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Abstract

The hippocampus is known to store cognitive representations, or maps, that encode both

positional and contextual information, critical for episodic memories and functional behavior.

How path integration and contextual cues are dynamically combined and processed by the

hippocampus to maintain these representations accurate over time remains unclear. To

answer this question, we propose a two-way data analysis and modeling approach to CA3

multi-electrode recordings of a moving rat submitted to rapid changes of contextual (light)

cues, triggering back-and-forth instabitilies between two cognitive representations (“telepor-

tation” experiment of Jezek et al). We develop a dual neural activity decoder, capable of

independently identifying the recalled cognitive map at high temporal resolution (compara-

ble to theta cycle) and the position of the rodent given a map. Remarkably, position can be

reconstructed at any time with an accuracy comparable to fixed-context periods, even dur-

ing highly unstable periods. These findings provide evidence for the capability of the hippo-

campal neural activity to maintain an accurate encoding of spatial and contextual variables,

while one of these variables undergoes rapid changes independently of the other. To explain

this result we introduce an attractor neural network model for the hippocampal activity that

process inputs from external cues and the path integrator. Our model allows us to make pre-

dictions on the frequency of the cognitive map instability, its duration, and the detailed nature

of the place-cell population activity, which are validated by a further analysis of the data. Our

work therefore sheds light on the mechanisms by which the hippocampal network achieves

and updates multi-dimensional neural representations from various input streams.

Author summary

As an animal moves in space and receives external sensory inputs, it must dynamically

maintain the representations of its position and environment at all times. How the hippo-

campus, the brain area crucial for spatial representations, achieves this task, and manages

possible conflicts between different inputs remains unclear. We propose here a
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comprehensive attractor neural network-based model of the hippocampus and of its mul-

tiple input streams (including self-motion). We show that this model is capable of main-

taining faithful representations of positional and contextual information, and resolves

conflicts by adapting internal representations to match external cues. Model predictions

are confirmed by the detailed analysis of hippocampal recordings of a rat submitted to

quickly varying and conflicting contextual inputs.

Introduction

Following the discovery of place cells, which specifically fire at determined positions in space

[1], the hippocampus was recognized as an essential brain area for spatial representations and

memories. These cognitive representations, or maps, actually code for more than position in

physical space, and are also strongly informative about context [2], including physical features

of the background, such as visual landmarks, light, odors, auditory stimuli, as well as more

abstract conditions, such as the emotional state or the task to be performed [3–8].

A fundamental property of the hippocampus is its capacity to memorize multiple cognitive

maps [1, 9–11]. This property may result from specific recurrent synaptic connectivity in the

hippocampal CA3 region [12, 13], and can be theoretically understood in the framework of

continuous attractor neural networks (CANN) [14, 15]. Thanks to the remapping properties

of place cells, multiple maps can be memorized in the same connectivity matrix with almost

no interference between them [16–19].

Cognitive maps may be retrieved when the animal explores again the corresponding envi-

ronments, or be quickly and intermittently recalled depending on the most relevant behavorial

information at that moment [20]. Different sources of inputs to the hippocampus concur to

form, recall, and dynamically maintain cognitive maps [21]. Changes in visual cues and land-

marks may substantially affect place field shape and positioning [5]. The Path Integrator (PI),

capable of integrating proprioceptive, vestibular and visual flow inputs and possibly supported

by the grid-cell network in the medial-enthorinal cortex (mEC) [22], allows the animal to

update the neural representation during navigation [23]. The path integrator is itself sensitive

to other sources of inputs, and undergoes reset in case of large disagreement with external

landmarks or sensory information [24].

Insights about how these different inputs contribute to hippocampal representations were

recently obtained by studying the effects of mismatches between path-integration and visual

sensory information, in particular in virtual reality settings [25, 26]. In another study Jezek

et al showed how abrupt changes in visual context (light conditions) during active exploration

by a rodent resulted in fast flickering between context-associated maps in CA3 on the theta

time scale [27] (Fig 1A). Though they are largely artificial, these conditions offer a rare window

on the fast dynamics of the place-cell population, and on how this dynamics is shaped by the

various inputs.

Despite these studies, how contextual and PI inputs are combined by the hippocampal net-

work to produce cognitive maps and accurate positional encoding is not fully understood yet.

In this work, we carefully reanalyze and model the experiment of Jezek et al to address this

issue. We first introduce of a dual inference method capable of extracting reliably and inde-

pendently the encoded map [28] and the encoded position [29, 30] from the recorded spiking

activity alone (Fig 1B). Our dual decoder allows us to robustly show that the hippocampal

activity always encodes the correct location in the retrieved map, even during the fast, unstable

dynamics of the cognitive maps, as put forward in [27]. To explain this robust encoding, we
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propose a CANN model of the hippocampal circuitry, capable of storing multiple cognitive

maps; the model is fed by visual-cue and path-integration inputs projecting on the place-cell

populations supporting those maps [31]. The path integrator is, in turn, influenced by the hip-

pocampal activity, closing an interaction loop between the hippocampus and the mEC [32].

Our model not only reproduces the flickering phenomenology and the stable encoding of posi-

tion, but also makes several precise predictions on the dynamics of cognitive maps, the relative

strength of inputs, and the intricate activation of place-cell populations supporting the two

maps. These predictions are corroborated by a further detailed analysis of Jezek et al’s data.

Fig 1. Neural encoding and decoding of cognitive maps and position. A. Schematic description of Jezek et al’s experiment. As a rodent is moving in an

environment, its position r = (x, y) is tracked over time, and a population of place cells is recorded (see raster plot). The activity of each cell is then binarized (0:

silent cell, 1: active cell) to define the activity pattern st in theta cycle t. One out of two cognitive maps, established during the training sessions, is recalled at any

time; change of maps are located by vertical dashed arrows. Place cells may have place fields in both cognitive maps (red, orange, and blue cells) or in one map only

(green and purple cells). In addition, pair of neurons may be active simultaneously or not depending on the map; for instance the red and blue neurons have

overlapping place fields in map B, but not in A. Hence, pairwise correlations are a fingerprint of the map. B. Sketch of the dual decoder. The neural activity alone

is used to decode the retrieved map mt as a function of time, and then to infer the position of the animal based on the place fields in the decoded cognitive map.

