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Abstract

In terms of mathematical structure, the voltage-conductance kinetic systems for neural net-
works can be compared to a kinetic equations with a macroscopic limit which turns out to be
the Integrate and Fire equation. This article is devoted to mathematical study of the slow-fast
limit of the kinetic type equation to an I&F equation. After proving the weak convergence of the
voltage-conductance kinetic problem to potential only I&F equation, we study the main qualitative
properties of the solution of the I&F model, with respect to the strength of interconnections of the
network. In particular, we obtain asymptotic convergence to a unique stationary state for weak
connectivity regimes. For intermediate connectivities, we prove linear instability and numerically
exhibit periodic solutions. These results about the I&F model suggest that the more complex
kinetic equation shares some similar dynamics.

1 Introduction

The voltage-conductance kinetic systems for neural networks are nonlinear (2+1) dimensional kinetic
Fokker-Plank equation which is established in [1, 2]. Based on neuro-physical concepts adapted in
particular to the visual cortex, they describe the probability density pε(v, g, t) to find neurons at time
t with a membrane potential v ∈ (VR, VE) and a conductance g > 0. Here, VE denotes the excitatory
reversal potential and the reset potential satisfies VR ≤ VL with VL the leak potential. There are sev-
eral variants of the equation depending on the physical interpretation of variable, see, e.g., [3, 4]. The
mathematical structure of these systems is rather complex and has attracted the interest of mathe-
maticians [5, 6]. In particular difficulties related to boundary conditions and partial parabolicity make
the system rather uneasy to handle and connect it to present interest about hypoellipticity in kinetic
equations, see [7, 8, 9] and the references therein. A rather striking finding in [5] is the numerical
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observation of periodic solutions describing spontaneous activity of the network, a phenomena which
is common to other neural assembly models (see [10, 11, 12, 13]).

Here, and for the sake of analytical tractability, we consider a simplified version, with an integral
absorption term rather than a boundary firing, which keeps the main structure of the system which
is written

∂
∂tpε + ∂

∂v

[(
gL(VL − v) + g(VE − v)

)
pε
]

+ 1
ε
∂
∂g [(Geq(v, bNε(t))− g)pε]

−a
ε
∂2

∂g2
pε + φF (v)pε = 0, t ≥ 0, VR < v < VE , g ≥ 0,

(1)

with the no-flux boundary conditions{
(Geq(v, bNε)− g)pε(v, g, t)− a ∂

∂gpε(v, g, t) = 0 for g = 0,

[gL(VL − VR) + g(VE − VR)]pε(VR, g, t) = Nε(t, g) and pε(VE , g, t) = 0,
(2)

and with an initial data that satisfies

p0(v, g) ≥ 0,

∫ VE

VR

∫ ∞
0

p0(v, g)dv dg = 1. (3)

A neuron spikes with a rate φF (v), typically very large for v larger than a firing potential, and we
assume that its membrane potential is instantaneously set at the reset potential VR. Therefore, at
each time, the firing rate (activity of the network) for neurons with conductance g and respectively
the total firing rate of the network are defined as

Nε(g, t) :=

∫ VE

VR

φF (v)pεdv ≥ 0, Nε(t) :=

∫ +∞

0
Nε(g, t)dg. (4)

Those definitions and boundary conditions, when integrating the equation (1), imply the conservation
property ∫ VE

VR

∫ ∞
0

pε(v, g, t)dv dg = 1, (5)

which is in accordance with the interpretation that the solution is the probability density of neurons
with potential v and conductance g at time t.

For the ease of use, we summarize the parameter interpretation, according to [1, 2],
• VE is the excitatory reversal potential,
• Firing occurs with a rate φF (v) ≥ 0, φ′F (v) > 0,
• Reset is at VR,
• VL is the leak potential,
• gL > 0 denotes the leak conductance,
• Geq(v, ·) ≥ 0 is the conductance equilibrium (when ignoring noise),
• a represents the intensity of the synaptic noise,
• ε > 0 denotes the time decay constant of the excitatory conductance,
• b ≥ 0 denotes the synaptic strength of network excitatory coupling.

Concerning parameter range, in [14], see Eq. (3.2a), the authors choose VR = VL. Here we consider
the more general case VR ≤ VL. Also, to establish (1), [1, 2] assume that the value ε is small enough.
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Following [1, 14], this motivates to consider the limit ε → 0 of Equation (1), which formally leads to
a reduction of dimension with a (1+1) dimensional equation easier to tackle. More precisely, we are
going to show that it can be described by the following voltage only integrate&fire model of neural
network (see [15, 16, 17, 18, 19] and references therein for the study of PDE Integrate and Fire type
models). 

∂
∂tn+ ∂

∂v

[
G(v, bN (t))

(
V (bN (t))− v

)
n
]

+ φF (v)n = 0, t ≥ 0, VR < v < VE ,

N (t) =

∫ VE

VR

φF (v)n(t, v)dv,

G(VR, bN (t))
(
V (bN (t))− VR

)
n(t, VR) = N (t) and n(t, VE) = 0.

(6)

Our purpose is then, on the one hand, to derive this system in the slow-fast limit ε → 0, to explain
how noise comes in the expression of the drift, together with the property

VL < V (bN (t)) ≤ VE , G(v, bN (t)) > 0, (7)

which explains the possibility to state the boundary conditions in (6). On the other hand, we aim
at studying the qualitative properties of Equation (6), in order to formally obtain, with this more
simplified equation, the main properties of Equation (1).

