after denoising, (anti-)diagonals values are no longer identical and 

averaging is needed as highlighted by Hansen and Jensen (64). They indeed stated that 

‘simply  extract  (and  transpose)  an  arbitrary  row  of  the  matrix  […]  lacks  a  solid 

theoretical justification’.

Figure  2: Hankel matrix applied to a NMR FID. Each point of the FID defines either 

one point of the first row or of the last column of the Hankel matrix. All anti-diagonal 

points are filled identically to the first point.
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C.3. Signal-to-noise ratio

Two  definitions  of  SNR  are  used.  The  first  one  corresponds  to  the  mathematical 

formula (Equation 6), used in electronics, where yi are the individual values while σsignal 

and  σnoise are the standard deviations for signal region and noise region, respectively. 

Normalisation over (n-1) points is preferred to avoid a bias in standard deviation (99). 

This formula is valid only when signal can be measured without any noise, so-called 

pure signal. However, the only observable parameter on a real noisy signal is the signal-

plus-noise-to-noise  ratio  (SNNR)  (100)  defined  by  replacing  σsignal by  σsignal+noise in 

Equation 6. SNR can then be deducted from SNNR, following Equation 7.

SNR=
σ signal

2

σnoise
2

=
(

1
n−1∑i

( y i)
2)signal

(
1

n−1∑i

( y i)
2)noise

(6)

SNR=
σ signal +noise

2
−σ noise

2

σnoise
2 =SNNR−1 (7)

The other possible definition is the analytical chemistry formula (Equation  8), 

where  PSNR is  the  SNR based  on  peak  amplitude  (100). Signal  height  (Hsignal)  is 

measured from maximum of peak to mean of noise, whereas noise is measured on a 

region of 20 times the signal FWHM (101). Additionally, variants exist, depending on 

the way noise is defined, either as maximum noise (hnoise_max), mean noise (hnoise_mean) or 

Root Mean Square (RMS) noise (hnoise_rms)  (102).  Following this  nomenclature,  SNR 

used in  NMR (102)  and Raman spectroscopy (51)  should rather  be called  PSNRrms 

(Equation 9). While SNR is related to the area of the studied peak, PSNR is related to its 
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height, leading to different results. They can be  expressed in decibels (Equation  10), 

which is more convenient to explore a wide variation range.

PSNRmax=
H signal

hnoise _ max

=
H signal

hnoise _ peak _ peak /2
=

2max( y i)signal

( max( y i)−min( y i)) noise

(8)

PSNRrms=
H signal

hnoise _ rms

=
H signal
σnoise

=
max( y i)signal

√ ( 1
n−1

∑
i

( y i)
2)

noise

(9)

SNRdB
=10 log10(SNR) , PSNRrms

dB
=10 log10( PSNRrms

2
) (10)

Additionally,  Currie  defined  a  Critical  Level  (Lc),  a  Detection  Limit  (Ld)  and  a 

Quantitative  Limit  (Lq),  at  1.64,  3.29  and  10 σnoise,  respectively  (103).  The 

corresponding levels, SNR and PSNR measurements are drown in Figure 3.

Figure 3: Measurement of  Signal-to-Noise Ratio (SNR) and Peak SNR (PSNR) based 

on noisemax and  noiserms for  the  29Si  MAS solid-state  NMR spectrum of  the  50 / 50 

MTEOS / TEOS sample. Signal and noise regions are highlighted with dotted vertical 

green and red lines, respectively. Critical (Lc), detection (Ld) and quantitative (Lq) limits 

(103) are shown with red, orange and dotted horizontal green lines, respectively.
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D. Results and discussion

In this section, SVD is applied to NMR and Raman spectra. We then focus on practical 

aspects  of  denoising,  namely  the  impact  of  the  matrix  shape  and  the  number  of 

components used for thresholding. Time and frequency denoising are compared. The 

minimum experimental SNR needed for valid use of SVD and its impact on peak shape 

are thoroughly investigated. Finally, a limit case is evaluated.

D.1. Denoising of NMR and Raman spectra

Images  are  already  matrices  and  SVD  can  directly  be  applied  on  them.  Two-

dimensional  (2D)  spectra  can  be  treated  similarly.  However  one-dimensional  (1D) 

spectra are not directly suitable for SVD. If a series of spectra is available, one just need 

to stack the successive spectra to obtain a 2D data set. Figure 4a shows such a stack of 

spectra simulating a reaction kinetics studied by Raman spectroscopy, as described in 

Section  B.3.  A similar  stack can  be obtained when a surface  is  mapped to analyse 

species in a sample region (31). The spectrum consisted of four overlapped peaks with 

varying intensities. Without SVD, the two peaks at 510 and 900 cm-1 were difficult to 

detect due to the amount of noise (red arrows). However, after SVD, these components 

were identified as evidenced by green arrows. One should note the very low residual 

noise.
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Figure 4: a) SVD applied to a set of spectra mimicking a kinetic reaction, as probed by 

Raman spectroscopy. Four overlapping bands are simulated on 2000 spectra with 2000 

points  each,  resulting  into  a  matrix  of  2000×2000 points.  Only  three  representative 

spectra are shown. b) 29Si MAS solid-state NMR spectra of the 50 / 50 MTEOS / TEOS 

sample. From top to bottom: standard spectrum, CPMG spectrum, vertically zoomed 

CPMG spectrum, spectrum obtained after SVD applied on time domain signal of the 

above transformed to an Hankel matrix of 2015×2014 points. Red and green arrows 

show difficult to detect and enhanced signals, respectively.

