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ABSTRACT
This review discusses successful strategies and key open pro-
blems in the kinetic and thermodynamic characterization of
complex biomolecular systems by computer simulations. The
main focus is on established techniques and emerging trends in
the fields of enhanced sampling and of kinetic models, as
applied to biological problems ranging from protein folding
and conformational dynamics to protein–protein and protein–
ligand interaction. We address especially the following ques-
tions: How to choose a computational approach suited to a
particular problem? What are the strengths and limitations of
alternative approaches?What is the current accuracy of thermo-
dynamic and kinetic predictions? What are today’s open chal-
lenges andpromisingdevelopment directions? Towards the aim
of accurately reproducing and interpreting experimental results,
we briefly discuss hybrid approaches that combine together
theoretical and experimental information.
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Abbreviations: CV: Collective variable. DHAM: Dynamic
histogram analysis method. DoF: Degree of freedom. H-
REX: Hamiltonian replica exchange. M&M: Metadynamic
metainference. MetaD: Metadynamics. MD: Molecular
dynamics. MSM: Markov state model. NMR: Nuclear mag-
netic resonance. PBMetaD: Parallel-bias metadynamics.
pMaxEnt: principle of maximum entropy. PT: Parallel
tempering. RECT: Replica exchange with collective-vari-
able tempering. RMSD: Root mean square deviation.
SGOOP: Spectral gap optimization of order parameters.
TICA: Time-lagged independent component analysis.
TRAM: Transition-based reweighing analysis method. US:
Umbrella sampling. WHAM: Weighted histogram analysis
method. WTMetaD: Well-tempered metadynamics.

Introduction: key problems

In recent years, molecular dynamics (MD) simulation techniques have
been applied to a large and growing number of problems in biophysics
and biochemistry, providing crucial qualitative and quantitative insight
complementary to experiments. The three main reasons for this success
are the increasing accuracy of physics-based force fields to model inter-
actions between atoms, the growing system size and timescale that are
accessible to simulation on modern computer facilities, and the progress
in theoretical and numerical approaches to the in silico study of thermo-
dynamics and kinetics.

The present review focuses on these latter methods that allow to explore
the relevant configurations of a system and to estimate the corresponding
equilibrium probabilities and transition times. In this context, the term
‘enhanced sampling’ emphasizes the need to accelerate the collection of
geometric and energetic information across the configurational space of
biomolecules. Indeed, the direct application of MD or Monte Carlo tech-
niques is inadequate to most transformation processes, such as those
involving conformational changes and binding/unbinding of partner mole-
cules [1]; these so-called rare events display a slow kinetics, ranging from
microseconds to minutes and beyond, due to the presence of bottlenecks
separating the different metastable states of the system.

Such bottlenecks, from the viewpoint of free-energy landscapes traced as
a function of some collective variable (CV) such as gyration radius,
number of contacts, dihedral angles and so on, typically correspond to
free-energy barriers (see e.g. Figure 1). The free-energy landscape point of
view is indeed very intuitive from a molecular perspective, because it
allows to reduce the dimensionality of a problem sometimes leading to
identify its key ingredients. This has led to the development of a number of
techniques focused on enhancing the sampling of equilibrium properties,
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often disregarding kinetic information. In parallel, other methods have
tried to focus on enhancing the sampling from a more kinetic perspective,
focusing on reactive pathways.

The focus of this review, rather than going into the details of many
methods, for which we refer the reader to a number of other reviews [2–9],
is more that of highlighting a common thread: contamination between
methods is fundamental to understand what are the key ingredients to
perform statistically sound simulations. Essentially, the methods presented
here are seldom used in their original form: in most of the cases they are
used in combination with other methods. In particular, developments in
enhanced sampling of equilibrium properties are learning from develop-
ments in enhanced sampling of kinetic properties and vice-versa, thus
making less and less important such distinctions.

One should also not forget that sampling is only the preliminary step. It is
the instrument we need to perform accurate numerical experiments (i.e. with
error bars and reproducible). Once one can perform such experiments, it
becomes possible to pinpoint the limitations of the overall simulationmachin-
ery and to improve it. This is what is going on with force-fields development

Figure 1. A free-energy landscape (in kJ/mol) for the denatured state of Frataxin, adapted
from ref. [253]. The two collective variables for the projection were determined making use of
Sketchmaps [104]. Multiple conformational substrates, with their relative free energies and
displaying different extent of secondary structure are clearly visible.

886 C. CAMILLONI AND F. PIETRUCCI



in the last few years, leading to stronger predictive power. Given intrinsic
limitations of force-fields, additional accuracy can be gained making use of
statistical inference tools. The last section of the review is focused on such
developments. MD-basedmethods grow quickly in number and fashionmore
andmore specific names: still, the guiding principle and final aim remains that
of performing accurate in silico experiments.

