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In skew-product systems with contractive factors, all orbits asymptotically approach the graph of the
so-called sync function; hence, the corresponding regularity properties primarily matter. In the litera-
ture, sync function Lipschitz continuity and differentiability have been proved to hold depending on
the derivative of the base reciprocal, if not on its Lyapunov exponent. However, forcing topological
features can also impact the sync function regularity. Here, we estimate the total variation of sync
functions generated by one-dimensional Markov maps. A sharp condition for bounded variation is
obtained depending on parameters, which involves the Markov map topological entropy. The results
are illustrated with examples. Published by AIP Publishing. https://doi.org/10.1063/1.5026551

To describe the properties of the long term response to
a deterministic stimulus is a ubiquitous issue in Chaotic
Dynamics. In the context of dissipative factors driven by
autonomous systems, this question boils down to evaluat-
ing the characteristics of the so-called synchrony function.
So far, focus has been made on sync function features that
depend on the forcing derivative (in a broad sense). How-
ever, discontinuous examples in applications suggest the
need to evaluate other basic features, such as the total vari-
ation. Here, we prove in simple examples that the sync
function is, or is not, of bounded variation, depending
only on the forcing topological entropy. Therefore, basic
properties of invariant graphs also depend on topological
features of the corresponding forcing systems.

I. INTRODUCTION

An important issue in the theory of forced systems is
to evaluate the regularity of their synchronization graph.
Suppose that an autonomous (discrete time) dynamical
system

xt+1 = f (xt), t ∈ N ∪ {0},
is given together with a dissipative factor

yt+1 = g(xt, yt).

Here, f is an invertible map with invariant subset U in a
Banach space X with norm ‖ · ‖X and g : X × Y → Y (Y is
a Banach space with norm ‖ · ‖Y ) such that

sup
x∈U

‖g(x, y) − g(x, y′)‖Y ≤ γ ‖y − y′‖Y , ∀ y, y′ ∈ Y ,

for some 0 < γ < 1. Then, the orbits {(xt, yt)} of the skew-
product system (f , g) are attracted by the graph of the cor-
responding sync function.2,17,19,22 This sync function, say,
φ : U → Y , can be defined by the conjugacy equation

g[x, φ(x)] = φ ◦ f (x), ∀ x ∈ U ,

which ensures invariance of the corresponding graph
{[x, φ(x)]}x∈U . In this context, regularity properties of this

function matter because they determine those dynamical char-
acteristics of the drive system that carry over to the factor.
For instance, Lipschitz continuity implies control of dimen-
sion estimates. Applications range from filtering of chaotic
signals3,6,8 to damage detection in material science.18

The study of sync functions can be regarded as
part of the analysis of inertial manifolds in dynamical
systems.12,13 Besides existence and continuity, a standard
result in this theory is the proof of differentiability under the
condition

Kγ < 1,

where K = supx∈U ‖Df −1(x)‖X , f is a diffeomorphism, and g
is continuously differentiable.7,14,23,24 (If f −1 and g are merely
Lipschitz continuous, then the same inequality—where K now
stands for the Lipschitz constant of f −1—implies that the
function φ itself is Lipschitz continuous.) When Kγ ≥ 1, φ

may not be differentiable/Lipschitz continuous;4,16 however,
it is certainly Hölder continuous.1,7,23–25

The analysis has subsequently been extended to accom-
modate non-uniformly hyperbolic effects. In particular, φ

has been proved to be differentiable in the Whitney sense
(i.e., given an invariant measure μ for f , φ is uniformly dif-
ferentiable on sets of measure 1 − ε for every ε > 0) provided
that7,24

eLyap( f −1)γ < 1,

where Lyap( f −1) is the maximum of the largest Lyapunov
exponent of f −1 over a set of full measure μ and satisfies
eLyap(( f −1) ≤ K.