It is also possible to use SVD on a 1D data set, by way of a Hankel or a Toeplitz 

matrix, as described in Section C.2. This feature was used in the context of 29Si MAS 

solid-state NMR (Figure 4b) using the GPU Java application (83). The 29Si MAS NMR 

spectrum of the 50 / 50 MTEOS / TEOS sample (see Section B.1) is shown in the top of 

the figure. It should be noted that this spectrum already displays a very good SNR. The 

signal has been enhanced using CP, allowing a non-quantitative spectrum to be acquired 

in  40 minutes.  The second spectrum shows the same sample analysed using CPMG 

echoes (39), which led to numerous spikelets. The overall shape of the CPMG spectrum 
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is qualitatively similar to the above spectrum. Such an approach was proved to be a 

mean to increase SNR during acquisition step by discretising broad peaks (104). The 

original  shape  with  improved  SNR  can  be  recovered  by  summing  echoes,  but 

nevertheless this leads to relaxation distortions. The third spectrum of Figure  4b is a 

vertical zoom to highlight noise level and much less intense spikelets marked by red 

arrows. By comparison with the same spectrum after SVD processing, such small peaks 

were highly enhanced and noise has disappeared. This 29Si CPMG MAS NMR spectrum 

was used hereafter as a reference to evaluate the performances of the SVD process.

D.2. Matrix shape

It is sometimes argued that efficient denoising can be obtained using an iterative process 

on a rectangular matrix, with a number of columns higher than the number of signals of 

interest (105), i.e. roughly the number of peaks. The iteration consists in converting into 

a  matrix,  applying  SVD,  and  reverting  to  a  1D  set  of  denoised  data.  Due  to 

(anti-)diagonals averaging (see Section C.2), the matrix at the beginning of the second 

iteration is  not exactly  the one at  the end of  the first  iteration,  which explains  that 

multiple iterations give different results. However in our case, such a procedure led to 

some residual noise (Figure S1). Even with m × n = 3901 × 128 points and 10 iterations, 

noise was only marginally reduced. Nevertheless, this procedure has the advantage of a 

low computation time per iteration, as Hankel or Toeplitz matrix size is smaller for a 

rectangular shape than a square shape, when starting with the same number of points in 

1D data set (see part (II) of this work (86)).

In a second step, Figure 5a depicts the efficiency of denoising on various matrix 

shapes,  either  rectangular  ones  (m × n = 3997 × 32 points)  or  square  ones 

(m × n = 2015 × 2014 points). While noise was strongly present for elongated matrices, 
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it decreased when the number of columns increased and finally disappeared for a square 

matrix. Square matrices were used hereafter. More generally, our results suggest to tend 

to a square data matrix before applying SVD, as also recommended by Van Huffel et al. 

(106). For n = 512 and n = 2014, small peaks seem to be missing, highlighted by orange 

arrows. This feature is explained in next section.

D.3. Thresholding

Another parameter to be varied in order to optimise denoising is the number of singular 

values k (corresponding to signals) used for low-rank approximation (Figure 5b). In a 

first attempt, k was set to the number of peaks present, k = 22. However, k = 25 resulted 

in a better shape for the three more intense spikelets, corresponding to Q3 and T3 peaks 

(Figure  4b) and k = 47 was necessary to select all small  peaks that were missing in 

previous section (green circles and orange arrows). Above this value, isolated artefacts 

were observed as shown for k = 50 and k = 75 (red ellipsis). They are usually narrow 

and out of phase, which make them easy to detect. It is thus necessary to carefully adjust 

k to discriminate signals from noise.

Another approach to manually select the correct number of singular values was 

to plot singular values in logarithmic scale (Figure  5c). Up to k = 25, singular value 

amplitude was strongly decreasing. Between k = 25 and k = 47 (dashed vertical lines), a 

slow slope was present and it was hard to distinguish the optimal value, because these 

singular values had a too low SNR. Above k = 47, the curve exhibited a plateau and 

finally a cliff for last indexes. The plateau and the cliff are characteristic of noise values 

(107).
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Figure  5:  a)  Influence  of  the  number  of  columns (n)  for  Toeplitz  FID (Toep_FID) 

matrix  construction,  with  m + n = 4028 points  and k = 22  singular  values,  for  a  29Si 

CPMG solid-state NMR spectrum of the 50 / 50 MTEOS / TEOS sample. b) influence 

of the number of singular values (k) and c) singular values in logarithmic scale for a 

matrix of 2015×2014 points (n = 2014). 22 major spikelets and 47 in total are present. 