The problem of thermodynamics: learning from kinetics

Given the Boltzmann configuration distribution PðRÞ / exp �UðRÞ=kBT½ �,
where kB is the Boltzmann constant, one can identify three ways to modify
it and increase the probability of observing high-energy conformations and
cross barriers: (1) By increasing the temperature T; (2) By modifying the
potential UðRÞ, that is the force field; and (3) By adding an external
potential VðRÞ. Generally speaking, these strategies correspond, among
other techniques, to (1) Simulated and Parallel Tempering [10–12] (PT);
(2) Hamiltonian Replica-Exchange [13,14] (H-REX) and Thermodynamic
Integration 15 and (3) Umbrella Sampling [16] (US) (and also H-REX for
terms beyond the force field). Importantly, VðRÞ is generally a function of
a CV and can be in principle a time-dependent function VðCVðRÞ; tÞ (cf.
Metadynamics [17] (MetaD) and Steering-MD [18,19], among the others).

PT is probably the simplest enhanced sampling technique. By using only
one parameter, the temperature, it is possible to increase the diffusion as well
as the probability of exploring high-energy conformations. Multiple replicas
of a system are run in parallel at different temperatures and exchanges among
replicas are tried and accepted or rejected using Metropolis Monte Carlo.
H-REX variants allow modifying parameters different from the temperature
but works following the same scheme (cf. Fig. 2). In general, for replica-
exchange methods, the probability of exchange between two replicas i and j is

given by: min 1; PiðRjÞPjðRiÞ
PiðRiÞPjðRjÞ

� �
. The factors affecting the efficiency of PT and

H-REX methods are the frequency of exchange and the probability of
exchange, together determining the round-trip time (i.e. the time needed for
one replica to move across the parameter space). Most common setups are
based on high-exchange frequency and a uniform average probability of
exchange between 10 and 40% [20–25]. In particular, it was shown that the
higher the frequency of exchange the better [25] this resulted in additional
variants of PT pushing the boundaries towards the infinite swapping
limit [26].

In PT, the probability of exchange is determined by the overlap in the
distribution of the potential energy. As a consequence, the number of replicas
needed to cover a given range of temperatureswith a given average probability of
exchange scales with

ffiffiffiffiffiffiffiffiffiffiffiffi
Natoms

p
, making it suboptimal for typical biological
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systems solvated in large boxes of water. Nonetheless, given its simplicity, PT is a
widely usedmethod to study protein folding and for the exhaustive search of the
conformational space of short peptides, as well as for sampling other large
conformational changes [12,27–30]. In the case of H-REX, there is not a general
rule for the scaling of the number of replicas with system size. For example, in
Solute Tempering [31], the energy of each replica m is scaled with respect to a

reference temperature as: EmðRÞ ¼ EpðRÞ þ ½β0βm�EwwðRÞ þ ½β0þβm
2βm

�EpwðRÞ (with
βi ¼ 1=kBTi), where the energy is given by the sum of the energy of the solute
Ep, the energy of the solvent Eww and that of the solute-solvent interaction Epw.
As a consequence, the number of replicas needed to cover the same range of
rescaling goes with

ffiffiffiffiffiffiffiffiffiffiffi
Nsolute

p
, the number of atoms in the solute.We remark that,

using parameters that are more complex than the temperature makes less
intuitive the assessment ofwhether amethod is efficient in speeding up a process
of interest; see for example Ref. [32] where the limitations of Solute Tempering
are discussed. Following the spirit of Solute Tempering and trying to overcome
its limitations, other H-REX schemes have been introduced [14,33–36]. A very
elegant approach to optimize the number of replicas needed in PT and H-REX
(as well as for simulated tempering) comes fromMetaD (see later). By using the
potential energy as CV (or in general the potential energy term relevant for
H-REX), in the so-calledWell-TemperedEnsemble [37], it is possible to increase

Figure 2. Replica-exchange simulations allow running multiple replicas of a system by varying
the force-field, the temperature and/or adding an external potential. Exchanges between
replicas are attempted periodically and accepted or rejected following Metropolis’ rule.
Algorithmically, one can exchange either configurations or Hamiltonians. In the first case,
one has discontinuous trajectories of a thermodynamics ensemble, in the latter continuous
trajectories not belonging to any thermodynamics ensemble. While the first are the actual
result of the simulation, the latter are useful to assess convergence, i.e. proper sampling of the
conformational space by each walker.
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the fluctuations of the potential energy without changing its average, thus
increasing the acceptance rate.