Assumptions on φ and G and initial data. In the rest of the paper, we make the following
assumptions. We assume that the firing rate satisfies

φF , φ
′
F ∈ L∞, φ′F ≥ 0. (8)

We also assume that G(v,A) ≥ 0 and that there is a smooth increasing function Ḡ ≥ 0 such that,

sup
VR≤v≤VE

[ G(v,A) + |∂G(v,A)

∂v
| ] ≤ Ḡ(A), ∀A ≥ 0. (9)

For example, in [1, 2], we find the choice G(v, bN ) = bN .
Finally, for the initial data, we assume, for ε ≤ 1 and k ≥ 0∫ VE

VR

∫ +∞

g=0
gkp0(v, g)dvdg ≤ Q(k),0 <∞. (10)

The rest of the paper is organized as follows. Section 2 is devoted to the slow-fast limit study of
Equation (1) to Equation (6). To this, we preliminary explain how to obtain the formal derivation.
We then give uniforms estimates on the moments of the solution and of the firing rate with respect to
ε, leading to prove rigorously the weak convergence of Equation (1) to Equation (6) when ε goes to
0. We finish this section by the construction of super-solutions leading to uniform L∞ bounds for the
solutions of (1) with respect to ε and for the solutions of Equation (6). In Section 3 we give the main
qualitative properties of Equation (6) with a slightly simplified drift. To this, we first study the steady
states of this equation as well as the asymptotic long time convergence to those steady states when
the strength of connectivity parameter b is small enough. The method of proof is based on entropy
methods. We finally consider the case with stronger interconnections where instabilities is proved for
the linearized problem and we perform numerical simulations in order to illustrate the emergence of
oscillatory solutions. We finish the paper with conclusions and perspectives.
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2 From conductance-voltage to voltage only model

Departing with a formal derivation, we first explain, how, Equation (1) leads to Equation (6) when
ε goes to 0. We then prove uniform estimates on the total firing rate and on the moments on the
solution with respect to ε. This leads us to prove rigorously weak convergence of solutions of Equation
(1) to Equation (6) (see Theorem 1). Finally, we prove uniform estimates in L∞ when VR < VL by
the construction of super-solutions in Theorem 2.

2.1 Formal derivation

The relation between the equations (6) and (1) can be simply observed setting

nε(v, t) =

∫ ∞
0

pε(v, g, t)dg.

Then, integration in g of (1), using the no-flux boundary condition in g, gives
∂
∂tnε + ∂

∂v

[
Gε(v, t)

(
Vε(t)− v

)
nε
]

+ φF (v)nε = 0, t ≥ 0, VR < v < VE ,

Nε(t) =

∫ VE

VR

φF (v)nε(v, t)dv,

Gε(VR, t)
(
Vε(t)− VR

)
nε(t, VR) = N (t) and nε(t, VE) = 0,

(11)

with the bulk conductance and voltage
gL ≤ Gε(v, t) =

∫ ∞
0

(
gL + g

)pε(v, g, t)
nε(v, t)

dg,

VL < Vε(v, t) = 1
Gε(v,t)

∫ ∞
0

(
gLVL + gVE

)pε(v, g, t)
nε(v, t)

dg ≤ VE .
(12)

In order to close this formula, we need to identify the first moment in g of the distribution pε(v, g, t)
in terms of nε.

To do so, we consider the limit p of pε and it formally solves

∂

∂g
[(Geq(v, bN (t))− g)p]− a ∂

2

∂g2
p = 0,

With the no-flux boundary condition, we find

(Geq(v, bN (t))− g)p− a∂p
∂g

= 0, thefore p = n(t, v)P(v, g, bN (t)),

with n solution of Equation (6) and

P(v, g, A) =
1

Z(v, a,A)
exp−

(Geq(v,A)−g)2

2a , Z(v, a,A) =

∫ ∞
0

exp−
(Geq(v,A)−g)2

2a dg. (13)

This expression allows us to compute the limiting flux in Equation (6) as stated Theorem 1 below.
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Notice that Z(v, a,A) is controlled from above and below as

1

2

√
2πa =

∫ ∞
Geq(v,A)

exp−(Geq(v,A)− g)2

2a
dg ≤ Z(v, a,A) ≤

√
2πa.

The effect of noise at the synaptic level is not a diffusion in v, as it is assumed in the standard
Integrate and Fire model, see for instance [20]. Noise rises a change of the excitatory bulk conductance
Gε(v, t). It can be compared to the noiseless case a→ 0 which gives

Gε(v, 0, bNε(t)) = Geq(v, bNε(t)).

In mathematical terms, the analysis of the limit a→ 0, i.e., the case without noise, yields difficulties
similar to those of friction dominant particle flows, see [21] for instance.