Red and green circles show artefacts and enhanced small signals, respectively; orange 

arrows are minor spikelets visible at k = 47.

In  order  to  select  automatically  the  proper  number  of  singular  values, 

Malinowski  developed  an  INDicator  function  (IND)  and  a  Significance  Level  (SL) 

function (108), which are available under Matlab in file sfa.m of (93). While IND is 

based  on  the  residual  standard  deviation,  SL  is  a  Fisher  variance  test  giving  the 

probability for a singular value to correspond to noise. In the former case, the minimum 

of IND reflects the number of singular values to select. In the latter case, the singular 

value is rejected if it has a probability of being noise higher than a desired level. The 

influence  of  this  level  will  be  investigated  in  Section  D.5.b.  When  applying  these 
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functions to the spectrum reported in Figure 5b, we found k = 53 with IND and k = 31, 

36 and 39 with SL at 5, 7.5 and 10 % error level, respectively. As stated before, k = 47 

was the manual optimum for the spectrum considered here, selecting all singular values 

attributed to signals while rejecting artefacts. While IND overestimated k and introduces 

artefacts, SL underestimated k, thus ignoring small signals. Nevertheless, SL was the 

tool of choice for automatic thresholding as the result was close from the expected one 

and did not display artefacts. It should be noted that singular value thresholding is also 

available (109) but it needed to adjust too many parameters and to sparsify data.

D.4. Time and frequency domains

In this section, spectra resulting from a same FID with SVD denoising applied either 

before (Figure 6, Toep_FID, in cyan) or after Fourier transform (Toep_SPC, in green) 

are compared. Both were simulated under Matlab and converted into a square Toeplitz 

matrix, according to Section D.2, before applying SVD. Additionally, multiple similar 

spectra  with identical  signal  and random noise were stacked (mult_SPC, in  red),  to 

simulate a mapping of a homogeneous region in MRI or in Raman. For mult_SPC, we 

chose a number of spectra identical to the number of points per spectrum, again to get a 

square matrix. Mult_SPC was also useful to compare the influence of multiple sampling 

vs. a single sampling converted to a semi-circulant matrix. Singular values are presented 

in Figure 6a. By construction, the size of Toep_FID and Toep_SPC was half the one of 

mult_SPC,  which  explains  that  their  maximum  singular  value  indexes  were  lower. 

Singular value plot was very similar for Toep_FID and mult_SPC, but amplitude of the 

latter was higher. The difference between signals and noise singular values was also 

more  prononced  on  mult_SPC.  On  the  contrary,  Toep_SPC  had  a  very  different 

signature, with 17 singular values corresponding to signals, instead of only one that was 
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expected.

Figure 6: a) Singular values and b) spectra obtained with and without SVD. noisy_SPC: 

Fourier  transform (SPC)  of  noisy  FID  simulated  with  1024  points;  Toep_FID  and 

Toep_SPC:  Toeplitz  matrix  of  FID  and  SPC,  respectively,  with  513x512  points; 

mult_SPC: matrix of stacked multiple identical spectra with random noise, characterised 

bt 1024x1024 points. Dashed lines: corresponding Significance Level (SL) noise limit.

Noisy and denoised spectra are shown in Figure 6b. Interestingly, very different 

behaviours  were  observed.  Satisfactory  denoising  was  achieved  using  mult_SPC or 

Toep_FID.  This  result  explains  why  SVD  was  efficient  in  the  case  of  the  afore 

mentioned Raman spectra mimicking a kinetic process (Figure  4a) and the NMR FID 

(Figure 4b). On the contrary, for Toep_SPC, noise –though reduced– was still present. 

This clearly denotes that in case of 1D frequency domain, a reverse Fourier transform 

before converting data into a Toeplitz matrix and applying SVD should be preferred 

(110).
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D.5. Minimum signal-to-noise ratio

D.5.a. Comparison of SNRdB and PSNRrms
dB

An additional  question  is  the  sensitivity  of  SVD,  that  is  to  say the  minimum SNR 

needed  to  get  a  proper  signal  detection.  The  corresponding  indicators,  SNRdB and 

PSNRrms
dB, were defined in Section C.3. 7380 noisy spectra were simulated with either 

Lorentzian or Gaussian shape and with a peak width of either 32 Hz, 320 Hz or 3200 Hz 

(see Section B.4). First, we compared in Figures 7a and 7b the SNRdB determined using 

the pure signal and the separated desired noise (calculated SNRdB)  to the PSNRrms
dB 

measured  on  signal  and  noise  regions  of  the  noisy  data  (measured  PSNRrms
dB). 

