Solid-state nuclear magnetic resonance: from physics to materials
Guillaume Laurent, Christian Bonhomme, F. Babonneau

To cite this version:
Guillaume Laurent, Christian Bonhomme, F. Babonneau. Solid-state nuclear magnetic resonance: from physics to materials. 3rd summer school of nanosciences in Ile-de-France, Jun 2009, Le Tremblay sur Mauldre, France. hal-01881873

HAL Id: hal-01881873
https://hal.sorbonne-universite.fr/hal-01881873
Submitted on 26 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Solid State Nuclear Magnetic Resonance
From Physics to Materials
G. LAURENT1, C. BONHOMME1, F. BABONNEAU1
1 Chimie de la Matière Condensée de Paris

Nuclear Magnetic Resonance is a powerful technique that interacts with many fields, for instance physics, mechanics, cryogenics, electronics, mathematics, informatics, and of course chemistry and biology. In liquid state, NMR is sometimes used as a black box, just to check if synthesis works. However, in solid state it is difficult to use it this way. Indeed, physical interactions are not averaged anymore, leading to signal broadening. Some tools can be used to remove the signals and/or manipulate interactions either in the laboratory frame or in the rotating frame. Solid state NMR can be used on a wide range of nuclei to quantify species, study their mobility, check procedures between different parts of the sample, either by dipole coupling or by chemical bonding. One sometimes need to avoid physical artifacts such as dead time in order to get a correct spectrum. In this case, linear prediction and other mathematic tools can be very useful. Finally, one has also to keep in mind that the sample itself can induce difficulties, especially when studying nanoparticles where the side effects become not negligible at all.