2.2 Estimates on the firing rate/moments on the solution and rigorous limit

We now prove rigorously the above formal derivation. The result is stated in the following Theorem

Theorem 1 (Slow-fast limit result). We assume (8)–(10). Then, for all k ≥ 1, there exists a constant
C(k) > 0 and a constant C > 0 such that, for all ε > 0 and t ≥ 0, the following estimates hold∫ +∞

0
gkpε(v, g, t)dvdg ≤ C(k) and ‖Nε‖L∞(R+) + ‖N ′ε‖L∞(R+) ≤ C. (14)

Hence, in the weak topology of bounded measures,

pε ⇀ n(t, v)P(v, g, bN (t)) > 0,

∫ ∞
0
P(v, g, bN (t))dg = 1,

where the smooth function P(v, g, bN (t)) is determined by (13) and where n(t, v) satisfies Equation (6)
with the initial data n0(v) =

∫ +∞
0 p0(v, g)dg and

G(v,A) = gL +

∫ +∞

0
gP(v, g, A)dg > gL, VL < V (v,A) =

gLVL + VE
∫ +∞

0 gP(v, g, A)dg

G(v,A)
< VE .

This theorem states a general weak convergence result. It can be strengthen, with the expense on
stronger assumptions as stated afterwards, see Theorem 2 in the next subsection.

Proof of Theorem 1.

Moments estimates. Let us first prove the first inequality of (14). We set

Q(k)
ε (t) :=

∫ VE

VR

∫ +∞

0
gkpε(t, v, g)dvdg.

Multiplying Equation (1) by gk and integrating, we compute for k ≥ 2

1

k

d

dt
Q(k)
ε (t) =

1

ε

∫ VE

VR

∫ +∞

0
gk−1[Geq(v, bNε(t))− g]pεdvdg −

a

ε

∫ VE

VR

∫ +∞

0
gk−1∂pε

∂g
dvdg.
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Therefore we find

d

dt
Q(k)
ε (t) +

k

ε
Q(k)
ε (t) =

k

ε

∫ VE

VR

∫ +∞

0
gk−1Geq(v, bNε(t))pεdvdg + k(k − 1)

a

ε

∫ VE

VR

∫ +∞

0
gk−2pεdvdg.

As pε is a density probability, then

‖Nε‖L∞(R+) ≤ ‖φF ‖L∞ .

Using assumption (9), we deduce that there exists a constant C such that∫ VE

VR

∫ +∞

0
gk−1Geq(v, bNε(t))pεdvdg ≤ C

∫ VE

VR

∫ +∞

0
gk−1pεdvdg.

Using again that pε is a density probability, and splitting the integral in g in two parts : from 0 to µ
and from µ to +∞, we deduce that for all µ > 0 large enough, there exists a constant C(µ) such that∫ VE

VR

∫ +∞

0
(gk−1 + gk−2)pεdvdg ≤ C(µ) +

1

µ
Q(k)
ε (t).

Consequently, we have for all µ > 0 large enough

d

dt
Q(k)
ε (t) +

k

ε
Q(k)
ε (t) ≤ 1

ε

(
C(k, µ) +

1

µ
Q(k)
ε (t)

)
.

Taking µ large enough and using Gronwall inequality, we deduce the first part of estimate (14).

Uniform estimates on the firing rate. The bound on Nε(t) is easy to obtain. Because the total
mass of pε is 1, we conclude from its definition that

Nε(t) ≤ ‖φF ‖L∞ .

Next, we prove the Lipschitz bound. We multiply equation (1) by φF and integrate in (v, g), we
find ∣∣ d

dtNε(t)
∣∣ ≤ ∣∣∣∣∫ φ′F (v)

[
gL(VL − v) + g(VE − v)

]
pε(v, g, t)dgdv

∣∣∣∣
≤ ‖φ′F (v)‖L∞VE

∫
gpε(v, g, t)dgdv

and we conclude using that the moments are uniformly bounded with respect to ε, thanks to (14).

Weak convergence. Let us first deal with the term Geq(v, bNε(t)). With the second part of estimate
(14), we deduce using the Ascoli theorem that, up to a subsequence, there exists a Lipschitz function
N such that for all T > 0,

lim
ε→0
‖Nε −N‖L∞(0,T ) = 0.

As G is assumed to be regular, we deduce that, up to a subsequence, for all T > 0,

lim
ε→0
‖G(v, bNε)−G(v, bN )‖L∞((VR,VE)×(0,T )) = 0.
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Let us now study the convergence of pε. As pε is a density measure and as its moments is uniformly
bounded with respect to ε, we deduce that up to a subsequence, there exists a bounded measure
function p with total mass 1 and finite moments such that

pε ⇀ p gpε ⇀ gp.

Integrating Equation (1) with respect to the variable g, we find that

ñ(t, v) :=

∫ +∞

0
p(t, v, g)dv

is solution of the equation

∂tñ(t, v) + ∂v

(
gL(VL − v)ñ+ (VE − v)

∫ +∞

0
gpdg

)
+ φ(v)ñ(t, v) = δv=VRN (t).

Combining this with the equality

∂

∂g
[(Geq(v, bN (t))− g)p]− a ∂

2

∂g2
p = 0,

and following the subsection 2.1, we conclude the proof of Theorem 1. �

2.3 L∞ bound on pε and n

We now wish to prove uniform bounds on pε(t, v, g) for the full problem (1). For this, we need a kind
of non-characteristic condition between the transport in v and the boundary flux at VR. Hence, to
avoid technicalities, we assume that VR < VL for Equation (1). For the limit Equation (6), the above
condition can be relaxed with VR ≤ VL. The following theorem holds

Theorem 2 (L∞ bound for pε and for n). We assume (8)–(10), VR < VL, that pε(t = 0) ∈ L∞ with
sufficient (Gaussian) decay at g = ∞ uniformly in ε. Then, for all T > 0, there exists a constant
C(T ) independent of ε small enough such that the solution of (15) satisfies

sup
0≤t≤T

sup
g≥0

Nε(t, g) ≤ C(T ),

sup
0≤t≤T

sup
VR≤v≤VE

sup
g≥0

pε(t, v, g) ≤ C(T ).