Mismatches between the decoded maps and the external light cues define flickers over time. The distance between the predicted and real positions defines the

positional error �t.

https://doi.org/10.1371/journal.pcbi.1006320.g001
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Our work therefore proposes explicit mechanisms by which the hippocampus could be capable

of encoding various contextual and self-locomotion information in multi-dimensional repre-

sentations, and of updating them accurately on fast time scales.

Results

Jezek et al trained a rodent in two environments (square boxes), equal in size and shape,

but differing by their light conditions [27]. A population of 34 CA3 place cells was recorded

during reference sessions with fixed light conditions, and shown to define environment-

specific maps, denoted by A and B. In a subsequent test session, taking place in a single box,

instantaneous switches between environmental light conditions triggered the instability of the

recalled cognitive map, which flickered back and forth between the two corresponding

environments.

The neural activity st of the population in any theta cycle t encodes information on the con-

text (the set of rules that connects position to activity, i.e. the place fields defining the cognitive

map) as well as on the specific position within the environment (Fig 1A). We first introduce a

dual decoder, able to independently infer the cognitive map and the position, at high temporal

resolution. By comparing the inferred position to the true animal location, we then assess how

precisely the position is represented in the population activity, irrespectively of the cognitive

map in which it is neurally encoded (Fig 1B).

Functional network-based decoding of the cognitive map dynamics

Due to the global remapping properties of CA3, the intensities and mutual superpositions of

place fields are specific to each environment (Fig 1A). Consequently, the average firing rates

and pairwise correlations of the place-cell population define a fingerprint of the corresponding

cognitive map [33, 34]. We use the reference session recordings in each environment m (A or

B) to compute this fingerprint statistics. We then build a model Pm(s) that approximates the

probability of observing the neural activity s when the cognitive map m is recalled. This model

relies on the inference of a functional network of couplings between the place cells, reproduc-

ing the fingerprint statistics of map m [34, 35] (Methods).

Given the activity st recorded in theta bin t during the test session, we then compare the

two probabilistic models PA and PB to estimate which map m is more likely to have generated

st. The log-ratio

DLðstÞ ¼ log
PAðstÞ
PBðstÞ

� �

ð1Þ

indicates whether the neural activity st is more similar to the neural patterns encountered in

map A than to the ones of map B (large and positive DL), or typical of B and not of A (large in

absolute value and negative DL). Comparing DL to a statistical significance threshold allows

us to infer the map mt (Methods). If the decoded map mt is discordant with the imposed light

conditions the theta bin is identified as a flicker.
As a control, we check that DL is mostly positive in reference sessions for environment A

and negative for B, see Fig 2A. Applying the decoder to the test session, we observe the pres-

ence of flickers, see Fig 2B (yellow bins); flickers were first found in [27] with correlation-

based methods requiring knowledge of the true position of the animal. An analysis of the

temporal correlation of these flickers reveals that they typically persist over * 6 theta bins

(Methods and Fig 2C); hence, cognitive maps show some inertia extending beyond the theta

scale.
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Position is accurately encoded even during flickering instabilities of the

cognitive map

To assess if the fast dynamics of cognitive maps affects the quality of positional encoding we

next re-use the neural activity pattern st in theta bin t, this time to infer the position of the ani-

mal. A naive Bayesian decoder [29, 30] takes as an input the above-decoded map mt (Fig 1B)

and uses its place fields to estimate the position. The distance between the inferred position, r̂t ,
and the true position, rt, defines the positional error �t. As shown in Fig 3A, the positional

error �t (blue line) is independent of the time elapsed after the light switch, and has a value

comparable to the one obtained in fixed-environment conditions (blue dashed line). This

result crucially depends on the fact that position is estimated according to the decoded map

mt, which varies with time t. For comparison, in Fig 3B we show the error if we decode the

Fig 2. Decoding the cognitive map from neural activity. A. Map-decoding procedure applied to constant-environment reference sessions. The log-ratio DLt ,

Eq (1), which is the difference of likelihoods of map A and B given the recorded neural pattern in theta bin t (Methods), is mostly positive in the reference session

with constant light-cue evoking A (blue) and mostly negative in the reference session B (grey). B. Time course of DL in a portion of the test session around one light

switch (red vertical line). The emergence of flickers (disagreement between the recalled map and the light cue) is clearly visible after the light switch. Yellow

horizontal dashed lines show the statistical threshold applied in map decoding and flicker identification (jDLj > L0 ¼ log 10, Methods). Yellow bars represent the

identified flicker instabilities, i.e. significative discordances (DL < � L0) between the decoded cognitive map (here, B) and the post-switch light conditions (here, A).

C. time correlation of flickers, computed with significance threshold L0 = log 10. The exponential fit shows that correlations extend over *6 theta bins, highlighting

the tendency of the cognitive map to persist beyond the theta cycle.

https://doi.org/10.1371/journal.pcbi.1006320.g002
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position according to the new, post-switch map (green line) or to the old, pre-switch one (red

line) at all times. Both procedures result in similar, higher errors right after the light-switch,

where flickers are frequent. The error with the post-switch map eventually decrease to fixed-

environment value after few seconds, due to the rarity of flickers long after the light switch.

In summary, the output of our map decoder, mt, can be interpreted as the correct cognitive

state to read the positional code, see Fig 2A. Even in the presence of fast dynamical flickers of

the cognitive map, the location of the animal is robustly and coherently represented at all

times. Our findings show that the hippocampus representation encodes both positional and

contextual information in an independent and accurate way. Interestingly, the positional error

Fig 3. Positional error as a function of time from the teleportation light switch. A. Recorded data. Positional error computed as a function of time from the

teleportation (in units of theta cycle). In each theta bin t, the map decoder is used to select which map mt (set of place fields) to use to infer the position from the

neural activity (Fig 1A). When using the decoded map mt, the positional error (blue line) is comparable to the one found in constant-environment conditions (blue

dashed line). The orange line shows the positional error if the opposite map (alternative to mt) is used for inferring position. The positional error is significantly

reduced with respect to constant-environment conditions (orange dashed line) in the vicinity of the teleportation, and reaches comparable values after * 80 theta

bins. Shaded areas represent the standard error computed over 15 teleportation events. B. Recorded data. Same as in panel A but using a fixed map of reference for

position inference, irrespectively from the decoded map. Red and green lines show results with, respectively, the ‘old’ (pre-teleportation) and the ‘new’ (post-

teleportation) maps. C & D. Simulations of CANN model: same analysis as in panels A & B, computed over 15 simulated teleportation events, with the same

trajectory of the rodent as in the experimental data. Model parameters: N = 400 neurons, γJ = 0.0025, γV = γPI = 0.4, γW = 6.25, β = 15, see Methods and Figs. B&C in

S1 Text for detailed discussion of the choice of parameters.

https://doi.org/10.1371/journal.pcbi.1006320.g003
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computed with the map opposed to the decoded one (orange line in Fig 3A) shows a signifi-

cant reduction in the first seconds after the light switch; this non-trivial effect will be explained

in detail in the next sections.