Investigations have been pursued beyond the homeomor-
phic case, either when f is non-invertible5,21,25 or when it has
discontinuities, more precisely, when f −1 is a discontinuous
map of the interval.1,4,6 In this case, discontinuities transfer to
the sync function, where they typically form dense subsets.
A natural quantifier in this setting is the total variation
which, roughly speaking, measures the length of the corre-
sponding graph, see, e.g., Ref. 15 for a definition. The sync
function has been shown to be of bounded variation under
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FIG. 1. Schematic diagram of the properties of φγ = ∑+∞
k=0γ

kTk+1 for 0 < γ < 1, when T is a continuous piecewise affine and expanding, and transitive
Markov map of the interval.

the condition

ehtop( f −1)γ < 1,

where htop( f −1) is the topological entropy of f −1. On the
other hand, the total variation of φ becomes infinite when
γ is sufficiently large.10 A sync function of bounded varia-
tion makes it easier to show that the factor statistics inherit
absolute continuity of the forcing statistics.11 In any case, the
topological feature of f −1 can also affect regularity properties
of φ.

II. MAIN RESULTS

This letter aims to provide similar total variation
estimates in more general cases, when the forcing is
not necessarily discontinuous. For simplicity, we shall
work in the framework of (one-dimensional) linear filters
and skew-product inverse forcing (although certain results
extend to more general cases without additional conceptual
difficulties).3,6,9,25 More precisely, the set U can be written
as U = [0, 1] × U2 (where U2 will be irrelevant), and letting
x = (x, x2) where x ∈ [0, 1], the inverse forcing is given by

f −1(x, x2) = [T(x), f2(x, x2)],

where T : [0, 1] → [0, 1] (and, again, the mapping f2 will play
no role here). For a systematic way of defining f such that f −1

is as here, see Ref. 10. Assuming in addition that the filter
satisfies

g(x, y) = x + γ y, ∀ y ∈ R = Y , x = (x, x2) ∈ [0, 1] × U2,

the sync function then takes the following compact expres-
sion:

φγ =
+∞∑

k=0

γ kTk+1. (1)

A Markov map of the interval20 is said to be transitive if the
corresponding transition matrix is irreducible. The main result
of this paper states that, for T a piecewise affine expanding
and transitive Markov map, the total variation of φγ shows a
sharp transition at γ = e−htop(T).

Theorem 1. Assume that T is a piecewise affine and
expanding, and transitive Markov map. Then, the total varia-
tion of φγ defined by (1) on [0, 1]

• is finite when ehtop(T)γ < 1 and
• is infinite when ehtop(T)γ > 1, except maybe for at

most 2N − 1 values of γ , where N is the number of
atoms of T.

For maps T that are also continuous, this result can be
combined with the previously mentioned ones to obtain the
schematic diagram of the sync function properties presented
in Fig. 1.

As the proof will show, the first part of the statement actu-
ally holds for every piecewise continuous and monotone map
T of the interval and also for more general filters such as

g(x, y) = p(x) + γ y,

where p is assumed to be smooth. An example of such
extension is p(x) = cos(2πx) and T(x) = βx − �βx
, where
the sync function essentially boils down to the Weier-
strass function16 (NB: in this case we have K = ehtop(T) =
eLyap(T) = β).

On the other hand, the proof of the second part strongly
relies on the assumptions on T , although we believe that
infinite variation occurs for sync functions associated with
more general maps. Furthermore, we also believe that φγ has
infinite variation for all γ ≥ e−htop(T), i.e., there are no excep-
tional values. This can be proved in some special cases (see
examples in Fig. 2).

0
0

1

1a 0
0

1

1a a0
0

1

1aa

FIG. 2. Examples of maps satisfying the assumptions of Proposition 2.
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FIG. 3. Examples of the function φγ for the tent map with maximum at
x = a (left picture in Fig. 2) and a = 1

4 here. Top left: γ = 0.2 is such
that Kγ < 1. Top right: γ = 0.45 (viz., Kγ < 1 < ehtop(T)γ ). Bottom left:
γ = 0.55 (ehtop(T)γ < 1 < eLyap(T)γ ). Bottom right: γ = 0.75 (eLyap(T)γ > 1).