Assume that VR ≤ VL and (8)–(10). Then, there is a constant C(T ) such that, the solutions of (6)
satisfy

sup
0≤t≤T

sup
VR≤v≤VE

n(t, v) ≤ C(T )‖n0‖L∞ .

Proof of Theorem 2. We begin with the estimates on pε and then treat those for n.
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Estimate for pε. We consider Nε(t) as a given data in the term Geq and we build a super solution
p̄ε(v, g, t) of Equation (1) for pε(v, g, t), that is a solution of the following Problem for t ≥ 0, g ≥ 0
and VR < v < VE ,

∂
∂t p̄ε + ∂

∂v

[(
gL(VL − v) + g(VE − v)

)
p̄ε
]

+ 1
ε
∂
∂g [(Geq(v, bNε(t))− g)p̄ε]− a

ε
∂2

∂g2
p̄ε ≥ 0,

a ∂
∂g p̄ε − (Geq(v, bNε(t))− g)p̄ε = 0, at g = 0, , pε(VE , g, t) = 0,

[gL(VL − VR) + g(VE − VR)]p̄ε(VR, g, t) ≥ Nε(g, t) :=

∫
φF (v)pε(v, g, t)dv.

(15)

We construct it under the form

p̄ε(t, v, g) = Beα(VR−v)M(v, g, t)eεg
2
eµt, with M(t, v, g) = exp−

(Geq(v,bNε(t))−g)2

2a ,

with B , α and µ three constants which are large enough.

Firstly, the constant B is just used to satisfy the initial condition and we ignore it in the end of
the proof.

Secondly, we fix α so that the boundary condition at VL is fulfilled. That simply means (recall
that we assume VR < VL)

[gL(VL − VR) + g(VE − VR)]M(t, VR, g) ≥
∫
φF (v)eα(VR−v)M(t, v, g)dv

which is possible, because large values of g are favorable, for α large enough.

Thirdly, because M(t, v, g) satisfies

(Geq − g)M − a∂gM = 0,

we deduce that

a∂gp̄ε − (Geq − g)p̄ε = 2ap̄εεg ≥ 0,

and hence, the zero flux boundary condition is satisfied at g = 0.

Finally, building on the above calculation, we also find successively that

∂g((Geq − g)p̄ε − a∂gp̄ε) = −2aεBeµt∂g(gMεe
εg2),

∂g((Geq − g)p̄ε − a∂gp̄ε) = (−2aε− a(2gε)2 + εg(g −Geq))p̄ε.

We deduce that there exists a constant C independent of ε small enough, such that for all v ∈ (VR, VE)
for all g ≥ 0

ε−1∂g((Geq − g)p̄ε − a∂gp̄ε) ≥ [
g2

2
− C(1 + g)]p̄ε. (16)

On the other hand, we have

∂tp̄ε = (µ+ zε(t, v, g))p̄ε

8



with

zε(t, v, g) =
b

a

∂Geq
∂A

(g −Geq)
d

dt
Nε(t).

Using that Nε is uniformly Lipschitz with respect to ε, see (14), we deduce that there exists a constant
C independent of ε such that for all v ∈ (VR, VE) for all g ≥ 0

|zε| ≤ C(1 + g).

We then deduce that
∂tp̄ε ≥ (µ− C(1 + g))p̄ε. (17)

Simple computations show that there exists a constant C independent of ε such that for all v ∈ (VR, VE)
for all g ≥ 0

∂v((gL(VL − v) + g(VE − v))p̄ε) ≥ −C(1 + α)(1 + g)p̄ε. (18)

Combining (16), (17), (18) and taking µ large enough, we deduce that

∂tp̄ε + ∂v[(gL(VL − v) + g(VE − v))p̄ε] +
1

ε
∂g[(Geq − g)p̄ε − a∂gp̄ε] ≥ 0.

This proves the first part of Theorem 2.

Estimate for n. Due to (7), there exists a constant b > 0, such that

G(VR, A)
(
V (VR, A)− VR

)
≥ b > 0. (19)

Moreover, as n is a probability density, we have

‖N‖L∞ ≤ ‖φF ‖L∞ .

To show that we can build a super-solution, we can reduced to construct n̄ ≥ 0 such that

∂tn̄+ ∂v
[
G(v, bN (t))

(
V (bN (t))− v

)
n̄
]
≥ 0

and (
G(VR, bN (t))

(
V (bN (t))− VR

)
n̄
)
≥ ‖φF ‖L∞ .