H-REX is not limited to scaling force-field terms but can also be used to
add an external potential of increasing strength (also defined along a
CVðRÞ) (cf. Fig. 2). Examples goes from increasing secondary structure
propensities in sampling the conformational space of peptides and proteins
[38], to increasing the repulsion between ligand and receptor to facilitate
the unbinding and the search of more binding sites, in ligand binding
problems [36,39]. Essentially, while PT can be considered an `unbiased’
method of enhanced sampling, the choice of the best variant of H-REX is
determined by the specific process of interest and by our own under-
standing of the latter. The sampling of a reference (unbiased) replica can
be readily used to obtain probability distributions of conformational para-
meters, while the sampling of the other replicas can be reweighed making
use of techniques like the Weighted Histogram Analysis Method (WHAM)
[40–42]. Importantly, in PT and H-REX simulations, convergence should
be evaluated both for each single walker in the parameter space (i.e.
continuous trajectories), as well as for the discontinuous trajectories
sampled for a given parameter. Convergence of the former is usually
harder to achieve, and is consequently more relevant, than the latter.

From PT to H-REX, one introduces his/her own understanding of the
process to boost the sampling where it is needed. CV-based methods try to
exploit even more some preliminary knowledge about a system. In the
following, we will focus on the most recent advances in these latter
methods, and in particular on MetaD. Indeed, in our opinion, MetaD
has been responsible for spurring many developments of which other
CV-based methods have benefited, in part because of its sensitivity to the
choice of the CV. Indeed, many of the trends and problems highlighted in
the following for MetaD are also valid for other CV-based methods like US
[16], steering MD [18,19], the adaptive biasing force method [43,44],
adiabatic free-energy dynamics [45,46], and temperature-accelerated
MD [47].

CV-based methods can be seen as a tentative answer to the following
problem: If we could know the free energy as a function of one or more CVs
useful to describe a process, then we could sample along them optimally. The
key point is that given a constant bias VðCVðRÞÞ it is possible to sample a
system with a modified probability P0ðRÞ / exp �ðUðRÞ þ VðCVðRÞÞÞ=kBT½ �
and eventually recover the original probability distribution. US was and still is
the method of choice to find such optimum biasing potential [48] and is usually
applied in problems like conformational changes and ligand binding [49,50]. In
its original implementation, the biasing potential was guessed and refined
iteratively in order to increase the probability of sampling unlikely conforma-
tions [16]. This approach is not particularly easy without any prior knowledge
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on the shape of the free energy, the height of the barriers and the relative weights
of different states. In order to make the approach usable, the reconstruction
was split by sampling the conformational space around a fixed number of
points (windows) along the chosen CVs. The sampling of the windows is
eventually merged by WHAM [51]. While this approach scales optimally, the
number of windows and their separation cannot be determined a priori and
should be such that there is always significant overlap between the sampling of
neighbour windows, a property that is determined by the local shape of the
underlying free energy. Nonetheless, additional sampling can always be added a
posteriori. Attractive for its simplicity, US, as all CV-based methods, assumes
that while directly samplingN degrees of freedom (DoF) is too time consuming,
samplingN � 1 (orN � nwith n � N) is feasible. The validity of this assump-
tion in real simulations can be misjudged by the fact that, given some overlap
between the CV distribution in neighbour windows, WHAM will always
converge to a solution, irrespectively of the global convergence of the sampling
[42,43]. Indeed, most of the times US is used in combination with very simple
CVs like distances. One should always verify by block analysis, autocorrelation
analysis, and, most importantly, comparisons amongmultiple windows that the
sampling in other unbiased directions is actually converged before applying
WHAM [52]. In order to improve the convergence of the sampling, US is often
combined with replica-exchange [53–55] (for example running PT for each
window or exchanging between neighbour windows) and MetaD [56], among
others.

With the introduction of MetaD [17], the iterative approach of building
a bias VðCVðRÞÞ in the spirit of the original US is back on the spotlight. In
MetaD, a biasing potential is built over time as the accumulation of kernel
functions (typically Gaussians), colloquially named hills, that are deposited
in such a way to keep track and discourage the visiting of already-visited
conformations defined as a function of few CVs. As for US, the assumption
is that enhancing the sampling along few DoF should be enough to
converge all the others in the time of the simulation. In the case of
MetaD, if this assumption does not hold, hysteresis effects will make it
impossible for the history-dependent bias to converge [57]. The possibility
to visualize such effects provides a very useful diagnostic tool. MetaD thus
shifted the problem from determining VðCVðRÞÞ towards the determina-
tion of relevant CVs able not only to discriminate between different states,
but also to approximate the transition mechanisms between them. This has
driven a dramatic increase in the variety and complexity of CVs employed,
well beyond traditional distances, angles and root mean square deviations
(RMSD) with respect to known configurations, and thus making a service
for all other methods based on CVs. For example, for biological systems,
the effort resulted in the development of CVs to follow paths in conforma-
tional space [58], CVs specific for proteins [59,60] or nucleic acids [61],
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CVs for interfacial water molecules [62], CVs for experimental observables
[63–65], for shapes [66], and more (cf. the manual of the PLUMED code
for more examples [67,68]).