Calculated  SNRdB was  a  simulating  tool,  close  to  the  theoretical  SNRdB,  whereas 

measured PSNRrms
dB reflected an experimental assessment, which was directly obtained 

on noisy  spectra.  Comparing  them was  a  way to  check how the  noise  itself  could 

influence PSNRrms
dB. For narrow peaks (in red) a linear relationship between SNRdB and 

PSNRrms
dB was obtained. However, for intermediate and broad peaks (in green and blue, 

respectively), the evolution of SNRdB with PSNRrms
dB displayed a steeper increase, with 

a vertical asymptote at  PSNRrms
dB = 10 dB (dashed black line). This value reflected an 

undetectable signal with Hsignal ≤ hnoise_max, as  σnoise = hnoise_max / 3.3 with a probability of 

99.9 % for Gaussian noise. The increase resulted from  spreading of peak area over a 

wider range. This implied a lower amplitude for broad peaks than for narrow peaks and 

consequently a lower PSNRrms
dB value.
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Figure  7:  7380 simulated  spectra  with  known added homoscedastic  white  Gaussian 

noise. a), c) and e) Lorentzian peak; b), d) and f) Gaussian peak; a) and b) comparison 

of SNR definitions; c) and d) automatic thresholding with SL at 5% error level; e) and f) 

root mean square deviation of denoised spectra. Error bars correspond to the repetition 

of 30 simulated spectra with the same level of added noise. 41 levels of noise were used 

ranging from -20 dB to +20 dB. SVD was applied on time data. SNR and PSNR were 

obtained on frequency data. Dashed black lines represent characteristic values (see text 
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for more details); black arrow shows an artefact detection; orange arrows highlight the 

second singular value for Gaussian peaks. Data set is available in file Data_SL5.mat of 

(93).

The 7380 noisy spectra were then truncated to 5 T2 and the same comparison 

was performed between calculated SNRdB and measured PSNRrms
dB (Figures S2a and 

S2b). This truncation removed the vertical asymptote observed at low PSNRrms
dB, as less 

points were defining noise, and intense noise peaks were less probable. This led to an 

artificial increase of SNR and to a vertical shift of SNRdB = f(PSNRrms
dB) evolution for 

intermediate and broad lines, pictured in green and blue, respectively, in Figures S2a 

and S2b. Moreover, a broader distribution of SNR values was obtained, especially for 

broad peaks (blue line). An additional feature was observed for broad Lorentzian peaks: 

a  vertical  asymptote  at  PSNRrms
dB = 37 dB.  This  feature  was  a  consequence  of  the 

spectral extension of the wings of Lorentzian peaks that were contributing to amplitude 

within noise region. On the contrary, Gaussian peak wings are much less intense and in 

this case, this vertical asymptote was not observed on SNRdB = f(PSNRrms
dB) evolution.

D.5.b. Automatic thresholding

SVD and Malnowski’s SL automatic thresholding  (see  Section  D.3) were applied  to 

these simulated NMR FID corresponding to only one peak. When SL error level was set 

to 5 % and above PSNRrms
dB = 20 dB this single peak was detected with k = 1 singular 

value, whatever peak width and shape (Figures  7c-d and S3a-b, dashed vertical black 

line).  However,  this was only an upper limit  and many peaks were detected around 

PSNRrms
dB = 17 dB, between the detection limit of 3.3 σnoise and the quantification limit 

of  10 σnoise,  as  defined by Currie  (103).  Thus,  to  be  detected  through Malinowski’s 

algorithm, a signal has to be enough different from noise,  i.e. between two to three 
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times higher than noisemax. Surprisingly, a second singular value was detected with k = 2 

for Gaussian shapes above PSNRrms
dB = 36 dB, (Figures 7d and S3b). The amplitude of 

this second component was significant and improved the resulting shape of denoised 

spectrum. This second singular value will be explained in Section  D.6.c.  On the full 

data set of 7380 spectra,  only one false detection was observed, as indicated by the 

black arrow in Figure 7c. Thus, the amount of artefacts was negligible. On the truncated 

FID (Figures S2c and S2d), this  limit of PSNRrms
dB = 20 dB was not so abrupt, due to 

lack of accuracy on noise measurement. However, an advantage of truncation was a 

much faster computation for broad peaks, thanks to the smaller matrix used.

When SL error level was set to 7.5 or 10 %, the minimum SNR to get a peak 

detection was decreasing (Figures S3c-f). However, the number of false detections also 

increased noticeably, as indicated by the black arrow. In some rare cases, evidenced 

with lines being higher than the figure vertical limit (black arrow on Figure S3d), SL 

was unable to distinguish signal from noise, resulting in a noisy spectrum after SVD. 

While an error level of 5 % is really safe, a level of 7.5 % may be necessary to detect 

tiny peaks. A value of 10 % seems too high to avoid artefacts. Results are summarised 

in Table 1. SNR is not presented in this table as it is not a relevant parameter, that is too  

much depending on peak width and shape.

Table  1.  PSNR needed  for  SVD with  SL automatic  thresholding depending on the 

desired error level.