Choosing
n̄(t, v) := B‖n0‖L∞eAt

with A and B large enough and using assumption (19), we deduce that n̄ is a super-solution which
ends the proof of Theorem 2. �

3 Qualitative study of the associated Integrate and Fire model

This section is devoted to the understanding of the qualitative and asymptotic behavior of Equation
(6) with respect to the strength of interconnections of the network. To simplify the presentation, we
consider a slightly simplified model of Equation (6) as follows.{

∂n
∂t + ∂

∂v [(V0(N )− v)n] + φF (v)n = 0, 0 ≤ v ≤ VE ,

V0(N (t))n(t, v = 0) = N , n(t, VE) = 0, N (t) =
∫ VE

0 φF (v)n(t, v)dv.
(20)

Here, firstly, following [1, 2], we choose VL = VR = 0. Secondly, we use a simpler drift V0 independent
of the variable v.
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3.1 Steady states

The associated steady equation is given by{
∂
∂v [(V0(N̄ )− v)n̄] + φF (v)n̄ = 0, 0 ≤ v ≤ VE ,

V0(N̄ )n̄(v = 0) = N̄ , p(VE) = 0, N̄ =
∫ VE

0 φF (v)n̄(v)dv.
(21)

We assume that the smooth function V0(·) satisfies

0 < V0(N ) < VE , ∀N ≥ 0. (22)

One observes that, to avoid concentration as a Dirac mass at v = V0(N ), it is useful to also assume

φF (V0(N )) > 0 ∀N ≥ 0. (23)

Indeed, we may write Equation (21) as

(V0(N̄ )− v)
∂n̄

∂v
+ (φF (v)− 1)n̄ = 0. (24)

Therefore, near v = V0(N̄ ), the solution behaves as ∂ ln(n̄)
∂v = −φF (V0(N̄ ))−1

V0(N̄ )−v and thus, for some con-
stant qs

n̄ ≈ qs(V0(N̄ )− v)α, α = φF (V0(N̄ ))− 1 > −1,

which means that Condition (23) implies that n̄ has an integrable singularity.

More precisely we have

Theorem 3. With the assumptions (8), (22), (23), there is at least one steady state solution n̄ which

satisfies
∫ VE

0 n̄ = 1.

Proof. It is possible to give an expression of the stationary solution n̄. Using (24), we can write

∂ ln(n̄)

∂v
=

{
1−φF (v)
V0(N̄ )−v , for v < V0(N̄ ),

0, for v > V0(N̄ ).

Therefore we define

F (v, N̄ ) =

∫ v

0

1− φF (w)

V0(N̄ )− w
dw,

and we conclude that (and recall this n̄ is integrable near V0(N̄ ) as we saw it above)

n̄(v) =

{
N̄

V0(N̄ )
eF (v,N̄ ), for v < V0(N̄ ),

0, for v > V0(N̄ ).
(25)

Indeed, from (24), we may also infer that n̄ ≡ 0 for v > V0(N̄ ) and the sign of ∂n̄
∂v is the sign of

1− φF (v). Next, we choose the value N̄ so as to enforce the constraint
∫ V0(N̄ )

0 n̄ = 1. For N̄ = 0, the
corresponding solution n̄ vanishes, and for N̄ → ∞, we have n̄→∞. By continuity, we may achieve
the constraint.

These considerations explain the numerical solutions depicted in the Figure 1. These are obtained
with

VR = 0, VE = 1, φF (v) = A1I{v>.5}, V0(N ) = .8 + .2
N

1 +N
, (26)

and A = .5 for the figure on the left, A = 5. for the figure on the right. The value V0(N ) can be
identified because the solution vanishes for v > V0(N ).

10



Figure 1: Numerical solutions of the steady states in (21) with the date in (26) and two choices of the
term φF (v). Abscissae are v. Left: firing rate A = .5; Right: Firing rate A = 5.

Cases of uniqueness of the steady state. We may complete the existence result in Theorem 3
with uniqueness cases

Theorem 4. With the assumptions (22), (23), the steady state is unique in the two following cases.
1. φF > 1 on [0, VE ] and

0 < NV ′0(N ) < V0(N ), ∀N > 0. (27)

2. φ′F ≥ 0 and V ′0 < 0

Notice that Condition (27) is satisfied, for instance, by V0(N ) = aN
b+N + c, with a ≥ 0, b > 0 and

c ≥ 0, three constants.

Proof of Theorem 4.
Case 1. The condition providing the steady states in Theorem 3, that is

∫ V0(N̄ )
0 n̄ = 1, is also written

V0(N )

N
=

∫ V0(N )

0
eF (v,N )dv,

and we show that the two uniqueness cases correspond to left and right hand sides with opposite
monotonicity.

The derivative of the left hand side is given by

NV ′0(N )− V0(N )

N 2
< 0.

To treat the right hand side, we observe that, thanks to the assumption φF (v) > 1, we have eF (N ,VR) =
0. Therefore its sign is given by that of V ′0(N ) because

∂F (v,N )

∂N
= −V ′0(N )

∫ v

0

1− φF (w)

(V0(N )− w)2
dw.

Because the latter expression has the sign opposite to V ′0(N ) we find the result.
Case 2. To consider also possible values φF < 1 and to compute the derivative in N requires
additional steps. We write, for v < V0(N ),

F (v,N ) =

∫ v/V0(N )

0

1− φF (zV0(N ))

1− z
dz, and G(w,N ) =

∫ w

0

1− φF (zV0(N ))

1− z
dz.

11



The formula (25) gives, ∫ V0(N̄ )

0
n̄(v) = N̄

∫ 1

0
eG
(
w,V0(N̄ )

)
dw,

and n̄ is a probability measure if
1

N̄
=

∫ 1

0
eG
(
w,V0(N̄ )

)
dw.

Uniqueness follows under the condition that G is increasing in N , which means

−φ′F
(
zV0(N )

)
V ′0(N ) > 0,

and, since φ′F ≥ 0, this gives the condition V ′0 < 0.