Continuous attractor neural network model for the interplay between

path integrator, visual cues, and memory

The findings above suggest that the stream of positional information to the hippocampus is

maintained despite the presence of rapid changes of cognitive representations following the

abrupt modification of visual cue (V) after the light switch. A natural hypothesis is that the

path-integrator (PI) sends to the hippocampus information relative to the position in the ‘old’

map [11, 31], competing with the visual cue input associated to the ‘new’ map. To formalize

this assumption, we introduce a continuous attractor neural network (CANN) model that con-

tains the minimal ingredients to understand the effect of conflicting PI and V stimuli onto the

hippocampal activity. In the CANN paradigm for memory storage and retrieval of cognitive

maps [15–17, 36], the animal location at a certain time is represented as a self-sustained bump

of neural activity. The bump is localized in the current position within a two-dimensional

manifold, where place cells are embedded according to the positions of their place field centers

in the real environment. We generalize this classical model by including two informational

inputs on the memory network, from allothetic (visual cues) and idiothetic (path integrator)

stimuli. The proposed interaction model is composed of the following four ingredients, see

Fig 4A and Methods:

1. A CANN memory, including excitatory recurrent connections of strength γJ and global

inhibition, designed to store and support two cognitive maps m, denominated A and B,

which mimics the status of the CA3 place-cell network after learning of the two ‘environ-

ments’. This model of stochastic neurons was described and studied in [19, 36, 37].

2. A visual-cue input of amplitude γV onto place cells whose place fields match the current

position of the rat, rt, in the cognitive map corresponding to the external light cue. The lat-

ter is denoted by V = A or B.

3. A path-integrator input of amplitude γPI that projects onto place cells whose place fields

match the current position in the cognitive map corresponding to its own internal cognitive

state [11], denoted by the variable PI = A or B.

4. An effective feedback from the hippocampal network to the path integrator, which stochasti-

cally maintains coherence between the recalled cognitive map and the path-integrator state.

From a functional point of view, the CANN model mostly behaves, for a fixed position r of

the rodent, as an effective two-state model for the hippocampal activity, as sketched in Fig 4B.

These two states correspond to the activity localized in map A or B; their probabilities are con-

trolled by the intensity of, respectively, the path-integrator and visual-cue inputs. Note that the

emergence of two well separated collective states from the microscopic CANN model is intrin-

sically due to the presence of recurrent connections, see Fig 4B; A characterization of the effec-

tive barrier between the states is reported in S1 Text (see Fig. A in S1 Text). The height of the

barrier, controlled by the parameter γJ, and the amount of stochasticity in the individual

neural dynamics are crucial ingredients to determine the dynamics of the model. In particular,

these variables control the time-correlation of flickers (Methods); For the chosen simulation

parameters, the time correlation decays over * 7 theta bins (Fig 4C) in accordance with data

(Fig 2C).
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Fig 4. CANN model for interplay between path integrator, external stimuli, and memory. A. Phenomenology of the CANN model. The model is composed of a

recurrent hippocampal network that has memorized two cognitive maps (place fields dispositions) denominated A and B, a path integrator input (PI), and a visual input

(V). In the left panel both PI and V are activating place cells whose place-field centers (shown by blue dots) correspond to the position of the rodent (red cross X) in the

cognitive map A. The activity is said to be localized in a bump around X in t map A, while it appears as sparse and uninformative if interpreted with respect to the place-

field locations in map B. A feedback projection (blue arrows) from the hippocampal state (bump) to the path-integrator state (purple) maintains the stability of the

system by enforcing that the retrieved hippocampal map and the PI state agree. After the light conditions have been switched (teleportation, red line), V projects on

Integration and multiplexing of positional and contextual information by the hippocampus
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The typical outcome of a simulated experiment is shown in Fig 4D. During the exploration

phase preceding the light switch, the visual (b) and path-integrator (c) inputs jointly contribute

to the stability of the internal representation of the position. A localized bump of activity, sus-

tained by the recurrent connections (a), can be observed in the pre-switch map (Fig 4A, left),

say, m = PI = V = A. Right after the switch, the hippocampal network receives conflicting

streams of information: PI = A differs from V = B. The path integrator is still activating place

cells coding for the current position of the animal in the ‘old’ map, while the visual stream

points to neurons coding for the same position in the ‘new’ map (Fig 4A, center). This results

in a conflict between the two bump representations, which are mutually incompatible due to

the orthogonality of global remapping. Flickering is produced as an alternance between these

two possible states, m = PI = A and m = V = B. During this conflicting phase (Fig 4D, red

region), the feedback (d) from the memory network to the path integrator tries to achieve

coherence between the hippocampal and path-integrator states. When the bump is in the visu-

ally-driven, post-switch map (m = B), incoherence is strong, and the path integrator is more

likely to be reset. Realigning the path integrator state with the external cue, PI = V = m = B,

brings the conflict phase to an end, and the hippocampal state reaches stability (Fig 4A, right).

Despite its conceptual simplicity, the model shows a rich phenomenology and reproduces

in a strikingly-accurate manner the results of the analysis of the CA3 teleportation recordings.

In Fig 4D we show a representative time trace of the log-ratio DL (Eq (1)) in a simulated tele-

portation session. Alternate intervals of positive and negative DL signal the presence of map

instability, as in [27], following the light switch (red vertical lines) and the path-integrator

realignment (green vertical lines). Applying to the simulated data the same positional-error

analysis as for the recorded data (Fig 3A&3B), we observe the same qualitative picture, see

Fig 3C&3D. In particular, position is coherently encoded in the recalled cognitive map at all

times.

Flickering frequency is constant throughout the conflicting phase, whose

duration is exponentially distributed

Our model predicts that (1) the duration of the conflict phase, i.e. the time elapsed from a light

switch to the subsequent PI realignment, is exponentially distributed (Fig 5A, right panel); (2)

during the conflict phase, the flickering frequency i.e. the percentage of theta bins identified as

flickers, is constant and independent of time (Fig 5B, right panel).