SL error level PSNRrms
dB PSNRrms PSNRmax Artefacts

5 % 17 7.1 2.1 no

7.5 % 16 6.3 1.9 small

10 % 15 5.6 1.7 strong

D.5.c. Error measurement

The difference between denoised signal and simulated non-noisy signal (pure signal), 
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was measured using the Root Mean Square Deviation (RMSD), defined on Equation 11, 

where yi
denoised and yi

pure are the individual values for denoised and pure SPC, respectively 

(Figures 7e and 7f). A high RMSD was obtained below PSNRrms
dB = 17 dB. As no peak 

was detected in this range, the obtained value corresponded to RMSD of pure signal 

compared to zero,  which was higher for broad peaks,  due to its wide spread range. 

Above  this  PSNRrms
dB value, RMSD displayed  a  steep  decrease  under  0.1  (dashed 

horizontal  black  line).  These  results  emphasised  the  very  good  agreement  between 

denoised and pure data. However, RMSD was higher for Gaussian than for Lorentzian 

peaks (Figure 7f). Above the second threshold of PSNRrms
dB = 36 dB, RMSD exhibited a 

further  decrease  downto  the  level  obtained for  Lorentzian  peaks.  This  confirms  the 

significance of the second singular value. A similar trend was observed on truncated 

data (Figures S2e and S2f).

RMSD=√∑i=1

n

( yi
denoised

− y i
pure

)
2

n
(11)

D.6. Quantification

D.6.a. Pure and denoised spectra

The next step that was investigated concerns the possibility to use denoised spectra for 

the sake of quantification. For each peak width and shape at PSNRrms
dB = 20 dB, i.e. at 

quantification limit, the spectrum with the worst RMSD is presented in Figure 8. These 

spectra were fitted with a Voigt function with error estimation implemented in Matlab 

(111). Amplitude, position, shape and width were automatically adjusted. Results are 

reported in Table 2 and 3 for Lorentzian and Gaussian peaks, respectively. A very large 

uncertainty occurred on fitting parameters derived from noisy spectra (top traces). For 
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denoised spectra (middle top traces), uncertainty decreased significantly, roughly by a 

factor of 10, but was still higher than for pure spectra (middle bottom traces). Difference 

between denoised and pure spectra is presented in bottom trace of Figure 8.

D.6.b. Lorentzian and Gaussian peaks

Surprisingly, despite a  RMSD lower than 0.1, the area Percent Error (PEarea given by 

Equation 12) could be as high as 8.5 % and 42.6 % for Lorentzian and Gaussian peaks, 

respectively. While the former was acceptable at detection limit, the latter evidenced an 

overestimation. Although PEarea decreased after SVD denoising on Lorentzian peaks, it 

increased  for  Gaussian  peaks.  Moreover,  difference  spectrum  on  Gaussian  peak 

exhibited a mix of narrow and wide components with opposite amplitudes (Figure 8f). 

Such  a  shape  modification  was  not  observed  for  Lorentzian  peaks.  Besides,  the 

Gaussian / Lorentzian ratio was around 0.5 instead of 1.0 after denoising on Gaussian 

peaks (dark grey and light grey rows of Table  3). This result  highlighted that SVD 

induced a change in peak shape from Gaussian peaks to more Lorentzian ones. Above 

the  second  threshold  of  PSNRrms
dB = 36 dB,  the  shape  was  corrected  thanks  to  the 

second singular value, giving a pure Gaussian peak after denoising (white rows of Table 

3).

PEarea(%)=
Area denoised

−Area pure

Area pure ×100 (12)
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Figure 8: Spectra obtained in Figure 7 at PSNRrms
dB = 20 dB with worst RMSD for a), c) 

and e) Lorentzian peak; b), d) and f) Gaussian peak; a) and b) narrow peak in red; c) and 

d) intermediate peak in green; e) and f) broad peak in blue. On each sub-figure, top 

spectrum, middle top,  middle bottom, bottom spectra correspond to noisy, denoised, 

pure spectra and difference between denoised and pure spectra, respectively. Orange 

arrow highlight the Gaussian peak distortion.
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Table  2.  Modelling  of  pure,  noisy  and  denoised  Lorentzian  peak with  narrow, 

intermediate  and  broad  widths  (in  red,  green  and  blue,  respectively),  for  low, 

intermediate and high PSNRrms
dB (dark grey, light grey and white rows, respectively). a: 

Matlab  file  exchange 52321 (111);  b:  root  mean square  deviation  to  pure spectrum 

(Equation 11); c: Percent error on pure spectrum area (Equation 12).