3.2 Asymptotic stability

Back to the evolution equation (20), the next step is to determine if the solutions converge to a steady
state in long time. We first consider the linear case and by a perturbation method conclude that
the result still holds, assuming a weak nonlinearity. We use the Doeblin method which is very well
adapted to the problem at hand, see [22, 23, 24] for recent presentations and results.

Figure 2: Numerical solutions of the evolution equation (20) V0(N ) = .95, that is the linear equation.
This shows that the solution relaxes to the steady state depicted in Fig. 1 with damped oscillations.

Linear case. In the linear case (V0 constant), we may apply the Theorem 2.3 in [22] to equation (20).
We obtain the following criteria for exponential convergence to a unique stationary state. If, for a
time t0 > 0, we are able to construct non-negative sub-solution, uniformly with respect to all initial
data in L1, then the solution of our equation converges exponentially to a unique stationary state.
More precisely, the following result holds

Theorem 5 ([22]). Assume that V0 > 0 is constant and assume that there exist t0 > 0 and a nonnegtive

function ν 6= 0 such that for all initial data n0 ∈ L1
+(0, VE) with

∫ VE
0 n0(v)dv = 1, the solution of (20)

at time t0 satisfies
n(t0, v) ≥ ν(v). (28)

Then, there exists a unique stationary state n̄ of Equation (20), there exist α > 0, C > 0 such that
for all t ≥ 0 and for all density initial data n0 ∈ L1

‖n(t)− n̄‖L1 ≤ Ce−αt‖n0 − n̄‖L1 .
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Notice that Doeblin’s method is particular adapted to work with measures. However, in our
context, we have control in L1 and thus we restrict ourselves to this context. Once adapted to our
case, we conclude that the following result holds

Theorem 6. Assume that V0 is constant, V0 > 0 and φF (V0) > 0. Then, there exists t0 > 0 and a

non-negative function ν 6= 0 such that for all initial data n0 ∈ L1
+(0, VE) with

∫ VE
0 n0(v)dv = 1, the

solution of (20) at time t0 satisfies estimate (28).
As a consequence, there exist α > 0, C > 0 such that for all t ≥ 0

‖n(t)− n̄‖L1 ≤ Ce−αt‖n0 − n̄‖L1 ,

where n̄ is the stationary state of Equation (20).

Proof of Theorem 6. Equation (20) can be written as

∂n

∂t
+ (V0 − v)

∂n

∂v
+ (φF (v)− 1)n = 0.

With the method of characteristics, we obtain that

n(t, v) = 0 for v ≥ [VE − V0]e−t + V0.

In the interval
V0(1− e−t) ≤ v ≤ [VE − V0]e−t + V0,

we have
n(t, v) = et−

∫ t
0 φF (v+V0(e−t−1)+V0(1−e−s))dsn(0, vet + V0(1− et)), (29)

and finally, in the interval
0 ≤ v ≤ V0(1− e−t),

we have

n(t, v) =
1

V0
N (t+ ln(V0 − v)− ln(V0))e− ln(V0−v)+ln(V0)−

∫− ln(V0−v)+ln(V0)
0 φF (V0(1−e−s))ds. (30)

Using formula (29), we deduce that

N (t) ≥ et(1−‖φF ‖L∞ )

∫ [VE−V0]e−t+V0

V0(1−e−t)
φF (v)n0

(
vet + V0(1− et)

)
dv.

Now, we use that φF (V0) > 0 and that φF is regular. This implies that there exist a constant C > 0
and t1 > 0 such that for

V0(1− e−t1) ≤ v ≤ [VE − V0]e−t1 + V0, we have φF (v) ≥ C > 0.

Hence, for t ≥ t1, we have

N (t) ≥ Cet(1−‖φF ‖L∞ )

∫ [VE−V0]e−t+V0

V0(1−e−t)
n0
(
vet + V0(1− et)

)
dv.

Now, using that
∫ VE

0 n0(v)dv = 1, we obtain the following estimate, independent of the initial data,
that is

N (t) ≥ Ce−‖φF ‖L∞ t ∀t ≥ t1. (31)
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Using now formula (30), we deduce that for t0 = 2t1, and for

v ∈ [0, V0(1− e−
t0
2 )] with 0 ≤ − ln(V0 − v) + ln(V0) ≤ t0

2
,

we have
n(t0, v) ≥ Ce−‖φF ‖L∞ t0 .

This implies, that there exists a time t0 := 2t1 and a nonnegative function ν with
∫
ν > 0, such that,

for all initial data in L1, (28) condition is satisfied. This ends the proof of Theorem 6. �

Nonlinear case. We now consider the nonlinear Equation (20), which means that V0 is not necessary
a constant. The following theorem holds

Theorem 7. Assume (22), (23) and that there is a constant D > 0, small enough, such that(∥∥∥∥( N

V0(N)

)′∥∥∥∥
L∞

+ ‖V ′0‖L∞
)
‖φF ‖L∞ ≤ D.

Then, there exists a unique stationary state n∗ of Equation (20) and there exists constants α > 0 and

C > 0 such that for all initial data n0 ∈ L1(0, VE),
∫ VE

0 n0(v)dv = 1, the solution of Equation (20)
satisfies

‖n(t)− n∗‖L1 ≤ Ce−αt‖n0− n∗‖L1 .