In order to test these two predictions on CA3 recordings, we introduce a method to disen-

tangle the flickering dynamics of the cognitive map and the realignment of the PI, the latter

bringing an end to the former. We first infer the most likely PI-realignment time for each

light-switch event, given the sequence of identified flickers (Methods). The outcomes are

place cells encoding position X in map B. The two hippocampal cognitive maps are therefore in conflict, and the bump of activity is alternatively localized in A (center-

top) or in B (center- bottom). When the hippocampal activity is localized in the cognitive map B, the feedback projection tries to realign the internal state of PI along the

corresponding map. Once the realignment has succeeded (green line), both inputs are back to a coherent state, and stability is reached in the cognitive map relative to

the post-teleportation external light conditions. B. Representation of the effective model for the activity bump and effects of parameters. The input strengths, γPI and γV,

contribute to push the hippocampal activity towards the corresponding cognitive states. Increasing the strength of recurrent connections, γJ, results in an effective

barrier separating the two collective hippocampal states, giving rise to well formed bumps in either map A (left) or in map B (right). Due to this effective trap the bump

state remains localized in either map for more than a single theta bin. C. Temporal correlation of flickering events (theta bins with cognitive state opposite to external

light conditions) decay over c.a. 7 theta bins in simulated data. Same model parameters as in Fig 3. D. Time trace of the log-likelihood difference DL (Eq (13) in

Methods) in a simulated teleportation session; flickers can be observed during the conflicting phase following teleportation (shaded region). Prior to teleportation, and

after the PI is realigned, inputs are coherent, and the system is stable: the sign of DL is constant, mirroring the localization of the bump in one map. Screenshots of the

activity projected on the two cognitive maps are shown for five different times. From left to right: bump localized in map A, bump localized in map A during the

conflicting phase, mixed state during the conflicting phase, bump localized in map B during the conflicting phase, bump localized in map B. The video of the simulation

can be found in SI.

https://doi.org/10.1371/journal.pcbi.1006320.g004
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shown as green lines in Fig 5D, and correctly separate conflicting phases (rich in flickering

events) from coherent periods (during which the hippocampal representation is much more

stable). The distribution of conflicting phase durations is approximately exponential in agree-

ment with model prediction (1), with decay time τ = 53 theta bins (Fig 5A, left panel). Dividing

the test session into conflicting and coherent phases, we compute the frequency of flickers in

the conflicting phase only. Consistently with the model prediction (2), the frequency of flickers

is independent of the delay after the switch, with about 60% of theta bins in the conflicting

phase carrying flickers (Fig 5B, left panel).

Similar frequencies of flickers, close to one half, are obtained in the model when the two

inputs have comparable strengths (γPI ’ γV in Fig 4B, see also Fig. C in S1 Text). A testable

consequence of this balance is that the distributions of the sojourn times (durations of the peri-

ods in which the neural activity persists in a cognitive map, see Methods) in map A and in

map B are similar. This prediction is confirmed by a further analysis of the CA3 recordings:

the two distributions of the sojourn times are both exponential, with roughly the same decay

times (see Fig. E in S1 Text). This common time scale is related to the correlation time of the

flickers (Figs 2C & 4C), see Methods.

The combination of properties (1) and (2) explains the exponential decay in the frequency

of flickers with the delay after the switch reported in [27] and [38]. While the frequency of

flickers is constant and large in the conflicting phase, and constant and very low in the coher-

ent phase, the duration of the conflicting phase is exponentially distributed. Hence the fre-

quency of flickering theta bins, irrespectively of the phase, shows the same exponential decay,

see Fig 5C (right panel: simulated experiment, left panel: analysis of CA3 recordings). A

detailed analysis of the data provides overwhelming statistical support to our two-fold

Fig 5. Flickering rate is homogenous within each conflicting period. A. Distribution of the path-integrator realignment times in a simulated session (right) and

inferred from the recorded data (left). B. Mean Frequency of Flickers (MFF) during the conflicting phase, binned over 8 theta bins (* 1 second) intervals. MFF is

constant during the conflicting phase, both in the model (right) and in recordings (left). Realignment times inferred from data were obtained with a Bayesian procedure

(Methods); histograms show flickering frequency in each time bin t normalized with respect to the fraction of conflicting phases, out of 15 teleportation events, that

survived at least up to time t. C. Convolution of the two distributions shown in panels A and B, i.e. the MFF computed on the full test session, shows an apparent

exponential decay both in the model (right) and in data (left, similar to the analysis shown in [27]). D. Map decoder output DL and inferred PI-realignment times for the

experimental test session; 3 out of 15 teleportations are shown. Light switches are marked with red lines, inferred PI-realignment times are marked with green lines.

Identified conflicting periods are shaded. Simulated data were obtained with the same model parameters as in Fig 3.

https://doi.org/10.1371/journal.pcbi.1006320.g005
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explanation compared to a simple exponential decay of the flickering frequency (logarithmic

likelihood-ratio test * 150, see Methods).

Neural encoding of position reflects the presence of input mismatches

Our model allows us to better understand the subtle differences between the neural encodings

of position in the conflicting and the coherent phases. In the latter phase, both path-integrator

and visual inputs point to the neurons with place fields overlapping the rodent position r in

map. During the conflicting phase, the two inputs excite the two place-cell populations cen-

tered in r in their respective maps, respectively, m = PI and m = V. Hence, while the bump of

activity is mostly localized in one of the two maps (varying over time), some dispersion may be

expected due to these incoherent inputs.

Mixed activity states, in which two (distinct) populations of neurons encoding the same

position in the two maps are active, can be occasionally observed in the snapshots of the simu-

lated activity in Fig 4D, e.g. around theta bin t = 80. The overdispersion present during the

conflicting phase has two consequences. First, the accuracy in position encoding is expected to

be lower in the conflicting phase that in the coherent phase, see Fig 6A, left panel. Secondly,

the loss in accuracy is not due to some random noise in the neural activity, but to a transient

bump-like activity in the ‘wrong’ map, opposite to the decoded one. This effect is clearly seen

when we choose the opposite map to infer the rodent position. While this choice leads to very

poor prediction during the coherent phase, the positional error is significantly reduced during

the conflicting phase (Fig 6B, left panel).