Proposition 2. Assume that T is a piecewise affine and
expanding, and transitive Markov map with a full branch and
such that

• either T(0 + 0) = 0 or T(1 − 0) = 1,
• or there exist a < a < ā such that T(ā) = T(ā) = a and

either T(a) = 0 and T(0) > 0 or T(a) = 1 and T(1) < 1.

Then, the total variation of φγ on [0, 1] is infinite when
ehtop(T)γ ≥ 1.

To illustrate the results, examples of graphs of the sync
function φγ , obtained with the tent map (left picture in Fig. 2),
are presented in Fig. 3.

III. PROOFS

Proof of Theorem 1. In order to prove the first assertion,
consider an arbitrary subdivision 0 = x1 < x2 < · · · < xn = 1
of [0, 1]. Uniform convergence in the definition of φγ implies

n−1∑

i=1

∣∣φγ (xi+1) − φγ (xi)
∣∣ ≤

+∞∑

k=0

γ k
n−1∑

i=1

∣∣Tk+1(xi+1) − Tk+1(xi)
∣∣.

Using that
∑n−1

i=1 |Tk+1(xi+1) − Tk+1(xi)| ≤ Var[0,1]Tk+1 and
taking the supremum over all subdivisions then yield

Var[0,1]φγ ≤
+∞∑

k=0

γ kVar[0,1]T
k+1.

Now, given k ≥ 0, let nk be the number of affine branches of
Tk . Since each branch has variation at most 1 and the jump
between branches is at most 1, we have Var[0,1]Tk ≤ 2nk and
the first assertion follows from the fact that for a Markov map,
we have htop(T) = limk→+∞

log nk
k .20

For the second assertion, let {Ii}N
i=1 be the intervals on

which T is affine and let si be the slope on Ii. Let X be

the subshift of finite type consisting of admissible sequences
of elements of A = {1, 2, . . . , N} and let M be its transition
matrix.

Given a real function f defined on an interval I, define the
reduced variation of f on I by

RVI( f ) = inf
a

VarI [ f (x) − ax].

The reduced variation satisfies the following properties:

• RVI(f ) = RVI(f + g) for any affine function g on I;
• RVI(αf ) = αRVI(f ) for every α ∈ R

+;
• RV[a,c](f ) ≥ RV[a,b](f ) + RV[b,c](f ) for every a < b < c;
• RVI(f ) = 0 if and only if f is affine on I.

Lemma 3. Assume that T is a piecewise affine and tran-
sitive Markov map and let γ > e−htop(T). If Var[0,1]φγ < +∞,
then φγ must be affine on each Ii.

Proof. Let vi = RVIi(φγ ). The relation φγ = T + γφγ ◦
T , the above properties, the Markov property, and the fact that
the branches are linear imply

vi = RVIi(T + γφγ ◦ T) = γ RVIi(φγ ◦ T)

≥ γ
∑

i→j

RVIi∩T−1(Ij)
(φγ ◦ T) = γ

∑

i→j

vj.

That is, v ≥ γ Mv and v = {vi}N
i=1 is a non-negative vector.

Since order is preserved, we can iterate this inequality giv-
ing v ≥ (γ M )nv for all n ∈ N. The assumption γ > e−htop(T)

implies that γ A is a non-negative irreducible matrix with spec-
tral radius greater than 1. According to the Perron-Frobenius
Theorem, the only non-negative v satisfying v ≥ γ Mv is v =
0, viz., φγ must be affine on each Ii. �

It remains to show that there are at most finitely many
values of γ such that φγ is affine on each interval Ii. To that
goal, we separate the proof into two cases:

(1) there exist j ∈ {1, . . . , N}, x, y ∈ Ij, and n ∈ N such that
T ′[Tn(x)] �= T ′[Tn(y)],

(2) there exists n ∈ N such that Tn contains a discontinuity
inside some Ii.

One of these conditions must always hold. Indeed, if all iter-
ates Tn have constant derivatives on each Ii, then some iterates
Tn must be discontinuous inside some Ii (otherwise, T being
piecewise expanding, the length |Tn(Ii)| of a sufficiently large
iterate would be larger than 1, which is impossible).