Proof of Theorem 7. As the assumptions of Theorem 3 hold, there exists a stationary state of
Equation (20), we denote it by (n∗,N ∗).For a density n0 as above, we call St(n

0) the solution of the
linear equation {

∂n
∂t + ∂

∂v [(V0(N ∗)− v)n] + φF (v)n = 0, 0 ≤ v ≤ VE ,
V0(N ∗)n(t, v = 0) = N ∗, n(t, VE) = 0, n(0, v) = n0.

(32)

Then, using Duhamel’s principle, the solution of Equation (20) with initial data n0 can be written as

n(t, v) = St(n
0) +

∫ t

0
St−τ (V0(N ∗)− V0(N (τ))n(τ, v)dτ + δv=0

∫ t

0
St−τ

(
N (τ)

V0(N (τ))
− N ∗

V0(N ∗)

)
dτ.

From this, inserting absolute values, integrating in v and using that the total mass of n is 1, we obtain

‖n(t)− n∗‖L1 ≤ ‖St(n0)− n∗‖L1 +

∫ t

0

∣∣∣∣St−τ (V0(N ∗)− V0(N (τ)) +
N (τ)

V0(N (τ))
− N ∗

V0(N ∗)

)∣∣∣∣ dτ.
We now use Theorem 6 to obtain two constants C > 0 and β > 0 such that

‖n(t)− n∗‖L1 ≤ e−βt‖n0 − n∗‖L1 +

∫ t

0
e−β(t−τ)

∣∣∣∣(V0(N ∗)− V0(N (τ)) +
N (τ)

V0(N (τ))
− N ∗

V0(N ∗)

)∣∣∣∣ dτ.
To conclude, it remains to estimate∣∣∣∣(V0(N ∗)− V0(N (τ)) +

V0(N (τ))

N (τ)
− V0(N ∗)

N ∗

)∣∣∣∣ .
To do so, we notice that

|V0(N ∗)− V0(N (τ)| ≤ ‖V ′0‖L∞ |N ∗ −N (τ)| ≤ ‖V ′0‖L∞‖φF ‖L∞‖n(τ)− n∗‖L1 .
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and ∣∣∣∣ N (τ)

V0(N (τ))
− N ∗

V0(N ∗)

∣∣∣∣ ≤ ∥∥∥∥( N

V0(N)

)′∥∥∥∥
L∞
‖φF ‖L∞‖n(τ)− n∗‖L1 .

With the weak nonlinearity assumption

|V ′0‖L∞‖φF ‖L∞ +

∥∥∥∥( N

V0(N)

)′∥∥∥∥
L∞
‖φF ‖L∞ < β,

we conclude Theorem 7 using the Gronwall lemma and choosing

α = β − ‖V ′0‖L∞‖φF ‖L∞ +

∥∥∥∥( N

V0(N)

)′∥∥∥∥
L∞
‖φF ‖L∞ .

�

3.3 Oscillatory states

As observed in [5], the voltage-conductance model (1) can produce periodic solutions which represent
the spontaneous activity of the network. This desirable property also holds for other neural network
models; see [25] for the Leaky Integrate&Fire model and [11, 12] for the time elapsed model.

Linear instability. While in Subsections 3.2 and ??, we have studied the nonlinear asymptotic
stability of the steady state, one can also find conditions for its instability.

The linearization of Equation (21) around a steady state n̄(v) is to find (r(v), µ) satisfying
∂r
∂t + ∂

∂v [(V̄0 − v)r] + V̄ ′0µ
∂n̄(v)
∂v + φF r = 0, 0 ≤ v ≤ VE ,

µ :=
∫ VE

0 φF rdv,
∫ VE

0 rdv = 0, V̄0r(0) = µ[1− V̄ ′0 n̄(0)],

with V̄0 = V0(N̄ ).

We look for a solution with exponential behavior in time r(v)eλt which givesλr + ∂
∂v [(V̄0 − v)r] + V̄ ′0µ

∂n̄(v)
∂v + φF r = 0, 0 ≤ v ≤ VE ,

µ :=
∫ VE

0 φF rdv, V̄0r(0) = µ[1− V̄ ′0 n̄(0)].
(33)

Because n̄(v) = 0 for v > V̄0, we also have r(v) = 0 for v > V̄0 and it remains to solve the problem for

v ∈ (0, V̄0). Notice that the condition
∫ VE

0 rdv = 0 follows by integration when λ 6= 0.

Proposition 1. We assume that φF (v) = φ11I{v>v1} and φ1 > 1. We also assume that

V0

N̄0
− φ1V̄

′
0 + V̄ ′0

N̄
V̄0

(V̄0 − v1)φ1−2 < 0.

Then there is a solution of the problem (33) with λ > 0. In other words the steady state n̄ is unstable.
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To solve this problem, we notice that q = r
n̄ satisfies

λq + (V̄0 − v)
∂q

∂v
+
V̄ ′0µ

n̄

∂n̄(v)

∂v
= 0,

and thus, using (21),

∂(V̄0 − v)λq

∂v
= −(V̄0 − v)λ−1 V̄

′
0µ

n̄

∂n̄(v)

∂v
= V̄ ′0µ(V̄0 − v)λ−2(φF − 1),

(V̄0 − v)λq = (V̄0)λq(0) + V̄ ′0µ
V̄ λ−1

0 − (V̄0 − v)λ−1

λ− 1
(〈φF (v)〉 − 1)

where 〈φF (v)〉 ranges for some average of φF on (0, v).