To test these two predictions in CA3 recordings, we combine our positional analysis and

our PI-realignment time inference procedure. In Fig 6A (right), we compare the distributions

of positional errors computed with the decoded map (according to the sign of DL) during con-

flicting and coherent phases (blue and red, respectively). Consistently with the model predic-

tions, the positional error is significantly increased during the conflicting phase (ANOVA

p< 8 × 10−8; conflicting: 14.7 ± 0.5 SEM, coherent: 12.3 ± 0.1 SEM). When computed with the

opposite map, the positional error is obviously much higher than its counterpart computed

with the decoded map, but a substantial decrease is found in the conflicting phase compared to

the coherent phase, see Fig 6B, right panel (ANOVA p< 5 × 10−23; conflicting: 27.8 ± 0.6

SEM, coherent: 34.2 ± 0.2 SEM), in full agreement with the model prediction. This effect also

explains the relatively low value of the positional error obtained with the opposite map right

after the switch, i.e. deep into the conflicting phase, compared to later times, see Fig 3A&3C.

While this phenomenology is clear, it could in principle be affected by the presence of visual

inputs projecting onto place cells during flickering events, i.e. when the ‘opposite’ map agrees

with the external cues. In order to analyze the effect of the path integrator alone, we have

restricted the analysis to theta bins whose decoded maps agreed with the visual inputs, i.e. to

non-flickering theta bins. Results, shown in Fig 6C&6D, are still statistically significant and in

strong agreement with the model predictions (decoded map: ANOVA p< 1 × 10−12; conflict-

ing: 17.1 ± 0.7 SEM, coherent: 12.3 ± 0.2 SEM; opposite map: ANOVA p< 1 × 10−7; conflict-

ing: 28.9 ± 0.95 SEM, coherent: 34.2 ± 0.3 SEM). Our findings are robust against changes in

the statistical threshold L0 for map decoding in the identification of conflict/coherent phases

(Methods), see Fig. I in S1 Text.

The over-dispersion of the neural bump during the conflicting phase can also be observed

from the reduction in (the absolute value of) the log-ratio, jDLj, see Eq (1). This quantity can

be interpreted as a proxy for the completeness of the bump in one single map (Methods),

larger jDLj corresponding to large bumps in either of the two maps and randomly scattered

activity in the other map (Fig 4A&4D). We find that the absolute value of DL is significantly
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Fig 6. Distributions of positional errors in conflicting and coherent phases. A. Distributions of positional errors in the decoded cognitive map during

coherent/stable (red) and conflicting/unstable (blue) phases. The model predicts (left panel) that the mean error is significantly increased during conflicting

periods, mirroring the dispersion of the neural representation induced by the conflicting input streams. The same phenomenology is observed in recordings

(right panel). B. The over-dispersion of the neural code in the ‘correct’ cognitive state (reported in panel A) is caused by an increased precision of the positional

representation in the ‘opposite’ map, i.e. the one where the bump is not localized. This effect is significant in the model, left panel, and in the recorded data,

right panel. C, D. Same analysis after exclusion of flickering theta bins. E. The absolute value of the log-ratio DL, Eq (1), is significantly reduced during the

conflicting phase, both in the model (left) and in the data (right panel;). jDLj is a proxy for the completeness and stability of the bump (Methods). F

Distributions of DL in the test session during the conflicting (left, blue) and the coherent (right, red) phases, compared to the distribution in the two reference

sessions (black contour, same as in Fig 2A).

https://doi.org/10.1371/journal.pcbi.1006320.g006
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reduced during the conflicting phase in CA3 data, see Fig 6E (left panel, ANOVA p< 10−15;

conflicting: 5.51 ± 0.16 SEM, coherent: 7.19 ± 0.08 SEM). Fig 6F shows the bimodal nature of

the distributions of DL in the conflicting and coherent phases. While the reference and coher-

ent-phase distributions coincide, the conflicting-phase distribution is more narrow, due to the

overdispersion of the bump (reference σ2 = 80.7, coherent σ2 = 79.2, conflict σ2 = 47.3). This

result provides further evidence for the predictive power of the CANN model.

Discussion

Our statistical inference-based data analysis allows us to quantify how well the CA3 neural

activity encode various cognitive maps, and the position therein. Correlation-based proce-

dures, e.g. used in [27], decode the cognitive state by comparing the instantaneous population

activity to the average activity recorded in reference sessions at the same position of the rodent.

Our functional-network based map decoder, instead, relies on the fact that the joint pairwise

spiking activity of neurons is a fingerprint of the cognitive map [28, 34]. It does not need any

knowledge of the sensory correlate (here, position), and could be used to decode generic brain

states in other areas.

The fast dynamics of cognitive maps studied in [27] and here results from an unrealistic

sensory situation. Imposing artificial conflicts between inputs and studying their consequences

is a standard approach to unveil the circuitry underlying the processing of multimodal sensory

information in the hippocampus [25, 26] as well as in other brains areas, see for instance [39]

for an illustration in the primary visual cortex where mismatches involve sensory and motor

inputs. However, fast retrieval of functionally relevant maps, characterized by grouping and

cognitive control, has also been observed in realistic settings, in which a behaving animal is

required to maintain representations of two distinct spatial frames [20].

The position of the animal was accurately inferred at all times from the spiking activity

using the place fields of the retrieved cognitive map (Fig 1B). As a main finding, we show that

the hippocampus maintains high-quality encoding of the position even if the contextual vari-

able undergoes fast dynamical changes. This is explained in the model by the fact that inputs

point to place cells coding for the physical position in both competing maps (Fig 4A), and that

the bump of activity is most often localized around these place cells in one map, and scattered

all over the other map. Similar findings were reported in main text Fig 3d and Supplementary

Information Fig 8 within [27], within a statistical framework assuming a priori the consistency

of positional representation during flickering events, as the cognitive map was decoded by

comparing the neural activity to the mean-activity vectors at the recorded real position of the

rat. The emergence of unambiguous, non-mixed representations was also underlined in [27],

and shown to take place in the second half of the theta cycle. However, the detailed analysis of

the CA3 recordings and of the model data shows a loss of quality of the bump state (reduction

in absolute value of log-ratio jDLj) and an increased quality of position decoding in the oppo-

site map (Fig 6), providing evidence for the presence of partially mixed states.

Our model for the retrieval of hippocampal cognitive maps in the presence of inputs from

the path integrator and visual cues is based on CANN theory [32, 40]. Two-dimensional

CANN attractors, were previously applied to networks of place [15, 17] and grid [41, 42] cells.

