Solid State Nuclear Magnetic Resonance
From Physics to Materials

J.-C. BELOEIL
1999, IUT d’Orsay, France

2 Windows XP
4 Windows 2000
3 Linux Redhat workstation

David D. Laws

Solid State Nuclear Magnetic Resonance

Nuclear Magnetic Resonance is a powerful technique that interacts with many fields, for instance physics, mechanics, cryogenics, electronics, mathematics, informatics, and of course chemistry and biology. In liquid state, NMR is sometimes used as a black box, just to check if synthesis works. However, in solid state it is difficult to use this way. Indeed, physical interactions are not averaged anymore, leading to signal broadening. Some tools can be used to remove the signals and/or to manipulate interactions either in the laboratory frame or in the rotating frame. Solid state NMR can be used on a wide range of nuclei to quantify species, study their mobility, check procedures between different parts of the sample, either by dipolar coupling or by chemical bonding. One sometimes need to avoid physical artefacts such as dead time in order to get a correct spectrum. In this case, linear prediction and other mathematical tools can be very useful. Finally, one has also to keep in mind that the sample itself can induce difficulties, especially when studying nanoparticles where the side effects become not negligible at all.

Conclusions