Modelling
a

Shape
T2 

(ms)
Signal RMSD

b
Ampli-

tude
Position 

(Hz)
G/L

Width 
(Hz)

Area
PEarea 

(%) c

L
or

en
tz

ia
n

lo
w

 P
S

N
R

rm
sd

B

10

Noisy
19.6 dB

2.78
21
± 5

1763
± 6

0.0
± 0.8

40
± 10

1185 + 17.3

Denoised 0.05
19.7
± 0.3

1760.3
± 0.4

0.00
± 6e-2

35
± 1

1096 + 8.5

Pure -
20.191
± 3e-3

1761.87
± 4e-3

9.2e-3
± 7e-4

31.99
± 1e-2

1010 -

1

Noisy
19.5 dB

1.12
6.1

± 0.8
1710
± 20

0.3
± 0.4

320
± 60

2693 - 14.4

Denoised 0.04
6.27

± 7e-2
1729
± 2

0.27
± 4e-2

342
± 6

2992 - 4.9

Pure -
6.299
± 3e-3

1761.89
± 6e-2

4e-3
± 1e-3

318.5
± 0.2

3145 -

0.1

Noisy
20.2 dB

0.22
1.54

± 6e-2
1520
± 50

0.3
± 0.2

3200
± 200

6665 + 2.5

Denoised 0.02
1.52

± 1e-2
1590
± 10

0.35
± 4e-2

3190
± 40

6529 + 0.4

Pure -
1.52

± 1e-2
1762
± 8

0.34
± 3e-2
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L
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n
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te
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S
N

R
rm
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B
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Noisy
30.1 dB

0.79
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± 1

1763
± 2

0.1
± 0.3

31
± 4

952 - 5.7

Denoised 0.01
20.56
± 7e-2

1762.8
± 0.1

0.00
± 2e-2

30.8
± 0.3

995 - 1.5

Pure -
20.191
± 3e-3

1761.87
± 4e-3

9.2e-3
± 7e-4

31.99
± 1e-2

1010 -
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R
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B

10

Noisy
36.2 dB

0.40
19.8
± 0.6

1761.4
± 0.8

0.1
± 0.1

32
± 2

963 - 4.7

Denoised 0.01
19.90
± 1e-2

1761.60
± 2e-2

0.061
± 3e-3

32.40
± 4e-2

984 - 2.6

Pure -
20.191
± 3e-3

1761.87
± 4e-3

9.2e-3
± 7e-4

31.99
± 1e-2

1010 -
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Table  3.  Modelling  of  pure,  noisy  and  denoised  Gaussian  peak with  narrow, 

intermediate  and  broad  widths  (in  red,  green  and  blue,  respectively),  for  low, 

intermediate and high PSNRrms
dB (dark grey, light grey and white rows, respectively). a: 

Matlab  file  exchange 52321 (111);  b:  root  mean square  deviation  to  pure spectrum 

(Equation 11); c: Percent error on pure spectrum area (Equation 12).

Modelling
a

Shape
σ

(ms)
Signal

RMSD
b

Ampli-
tude

Position 
(Hz)

G/L
Width 
(Hz)

Area
PEarea 

(%) c

G
au

ss
ia

n
lo

w
 P

S
N

R
rm

sdB
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Noisy
19.9 dB

2.81
22
± 4

1762
± 4

1
± 1

37
± 9

927 + 31.3

Denoised 0.08
22.51
± 8e-2

1761.00
± 9e-2

0.42
± 2e-2

34.2
± 0.2

1007 + 42.6

Pure -
20.827
± 9e-5

1761.89
± 9e-5

1.000
± 3e-5

31.861
± 2e-4

706 -

1.2

Noisy
20.4 dB

0.88
6.7

± 0.5
1790
± 10

1.0
± 0.5

330
± 30

2329 + 5.3

Denoised 0.07
6.78

± 2e-2
1757.3
± 0.4

0.46
± 1e-2

331
± 1

2891 +30.8

Pure -
6.5193
± 2e-5

1761.89
± 5e-4

1.000
± 2e-5

318.61
± 1e-3

2211 -

0.12

Noisy
20.5 dB

0.32
1.86

± 8e-2
1810
± 50

0.9
± 0.3

3200
± 100

6499 + 1.9

Denoised 0.05
1.839
± 7e-3

1734
± 4

0.62
± 2e-2

2980
± 10

6637 + 4.1

Pure -
1.8800
± 2e-5

1761.89
± 1e-2

1.000
± 8e-5
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± 3e-2
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Noisy
29.7 dB
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21
± 1

1761
± 2

0.2
± 0.4
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± 4

899 + 27.3

Denoised 0.04
22.24
± 4e-2

1761.80
± 4e-2

0.38
± 1e-2

30.77
± 9e-2

913 + 29.3

Pure -
20.827
± 9e-5

1761.89
± 9e-5

1.000
± 3e-5

31.861
± 2e-4

706 -
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n
h

ig
h
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R
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sdB
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Noisy
36.3 dB

0.40
21.4
± 0.6

1761.7
± 0.6

1.0
± 0.2

31
± 1

715 + 1.3

Denoised 0.02
21.32
± 6e-2

1761.85
± 6e-2

1.00
± 2e-2

31.4
± 0.1

713 + 1.0

Pure -
20.827
± 9e-5

1761.89
± 9e-5

1.000
± 3e-5

31.861
± 2e-4

706 -
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D.6.c. Real and extracted errors