Indirect experimental evidence supporting CANN is now accumulating in various animals

and brain areas. Evidence of a ring-shaped attractor region associated to head direction repre-

sentation was recently reported in the drosophila central brain [43]. Attractor dynamics has

also been associated to behavioral observation in a study on the monkey prefrontal cortex [44].

As for space representation, experimental support for attractor behaviour has been found in

hippocampal CA1 [45] as well in grid cell [46] recordings. Further indirect evidence is
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provided by the pattern of connectivity in CA3, compatible with its functional role as an auto-

associative attractor network [13], as suggested long ago based on anatomical and computa-

tional considerations [12, 47], and by the active nature of dendrites of mEC neurons, which

enhances the robustness of attractors under environmental changes [48].

The detailed analysis of the CA3 recordings done here provides another indirect support

for CANN theoretical framework, when multiple (two) cognitive maps are memorized. Mem-

orization of the two attractors is obtained, in the model, by adding the corresponding connec-

tivity matrices into the unique CANN connectivity matrix [16–19]. A detailed theoretical

study of the mechanisms for transition from map to map was obtained in the absence of

inputs, i.e. for spontaneous transitions induced by neural noise only [36]. A similar picture is

found here in the presence of visual-cue inputs pointing to the ‘new’ map, while the path-inte-

grator inputs point to the ‘old’ map in the conflicting phase. As inputs are of comparable mag-

nitude, no single map is favored. The stochastic fluctuations resulting from the noise of the

individual neurons are sufficient for the system to cross the activation barrier between the two

memory states (maps) of the network, see Fig 4B and Fig. A in S1 Text. The hippocampal net-

work jumps intermittently from one cognitive map to the other, reproducing the flickering

events experimentally identified and described in [27]. Transition rates between the two maps

increase with the neural noise, modeled here by the parameter β, see Eq (12) in Methods and

Fig. D in S1 Text. Neural noise relative to the population activity could also be effectively

increased through the introduction of periodic (theta and gamma) modulations of the activity

into the model [31, 37, 49]. The presence of rhythms is known to facilitate memory formation

and integration of information [50, 51]. While theta oscillations can help produce flickering

events as previously reported [31, 38], our work shows that such periodic modulations are not

necessary. Transitions could also be facilitated by particular ‘confounding’ landmarks or posi-

tions in space, where the maps happen to be locally similar [16, 36].

The present model reproduces accurately all the observed flickering properties, without any

need for a post-learning short-term plasticity of the CA3 network hypothesized in [38]. In par-

ticular, our model predicts that the flickering frequency is independent from the time spent

after the teleportation event in the conflicting phase (Fig 5B). This finding is at first sight in

disagreement with the exponential decay of the flickering frequency reported in [27, 38]. How-

ever, the latter was obtained as a result of an averaging over many teleportation events. For a

single event, accurate data analysis shows that our constant flickering rate hypothesis, when

combined with the exponentially distributed realignment time of the path integrator (Fig 5A),

is much more likely than an exponential decreasing scenario.

Our model is based on the existence of two streams of inputs conveying, respectively, exter-

nal landmark and self-navigation information. Recent studies have pointed to the grid cells

network in mEC as the possible region that supports path integration, as their firing patterns

are maintained in the dark [52], and the relative phases of grid cells seem to be largely unaf-

fected by global remapping between environments of similar shapes [11, 53]. CANN-based

approaches have been proposed to model grid-cell networks [41, 42], differing from hippo-

campal CANN mostly by the short-range nature of the inhibitory couplings. In much the same

way the microscopic hippocampal CANN proposed here can effectively be reduced to a 2-state

model (Fig 4B), we expect CANN models for the grid-cell networks to be approximately

described by a 2-state model, corresponding to the PI aligned with map A or B [11, 54, 55].

This motivates the simple model for the PI we have considered here.

In addition to sending projections towards the hippocampus, our model PI receives a feed-

back from the CANN, greatly increasing the probability of transition to the state agreeing with

the instantaneous cognitive map [32, 56, 57]. Eventually, the state of the PI is realigned along

the visual cue inputs, which stops the conflicting phase. Our model effectively implements a
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ratchet mechanism, locking the system into the coherent phase after a conflicting transient.

Realignment of the path integrator based on visual landmarks is an important functional prop-

erty, intended to limit the accumulation of errors in position estimation [58], and observed for

large mismatch between external and internal inputs [24]. From a physiological point of view,

projections exist from CA1 to mEC [32], and have been shown to be important for the forma-

tion of grid cells [57]. Hence, the feedback from the CANN, thought here to model CA3 activ-

ity, to the PI should be understood as effective.

As recently reported in [53], the impairement of the mEC grid firing resulted in a loss of

path integrator in behaving rodents. As in our model, the recall of the pre-teleportation map,

and, therefore, the whole flickering phenomenology are driven by the input stream from the

path integrator to the CA3 network, we conjecture that flickering instabilities would disappear

upon grid-cell impairement. Simultaneous recordings of mEC and CA3, as in [11], would be

extremely useful to test our predictions and better describe the effect of the path integrator on

the cognitive status of CA3.

Methods

Cognitive map decoding from neural activity

Theta bins are identified with the Hilbert transform procedure of [27]. The activity of the N
recorded neurons is binarized into each theta bin t: si,t = 1 if neuron i is active in bin t, 0 other-

wise. For each cognitive map m = A, B a Ising-model probability distribution Pm(s) for the

activity configurations s = (s1, s2, . . ., sN) is inferred,

PmðsÞ ¼
1

Zm
exp

X

i

hðmÞi si þ
X

i<j

JðmÞij si sj

 !

; ð2Þ

where Zm is a normalization constant. Couplings (Jm) and fields (hm) are determined such that

the pairwise correlations and average activities in the neural population computed from Pm
match their experimental counterparts in the reference session of environment m. These

inverse Ising problems are solved using the Adaptive Cluster Expansion algorithm [59–62]. The

inferred models (2) are then used to dynamically decode the map mt during the test session (s)

[28], based on the log-ratio of the probabilities of the activity configuration in time bin t in the

two environments (main text Eq [1]), with the result

mt ¼

(A if DLðstÞ > L0 ;

B if DLðstÞ < � L0 ;
ð3Þ

where the threshold L0 is chosen according to the required statistical confidence. We generally

set L0 = log 10 ’ 2.3.