Case (1). We may wlog assume that n is the smallest
integer such that T ′[Tn(x)] �= T ′[Tn(y)]. Since T is piece-
wise affine, there must exist z ∈ (x, y) ∩ T−n(a), where a is
an atom boundary point for which the left and right deriva-
tives T ′(a − 0) �= T ′(a + 0) differ. The Markov assumption
implies that the orbits of boundary points must be eventually
periodic. Moreover, we may also assume that T is continuous
at all iterates of a; otherwise, case (2) applies. Therefore, there
exist p, q ≥ 0 such that p + q ≤ N + 1 and an atom boundary
point b so that

Tq(a) = b and Tp(b) = b.
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Applying repeatedly the relation φγ = T + γφγ ◦ T to
successive iterates, one gets

φγ (z) =
n−2∑

k=0

γ kTk+1(z)

+ γ n−1

[
q−1∑

k=0

γ kTk(a) + γ q

1 − γ p

p−1∑

k=0

γ kTk(b)

]
.

All iterates Tk involved in the RHS are piecewise
affine; hence, the left and right derivatives (Tk)′(· − 0)

and (Tk)′(· + 0) are well-defined at every point in the interior
of (0, 1). These derivatives can be extended by continu-
ity to [0, 1] [viz., T ′(0 − 0) := T ′(0 + 0) and T ′(1 + 0) :=
T ′(1 − 0)]. Assuming that φγ is affine on the Markov par-
tition, we have (φγ )′ = T ′ + γ (φγ )′ ◦ T giving a recurrence
relation for the values of the derivative on the intervals of the
Markov partition. Since z ± 0 are pre-periodic, we can iterate
and solve linear equations for (φγ )′(z ± 0), yielding rational
expressions for the left and right derivatives (φγ )′(z − 0) and
(φγ )′(z + 0) that are similar to that for φγ (z) above.

That n is the smallest integer implies (Tk)′(z − 0) =
(Tk)′(z + 0) for k = 1, . . . , n − 1. It follows that the equation
(φγ )′(z − 0) = (φγ )′(z + 0) amounts to a polynomial one,
with degree at most 2N − 1, and which is non-degenerate
since T ′(a − 0) �= T ′(a + 0). Therefore, except for at most
2N − 1 values of γ , we have (φγ )′(z − 0) �= (φγ )′(z + 0) and
then φγ cannot be affine on Ij, as desired.

Case (2). The argument is similar to the previous case.
Let x in the interior of some Ii and a discontinuity a of T be
such that Tn(x) = a for some n ∈ N. Wlog, we can assume
that T is continuous at each Tk(x) for k = 1, . . . , n − 1. Then
we have

∣∣φγ (x − 0) − φγ (x + 0)
∣∣ = γ n

∣∣φγ (a − 0) − φγ (a + 0)
∣∣.

Let a− = T(a − 0) and a+ = T(a + 0). Again, the orbits of
a−, a+ must be eventually periodic. More precisely, there exist
q−, p− ≥ 0, q− + p− ≤ 2N , {a−,k}q−−1

k=1 , and {b−,k}p−−1
k=0 such

that

φγ (a − 0) = a− +
q−−1∑

k=1

a−,kγ
k + γ q−

1 − γ p−

p−−1∑

k=0

b−,kγ
k

and similarly

φγ (a + 0) = a+ +
q+−1∑

k=1

a+,kγ
k + γ q+

1 − γ p+

p+−1∑

k=0

b+,kγ
k .

Similar to before, the equation φγ (a − 0) = φγ (a + 0)

amounts to a non-degenerate polynomial one since a− �=
a+. The polynomial degree is at most max{q−, q+} + p− +
p+ − 1 ≤ 2N − 1 if p− �= p+ (resp. max{q−, q+} + p + −1 ≤
2N − 1 if p− = p+ = p). Hence, except for at most 2N − 1
values of γ , φγ cannot be affine on Ii. The proof of Theorem
1 is complete. �

Proof of Proposition 2. Assume first that T(0 + 0) = 0.
By assumption, there exists a > 0 such that T is continuous
and expanding on (0, a), T : (0, a) �→ [0, T(a)], and T(x) >

x for x ∈ (0, a). Therefore, any x ∈ [0, T(a)] has a pre-image
y ∈ T−1(x) such that y < x.