The error on the measured area can origin from  two sources: first the error introduced 

by the added noise, known as the  real error,  and second the error coming from the 

denoising  itself,  so-called  the  extracted  error (108).  An  example  of  real  error  is 

presented in Figure S4a. Two successive measurements with NS = 120 scans gave a 

different amplitude for Q2 peak at -91 ppm (red arrow). With a higher noise averaging at 

NS = 360  (not  shown),  amplitude  ratios  were  similar  to  NS = 840.  Thus,  SNR  at 

NS = 120 was too low and amplitude was tainted by error. A strong apodisation has 

been used here to artificially improve SNR (see Section D.7.a). Automatic thresholding 

was unable to correctly discriminate signals from noise and manual thresholding with 

k = 5 singular values was preferred. Nevertheless, the real error was kept after denoising 

(Figure S4b), which demonstrated that manual thresholding is a dangerous tool. Failure 

of automatic thresholding is thus an indication that SNR has to be improved.

The extracted error was especially present for Gaussian spectra, for which the 

Gaussian / Lorentzian ratio modification (see Section D.6.b) led to an increase of peak 

area.  Indeed,  SVD fits  time decays  with a sum of exponential  (55).  When fitting a 

Gaussian decay with a single exponential  component,  corresponding to one singular 

value at low PSNRrms
dB, the peak area is correspondingly overestimated by 20 % (112). 

Our results were consistent with this value. Gaussian and exponential decays are very 

different, as Gaussian is flatter around its maximum. Above the second threshold, the 

Gaussian decay was fitted with two exponential decays, improving peak area value.

Unfortunately,  when  studying  solid-state  samples  by  using  spectroscopic 

approaches, peaks are most of the time not Lorentzian. In such cases, SVD quantitative 

results are difficult to obtain. A workaround would be to model the resulting spectrum 

with pseudo-Voigt functions. For peaks with a Gaussian / Lorentzian ratio around 0.5, 
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dividing their area by 1.2 (20 %) should improve quantification. Taking this precaution 

into account for analysis of our data, PEarea was found to be similar between denoised 

spectra at PSNRrms
dB = 20 dB (dark grey rows in Table 2 and 3) (101) and noisy spectra 

at PSNRrms
dB = 30 dB, (light grey rows in Table 2 and 3). In solid-state NMR, another 

possibility to avoid Gaussian peak error relies on use of CPMG echoes (39) as in Figure 

4b. This technique transforms a peak driven by chemical shift distribution (Gaussian 

shape,  inhomogeneous  interaction)  into  multiple  narrow peaks  driven  by  relaxation 

(Lorentzian shapes, homogeneous interaction) (113, 114), which are very suitable for 

SVD, being both sensitive and quantitative.

D.7. Limit case on a real NMR spectrum

D.7.a. Pre-processing

A pre-processing step called apodisation can be applied on FID before SVD and Fourier 

transform. The aim is first to reduce noise, and second to remove truncation artefacts 

leading to oscillations at peak foot, hence the name. In NMR, one can use for instance 

either exponential, cosine, or (shifted-)Gaussian decays. Their shape were compared in 

(115). While exponential is concave, cosine is convex and Gaussian is intermediate. In 

Figure S4c, we compared the influence of apodisation on initial noise. The resulting 

denoised SPC with automatic thresholding at an SL error level of 7.5 % are presented in 

Figure S4d. Without apodisation, SNR was too low to detect Q2 peak at -91 ppm (red 

circle)  and  k = 4  singular  values  were  found.  With  cosine  apodisation,  the  correct 

number  of  peaks  was  obtained  with  k = 5  singular  values  (green  ellipsis).  With  an 

exponential  decay of 20 Hz, corresponding to the intrinsic SPC resolution,  a similar 

result was obtained, but with k = 6 singular values, leading to small baseline distortions. 

Surprisingly,  with an exponential  decay of 50 Hz,  a much higher  number of k = 94 
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singular values was found, with almost no denoising (orange circle). An explanation 

was that apodisation changed the amplitude of noise values, especially at the end of the 

FID.  By this  way,  noise  became heteroscedastic,  decreasing  efficiency of  SVD and 

Malinowski’s criterion. When plotting singular values in logarithmic scale (Figure S4e), 

the slope moved from a plateau for cosine (purple curve) to a decay for exponential with 

50 Hz (blue curve). In such a case, it is harder to discriminate signals from noise, as the 

slope is similar. Cosine is thus a good compromise before SVD as it decreases noise 

without changing too much singular values. An alternative would be to combine SVD 

and Savitzky–Golay smoothing filter (116), which process noise the same way all over 

the FID.