After having decoded the map mt in theta bin t, we define the flicker variable ft, equal to 1 if

mt does not match the light cue in theta bin t, to 0 otherwise.

Temporal correlation of flickers and sojourn times

The time correlation of flickering events for delay τ is defined as

CðtÞ ¼
1

Ttot

XS� 1

i¼1

XTiþ1 � t

t¼Ti

ftftþt �
1

Ttot

XS� 1

i¼1

XTiþ1� t

t¼Ti

ft

 !2

ð4Þ

where S is the total number of switch events in the recorded data (S = 16 in [27]), Ti is the theta
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bin index of switch i (< S), and Ttot = TS is the total number of theta bins in the test session.

The time correlation C(τ) is typically exponentially decaying, with a decay time τ0, see Fig 2C.

The correlation time τ0 is related to the sojourn time of the neural bump in the cognitive

maps, defined as a sequence of contiguous theta bins decoded in the same map, see S1 Text.

Theta bins whose jDLj are lower than the threshold L0 are considered as belonging to the same

map as the last statistically significant time bin. The distribution of sojourn times in each map

is shown in Fig. E in S1 Text.

Position decoding from neural activity

The arena is discretized into 60 × 60 squared bins of 1 cm2 each, with integer coordinates (x, y)

[27]. For each reference environment m 2 (A, B) we construct the binary rate map, pðmÞi ðx; yÞ,
equal to the average of si,t over all theta bins t in which the rat is at position (x, y). Position is

then decoded according to the naive Bayesian framework [63]: the probability of the activity

configuration st = {s1, s2, . . ., sn} in theta bin t and at fixed position (x, y) reads

Pmðstjx; yÞ ¼
YN

i¼1

pðmÞi ðx; yÞ � si þ ð1 � pðmÞi ðx; yÞÞ � ð1 � siÞ
h i

: ð5Þ

Once m is known, e.g. either through the map decoder or due to constant experimental condi-

tions, the position of the rodent can be reconstructed from the recorded neural activity

through

ðx̂ t; ŷt Þ ¼ arg max
ðx;yÞ

Pmðstjx; yÞ � Tmðx; yÞ½ � ; ð6Þ

where the maximum is computed over the 60 × 60 possible positions. Tm(x, y) is the number

of theta bins spent by the rodent at position (x, y) during the reference session of map m; we

use it as a prior to favor positions where the rodent is more likely to be, irrespectively of the

neural activity.

Continuous attractor neural network model for hippocampal activity

The hippocampal population includes N place cells. For each cell i = 1. . .N the place-field cen-

ters coordinates, rAi and rBi , are drawn uniformly and independently at random in the squared

environments, respectively, A and B. The linear size of each square is denoted by L.

Neural activities are represented by binary variables: si,t = 0 or 1 if neuron i is, respectively,

silent or active in time bin t = 1, 2, 3, . . .. The duration of a time bin is the theta cycle over K;

results reported here were obtained with K = 4, which corresponds to approximately 30 ms.

The total input received by neuron i at time t is

Hi;t ¼
X

j6¼i

Jij sj;t þ hðVÞi ðrÞ þ hðPIÞi ðrÞ : ð7Þ

The three terms on the right hand side of Eq [7] represent, in order:

• the input due to recurrent connections in the hippocampal network. The underlying

assumption is that connections have emerged from learning during the exploration of the

two environments by the rodent: Place cells that turned out to be simultaneously active in

either environment have developed positive couplings. Couplings are defined through

Jij ¼ JAij þ JBij with

(
JAij ¼ gJ � �ðrAi � rAj Þ

JBij ¼ gJ � �ðrBi � rBj Þ
; ð8Þ
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where γJ controls the strength of the connections, and

�ðrÞ ¼
L2

N � 2ps2
e �
jrj2

2s2 : ð9Þ

Parameter σ in Eq [9] is the spatial scale corresponding to the width of the place fields.

The prefactor in Eq [9] ensures that ϕ is dimensionless and that, on average, the sum of the

Gaussian factors �ðr � rmi Þ over all neurons i is close to unity for every possible position

r and map m.

• the visual input

hðVÞi ðrÞ ¼ gV �

(
�ðrAi � rÞ if V ¼ A ;

�ðrBi � rÞ if V ¼ B ;
ð10Þ

depends on the position r of the rodent. We again assume that, during the exploration of the

environment, visual-cue projections onto place cells have been strengthened through learn-

ing. For simplicity we use the same function ϕ as in the recurrent connections, see Eq (8), to

characterize the portion of environment in which visual cues project onto a specific place

cell i.

• the path-integrator input

hðPIÞi ðrÞ ¼ gPI �

(
�ðrAi � rÞ if PI ¼ A ;

�ðrBi � rÞ if PI ¼ B :
ð11Þ

PI inputs have the same functional dependence over space as visual-cue related inputs. The

amplitudes of both input types are tuned by the parameters γPI and γV.

All neurons undergo stochastic updating of their activities from time bin t! t + 1 according

to their total inputs. The activity of neuron i at time t + 1 is chosen to be

si;tþ1 ¼

(
0 with probability

1

1þ ebðHi;t � yÞ

1 with probability
ebðHi;t � yÞ

1þ ebðHi;t � yÞ
:

ð12Þ

To enforce global inhibition in the population activity, the value of the threshold θ is dynami-

cally adjusted so that an average fraction f of the neurons is active at any time. Parameter β
controls the amount of noise in the neural dynamics. For β! 0 neuron activities are random

and independent of their inputs, while, for β!1, they deterministically follow the signs of

the inputs (after subtraction of the threshold θ). The average activity of cell i at time t + 1 is

therefore a monotonously increasing sigmoidal function of its total input Hi,t at time t, with

maximal slope equal to β/4 in Hi,t = θ.

The properties of this CANN model in the absence of any visual and PI inputs, i.e. for

γV = γPI = 0, were analytically studied in [19, 36, 37], see S1 Text for further discussion. The

log-ratio DL defined in Eq (1) for the decoding of cognitive maps has a direct counterpart in

our CANN model as the difference between the contributions to the log-probability of an

activity configuration s when the bump is localized in maps A and B,

DLðsÞ ¼
X

i<j

ðJAij � JBij Þ si sj : ð13Þ
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Mechanism for path-integrator realignment

The path integrator is described as a two-state model, PI = A or B. Its dynamics is stochastic

and Markovian: in each time bin t, the state PI can jump into state PI0 with transition probabil-

ities R(PI! PI0), independently of the previous states. The feedback from the hippocampal

network to the path integrator is expressed in the dependence of R on the hippocampal map

Mt at time t. To favor transitions to the state PI0 agreeing with the current map Mt, we intro-

duce the following witness function for the presence of the bump in map m = A, B:

WðmÞðs; rÞ ¼
XN

i¼1

si �ðr � rmi Þ ; ð14Þ

where s and r are, respectively, the activity configuration and the position of the rodent at time

t. Due to the normalization of ϕ in Eq [9], we expect W(m) to be close to one for the retrieved

map m = Mt and to be much smaller for the opposite map.