At this stage we recall the singularity of n̄(v) ≈ qs(V0(N̄ )−v)α, α = φF (V̄0)−1 > −1. This means
that r = q n̄ is integrable for λ < φF (V̄0), 1 < φF (V̄0).

Then, eliminating µ, the parameter λ is chosen so as to satisfy

1 = (V̄0)λ−1[
V0

N̄0
− V̄ ′0 ]

∫
n̄(v)

(V̄0 − v)λ
dv + V̄ ′0

∫
n̄(v)

(V̄0 − v)λ
V̄ λ−1

0 − (V̄0 − v)λ−1

λ− 1
(〈φF (v)〉 − 1)dv,

a relation that we write, with obvious notations, as

I(λ) = 1.

Now we assume that φF > 1 is constant on its support. On the one hand, as λ → φF , the term∫ n̄(v)
(V̄0−v)λ

dv tends to +∞ and λ− 1→ φF − 1 for v ≈ V̄0. Therefore,

I(λ) ≈ (V̄0)λ−1 V0

N̄0

∫
n̄(v)

(V̄0 − v)λ
dv → +∞ as λ→ φF .

On the other hand, as λ→ 0,

V̄0I(λ) ≈ V0

N̄0
− φF V̄ ′0 + V̄ ′0(φF − 1)

∫
n̄(v)

V̄0 − v
dv.

Since n̄ = N̄
V̄0(V̄0−v1)

(V̄0 − v), Proposition 1 follows by the mean value theorem.

Numerical illustration. Numerical evidence, indicates that periodic solutions occur for the simple
limiting model (6). We use the range of parameters produced in the previous subsection, when
the firing rate φF is large enough and the nonlinear voltage V0(N ) is stiff enough. The computed
solution is depicted in the Figure 3 for the evolution equation (20). Here the choice of parameters and
nonlinearities (which are far form the regimes where uniqueness of a steady state has been established)
is given by the expressions

φF (v) = 5 1I{v>.7}, V0 = .75 + .22 min(N , 1). (34)
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Figure 3: Numerical solutions of the evolution equation (20) with data in (34). Abscissae are v. Left:
firing rate V0(N ) = .75 + .15 N

.1+N ; Right: Zoom on two oscillations.

4 Conclusion and perspectives

Neural networks are by nature highly complex systems and mean field models are a way to circumvent
the modeling. In [1, 2], the authors propose a kinetic mean field equation of neural assemblies to
make a fine description of the dynamic of neural networks with respect to the membrane potential
and the conductance of the neurons. The patterns that emerge from those models are very rich,
and exhibit oscillations, bifurcations... However, this model is very difficult to tackle both from a
numerical viewpoint [5], where efficient numerical schemes are complex to implement and from a
theoretical viewpoint [6], where classical methods failed due to the particular boundary conditions
and the degenerate diffusion involved in the equation. To overcome those difficulties, in [1, 2], the
authors propose a reduction of dimension of this equation by closure moments. In this article, we
give an alternative with a new kinetic model where the singular boundary condition is replaced by
an integral absorption in order to obtain more precise theoretical results and to simulate the different
types of dynamics that can emerge with a relatively simple algorithm on the limiting Integrate and
Fire equation.

Several open questions about the present voltage only I&F model remain open. The first one
concerns a more precise theoretical study on the mechanisms beyond the oscillations in the Integrate
and Fire model presented in this equation. Indeed, to our knowledge, there do not exists theoretical
results of existence of periodic solutions for this kind of PDE. However, Equation (20) shares, in its
structure, some similarity with the time elapsed model, where we can built explicit periodic solutions
(see [12]). Indeed, as for the time elapsed model, in some regimes, the total firing rate satisfy a delay
type equation, which may be tractable. As an example, considering for k ∈ N big enough (let us
assume to simplify VR = 0, VE = 1) and the particular function

φF (v) = kIv≥α, α > 0, 0 < α < 1,

using the method of characteristics, we obtain the following formula on the total firing rate of Equa-
tion (20)

N (t) = k

(
1−

∫ t

ϕ(t)
N (s)ds

)
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with ϕ(t) ≤ t such that

α = e−(t−ϕ(t))

∫ t−ϕ(t)

0
V0(N (s+ ϕ(t)))esds.

This system is however more complex than the one obtained in [12], due to its specific coupling, but
may be exploitable.

Coming back to the conductance and voltage kinetic model developed in [1, 2], a second important
question, concerns the theoretical study of this equation which was initiated in [6]. Indeed, beside the
question of well-posedness which is rather difficult, typical questions as the asymptotic convergence
to a stationary state for very weak interconnections, is not yet understood.

The standard I&F model for networks is closely related to (6) with two main differences. On the
one hand firing is taken pointwise, rather than the nonlocal definition of firing in (6), which is our
choice of a simplification. On the other hand noise is taken into account differently, directly by a
diffusion term in the standard I&F model, rather than by dispersion of the drift terms. It is written{

∂
∂tn+ ∂

∂v

[
h(bN (t), v)n

]
− a∂2n

∂v2
= N (t)δ(v − VR), t ≥ 0, v < VE ,

n(VE , t) = 0, N (t) = −a∂n∂v |v=VE .

Another question is to derive this model from the voltage-conductance equation in a diffusive limit
rather than an hyperbolic limit.
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