D.7.b. Denoising

On the sol-gel 50 / 50 MTEOS / TEOS sample,  four hours and NS = 240 scans with 

cosine pre-processing, were needed to have a spectrum with a sufficient SNR to apply 

SVD and to detect Q2 peak with automatic thresholding at SL error level of 10 % (not 

shown).  If  SL error level was limited to 7.5 %, six hours and NS = 360 scans were 

necessary (Figure 9 top trace). The corresponding denoised spectrum (middle top trace) 

was  very  close  to  the  reference  spectrum acquired  in  fourteen  hours  and NS = 840 

(middle bottom trace), with PSNRrms = 9.7,  i.e. at quantification limit. Their difference 

(bottom  trace)  was  comparable  to  noise.  This  was  confirmed  by  peaks  integration 

(Table  4) where very good agreement was obtained between the denoised spectra at 

NS = 240 or  NS = 360 and the reference noisy spectrum at  NS = 840.  In particular, 

Q2 / Q3 ratio was very consistent. Time gain was thus between 2.3 to 3.5, depending on 

the SL error level allowed.
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Figure 9: 29Si MAS solid-state NMR spectrum of the 50 / 50 MTEOS / TEOS sample. 

From top to bottom: noisy spectrum at NS = 360 scans; denoised spectrum at NS = 360 

scans  with  k = 5  singular  values  at  SL  error  level  7.5 %;  reference  spectrum  at 

NS = 840;  difference  between  denoised  and  reference  spectra.  The  spectrum  is 

quantitative with an impulsion of 30° and a relaxation delay of 60 s.

Table  4. Peaks integration on noisy (grey rows) and denoised (white rows) spectra of 

the 50 / 50 MTEOS / TEOS sample for various number of scans (NS). The spectrum is 

quantitative  with  an impulsion  of  30°  and a  relaxation  delay  of  60 s.  Spectra  were 

modelled using Dmfit (117).

NS
Pre-

proces
-sing

PSNR 
rms

Svd 
thres-
hold

% T2 % T3 % Q2 % Q3 % Q4 Q2 / Q3

120 cosine 3.9
no 11.5 38.8 3.3 29.1 17.2 0.11

10 % 12.9 39.8 0 29.2 18.1 0

240 cosine 5.2
no 12.0 37.2 4.7 29.6 16.5 0.16

10 % 12.5 36.3 5.5 28.8 16.8 0.19

360 cosine 7.1
no 12.3 36.5 4.8 30.2 16.2 0.16

7.5 % 12.8 35.6 5.5 29.5 16.6 0.19

840 cosine 9.7
no 13.2 35.8 5.4 29.7 15.9 0.18

7.5 % 13.7 35.2 5.8 29.1 16.1 0.20

E. Conclusion

Singular  Value  Decomposition  is  of  crucial  importance  in  many  mathematical 

treatments  involved  in  spectrocopies.  In  this  first  part  (I),  SVD  with  low-rank 
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approximation  was  successfully  applied  to  denoise  NMR and  Raman  spectra.  This 

approach can easily be generalised to other spectroscopies. We have shown that a better 

denoising was obtained with square matrices and with SVD applied to time domain 

signal rather than to the corresponding frequency spectrum. Automatic thresholding was 

used thanks to Malinowski’s Significant Level indicator and a 7.5 % error value was a 

good  compromise  between  sensitivity  and  unwanted  artefacts.  6×7380  SVD  were 

carried  out  to  compare  pure,  noisy  and  denoised  spectra  with  SNRdB ranging  over 

41 dB. Our results proved that this technique can detect signals as low as twice noisemax, 

i.e. with  PSNRmax = 2.0  and  PSNRrms = 6.6,  whatever  the  peak  width.  A  systematic 

shape modification has been highlighted for Gaussian peaks with an overestimation of 

peak area by 20 %. This overestimation for Gaussian peaks is a major result as peak 

shape  is  often  neglected  when  denoising,  which  can  give  misinterpreted  data.  A 

correction step is thus needed if Gaussian / Lorentzian ratio of denoised peak is around 

0.5. When used carefully, SVD can lead to similar results between denoised spectra at 

PSNRrms = 6.6 and noisy spectra at quantification limit (PSNRrms = 10).  As PSNRrms is 

increasing with the square root of time, this difference is equivalent to a considerable 

gain on acquisition time of 2.3, which is of paramount importance for low sensitivity 

experiments.

In a second part (II) (86), we will focus on the computation time needed for 

SVD treatment under Java, Matlab and Python, using both processors and graphic cards. 

We will check the influence of algorithms, especially the divide and conquer one, as 

well  as  the  influence  of  single  precision  calculation  will  be  investigated.  Software 

libraries such as MKL (Intel Math Kernel Library) and hardware capabilities such as 

SSE3 (Streaming SIMD Extensions) (118) will be evaluated. All these optimisations 

will decrease computation time by a factor of 100.
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F. Supplementary material

Figure S1:  Influence of  SVD iterations;  Figure S2:  SVD applied to  7380 simulated 

spectra  with  truncation; Figure  S3:  Influence  of  significance  level  for  automatic 

thresholding; Figure S4: influence of number of scans and preprocessing; simulated data 

sets and source codes are available online in (93).
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