We impose the preference for realigning the path-integrator state in accordance with the

hippocampal map through the ratio between the two reciprocal transition probabilities,

Rð PI ¼ B! PI 0 ¼ A Þ
Rð PI ¼ A! PI 0 ¼ B Þ

¼ egW ðWðAÞðs;rÞ� WðBÞðs;rÞÞ : ð15Þ

Here, γW is a positive parameter allowing us to tune the strength of the preference. If the hip-

pocampal bump of activity is localized in, say, map A, the right hand side of Eq [15] will be

strongly positive, and the probability of realigning the path integrator to PI0 = A will be much

larger than the probability of the reciprocal transition.

A solution to the constraint expressed by Eq [15] is given by

Rð PI ¼ B! PI 0 ¼ A Þ ¼ R0 � egW ðWðAÞðs;rÞ� WðBÞðs;rÞÞ=2 ;

Rð PI ¼ A! PI 0 ¼ B Þ ¼ R0 � e� gW ðWðAÞðs;rÞ� WðBÞðs;rÞÞ=2 ;
ð16Þ

where R0 is a positive number. In the absence of bias (γW = 0), the inverse of R0 may be inter-

preted as the average time scale between two realignments of the path-integrator state.

The model for the path-integrator dynamics is entirely defined by the transition probabili-

ties in Eq [17] and the probability conservation identities:

Rð PI ¼ A! PI 0 ¼ A Þ þ Rð PI ¼ A! PI 0 ¼ B Þ ¼ 1 ;

Rð PI ¼ B! PI 0 ¼ A Þ þ Rð PI ¼ B! PI 0 ¼ B Þ ¼ 1 :
ð17Þ

Inference of path-integrator realignment times

Defining τ as the PI-realignment time, t = 0 as the time bin corresponding to the light switch

and T as the time bin corresponding to the next switch (end of analyzed data), we assume the

probability p(t) for time bin t to be a flickering event to be

pðtÞ ¼

(
p0; if 1 � t � t ;

pe; if tþ 1 � t � T :
ð18Þ

Here, p0 is the constant flickering probability, and pe is the baseline decoding error, see S1 Text

for discussion of the values of parameters p0 and pe.
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We write the log-likelihood of the parameter τ as a function of the identified flickering

sequence f = {ft} as follows:

log Pðf j t; p0; peÞ ¼ log p0 �
Pt

t¼1
ft þ log ð1 � p0Þ �

Pt

t¼1
ð1 � ftÞþ

þ logpe �
PT

t¼tþ1
ft þ log ð1 � peÞ �

PT
t¼tþ1
ð1 � ftÞ

ð19Þ

We then maximize this log-likelihood over τ to infer the most likely value τ� of the realignment

time. The procedure is repeated for all light switches, see Fig. G in S1 Text.

Independence of frequency of flickers from delay after light switch

We consider two hypothesis:

1. Hdecay = the flickering probability depends on time as a decaying function that can be

inferred from data, that can be inferred from the full test session (15 lght switches)

2. Hconstant = the flickering probability is constant throughout the conflicting period of varying

duration, which can be inferred from data (see previous section).

Following the Bayesian information criterion [64], we parametrize each model with the same

number of variables. For hypothesis Hdecay, we estimate the flickering frequency as a function

of time from the average frequency computed over the full test session (Fig 5C, bottom), in

bins of one second-width (8 theta cycles), up to 15 seconds after the light switch. For later

delays (> 15 s) the flickering frequency is set to a baseline error probability, pe = 0.01. For

hypothesis Hconstant, we infer the most likely PI realignment times for each one of the 15 light-

switch events (see Section above). The associated flickering probability pt is then set to p0 =

0.55 until the inferred PI realignment time τ�, and equal to the baseline probability pe = 0.01

afterwards. We then compute the likelihoods of both hypothesis given the observed data (iden-

tified flickering theta bins f) through

‘ðhypothesisjdataÞ ¼
XT

t¼1

logpt � ft þ log ð1 � ptÞ � ð1 � ftÞ½ � ; ð20Þ

where T is the total length of the test session. The above expression is then summed over all

light-switch events. We define the difference of the two log-likelihoods as

D‘ ¼ ‘ðHconstant jdataÞ � ‘ðHdecayjdataÞ : ð21Þ

The constant flickering frequency hypothesis Hconstant is extremely more likely (Δℓ * 150)

than the decaying model Hdecay. The result is robust against changes in the parameters, see

Fig. F in S1 Text.

Supporting information

S1 Text. Additional analysis and figures.

• Effective two-state model for hippocampal CANN activity

• Effects of parameters on the model properties

• Relationship between sojourn time and correlation time

• Inference of path-integrator realignment times: discussion on parameters p0 and pe

• Independence of frequency of flickers from delay after light switch: parameters p0, pe, and L0

• Assessment of performances of map decoder

Integration and multiplexing of positional and contextual information by the hippocampus

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006320 August 14, 2018 19 / 23

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006320.s001
https://doi.org/10.1371/journal.pcbi.1006320


• Dependence of positional-error analysis with L0.

(PDF)

S1 Video. Flickering dynamics in simulated teleportation session. Blue dots represent the

place field centers (left: PF in environment A, right: PF in environment B) of active neurons in

each simulated time bin. The red cross marks the instantaneous position of the rat. The tele-

portation event and the realignment time of the path integrator are marked with a red and a

green line, respectively. Blue and orange lines represent, respectively, �
P

i<j J
A
ij s

t
i s

t
j and

�
P

i<j J
B
ij s

t
i s

t
j , s

t
i being the binary activity of neuron i in time bin t, see Main text, Methods.

Parameters used in this simulation: β = 15, γV = γPI = 0.35, N (number of neurons) = 500. The

trajectory of the animal and teleportation times from the original experimental recordings [27]

are used in all simulations.

(MP4)
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