Solid-state nuclear magnetic resonance: from physics to materials
Guillaume Laurent, Christian Bonhomme, F. Babonneau

To cite this version:
Guillaume Laurent, Christian Bonhomme, F. Babonneau. Solid-state nuclear magnetic resonance: from physics to materials. 3rd summer school of nanosciences in Île-de-France, Jun 2009, Le Tremblay sur Mauldre, France. hal-01881873

HAL Id: hal-01881873
https://hal.sorbonne-universite.fr/hal-01881873
Submitted on 26 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Nuclear Magnetic Resonance is a powerful technique that interacts with many fields, for instance physics, mechanics, cryogenics, electronics, mathematics, informatics, and of course chemistry and biology. In liquid state, NMR is sometimes used as a black box, just to phasing.

Electronics

- Pulse programming
- Predictive computations

Informatics

- Spectrometers park administration
- Processing software
- Backups

Chemistry

- FID and base line
- Spectra
- Predictive computations
- Phospholipids
- Phosphates/polyphosphates

Biology

- Thermolabile Pseudomonas
- Protein phosphatases

Conclusions

Nuclear Magnetic Resonance is a powerful technique that interacts with many fields, for instance physics, mechanics, cryogenics, electronics, mathematics, informatics, and of course chemistry and biology. In liquid state, NMR is sometimes used as a black box, just to phasing.