By transitivity, the periodic orbits of T are dense in
[0, 1]. Given p > 1, let (xi)

p
i=1 be one such orbit for which

x1 = mini xi ∈ [0, T(a)]. Labelling in (xi)
p
i=1 has been chosen

so that xi+1 = T(xi) for i = 1, . . . , p − 1 and T(xp) = x1. Let
x0 < x1 be the pre-image of x1 in (0, a).

Let n ∈ N and consider the pre-images x0,i,n ∈ T−n(x0),
x1,i,n ∈ T−n(x1), and xp,i,n ∈ T−n(xp) by the same affine branch
of Tn. Transitivity and the fact that T has a full branch ensure
their existence for every branch of Tn, provided that n is large
enough.

For k = 1, . . . , n − 1, the iterates Tk+1(x0,i,n), Tk+1(x1,i,n),
Tk+1(xp,i,n) lie in the same atoms. Hence, there exist ci,n ∈ R

such that we have

φγ (x0,i,n) − φγ (x1,i,n)

=
n−1∑

k=0

γ k
[
Tk+1(x0,i,n) − Tk+1(x1,i,n)

]

+ γ n
+∞∑

k=0

γ k
[
Tk+1(x0) − Tk+1(x1)

]

= ci,n(x0,i,n − x1,i,n) + γ n[φγ (x0) − φγ (x1)],

and T(x0) = x1 implies φγ (x0) − φγ (x1) = x1 − (1 − γ )

φγ (x1). Similarly, we have

φγ (xp,i,n) − φγ (x1,i,n) = ci,n(xp,i,n − x1,i,n)

+ γ n[x1 − (1 − γ )φγ (x1)].

Since x0 < x1 < xp, the point x1,i,n must lie inside the inter-
val delimited by x0,i,n and xp,i,n. Hence, the first terms in these
expressions of φγ (x0,i,n) − φγ (x1,i,n) and φγ (xp,i,n) − φγ (x1,i,n)

must be of the opposite sign. This implies that

max
{|φγ (x0,i,n) − φγ (x1,i,n)|, |φγ (xp,i,n) − φγ (x1,i,n)|

} ≥ γ n|x1

− (1 − γ )φγ (x1)|.
Now, there are Nn � enhtop(T) triplets x0,i,n, x1,i,n, xp,i,n, one
for each cylinder of length n + 1, i.e., each element of⋂n

k=0 T−k([0, 1)). Therefore, we have

Varφγ

∣∣
[0,1] ≥ Nnγ

n|x1 − (1 − γ )φγ (x1)|,
and to ensure the claim, it suffices to show that
x1 �= (1 − γ )φγ (x1).

Using that (xi)
p
i=1 is p-periodic, one gets

φγ (x1) = x2 + γ x3 + · · · + γ p−1xp + γ px1

1 − γ p

and the assumptions x1 = mini xi and p > 1 imply

x2 + γ x3 + · · · + γ p−1xp + γ px1 >

p∑

k=0

γ kx1

from where it follows that (1 − γ )φγ (x1) > x1. This con-
cludes the proof in the case T(0 + 0) = 0. The case T(1 −
0) = 1 can be treated identically.

Finally, in the case where there exist a < a < a such
that T(a) = T(a) = a and either T(a) = 0 and T(0) > 0 or
T(a) = 1 and T(1) < 1, a reasoning similar to the previous
proof can be applied. The final condition for infinite variation
becomes 0 − (1 − γ )φγ (0) �= 0 [resp. 1 − (1 − γ )φγ (1) �=
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0], which certainly holds because φγ (0) ≥ T(0) > 0 [resp.
φγ (1) ≤ T(1) + γ

1−γ
< 1 + γ

1−γ
]. �
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