In the last 15 years, MetaD has seen a considerable progress and many
biological applications [57,69,70]: From a method based on heuristic
assumptions [17,71], it is now well established in its formalism [72–74]
(cf. Ref. [75] for a review). Running a MetaD simulation requires the
choice of few parameters in addition to the choice of the CVs:

(1) A target effective free-energy (that is the sum of the system free-
energy along the CVs plus the MetaD bias) [76–80]. In the case of
well-tempered MetaD (WTMetaD) [76], this is the free energy
scaled by a constant factor. Therefore, the only parameter to choose
is the scaling factor (or bias factor, e.g. a bias factor of 10 means that
the effective free energy will be that of the system scaled down by ten
times). In other cases, the target distribution can be different from a
scaled free energy and could for example match a probability dis-
tribution obtained from an experiment [79,80];

(2) The initial deposition rate, i.e. the ratio between the height of the
Gaussian and the frequency of addition (again in the case of
WTMetaD, since the height is quickly scaled down it is often
reasonable to have a high initial rate, for example, of the order of
a fraction of kBT per picosecond);

(3) The widths of the Gaussian for the different CVs, or better, by using
multivariate Gaussian [81], either the timescale for the estimate of
the fluctuations or the typical atomic displacement (i.e. one single
number irrespectively of the number of CVs).

Overall, Metadynamics is robust with respect to the choice of the above
parameters, while one open issue is the treatment of the boundaries [82–
84] for multidimensional MetaD, even if in WTMetaD the problem might
be mitigated with respect with MetaD with fixed Gaussian height. Most
importantly, it is generally possible to reweigh a MetaD sampling and
obtain back the unbiased statistics for biased and unbiased DoF
[74,81,85–87]. In particular, in the case of WTMetaD, one can reweigh
the sampling making use of the US weight, i.e. the weight of each config-
uration as given by the bias at the end of the simulation [81].

We note that the concept of a target equilibrium state has recently
brought to the development of a new method, called variationally
enhanced sampling, where the bias is based on a functional form meant
to variationally reach a desired target [88], possibly allowing a more
efficient boost of the sampling in many dimensions.
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The performances of all CV-based methods, as well as their chances to
achieve a satisfactory convergence within a given amount of computing
resources, are significantly dependent from the choice of the CVs [89].
Suboptimal choices can be alleviated by combining MetaD with PT or
H-REX [90–93]. Particularly interesting is the case of Bias-Exchange MetaD
[83,91]: N replicas of a system (typically up to 10) are simulated in parallel,
each replica being biased along a different CV, with exchanges of bias
attempted at regular time intervals (according to Metropolis’ rule). In this
way, each replica is able to explore in an efficient way theN-dimensional space
spanned by the ensemble of all CVs, by sequentially changing the bias direc-
tion in this space. After having verified the convergence of the bias profile
corresponding to each CV, data from all replicas can be combined together by
means of WHAM to reconstruct the N dimensional free-energy landscape
(originally, a neutral, unbiased, replica was included to simplify the analysis)
[87], employing, e.g. the METAGUI graphical interface [94,95]. As a conse-
quence, the choice of the CVs is less critical, since it becomes possible to use as
many CVs as the number of replicas one can afford to simulate, a key
advantage in studying complex biomolecular processes involving different
types of conformational changes, molecular recognition, water degrees of
freedom, etc. [62,63,96–99].

An alternative approach to employ many CVs in an efficient way is
provided by replica exchange with collective-variable tempering (RECT) 93
in this case, several replicas are evolved in parallel, each replica being biased by
the sum of N independent WTMetaD bias potentials acting along different
CVs, with different bias factors in the different replicas. Since the biased CVs
are not necessarily orthogonal, each bias potential can have a complicated
effect on probability distribution along the other CVs: as a consequence, an
unbiased replica must be used to accumulate the unbiased sampling. In
Parallel-Bias MetaD (PBMetaD) [100], multiple unidimensional MetaD are
performed at the same time on a single simulation but the Gaussians are
scaled to account for the hidden correlations (cf. Fig. 3). Consequently, each
single MetaD converges to the correct WTMetaD free energy. Heuristically,
efficiency can be kept at an optimum level by increasing the bias factor byffiffiffiffiffiffiffiffiffi
NCV

p
with respect to that of a standardWTMetaD. Additional parallelization

can be trivially obtained through multiple walkers MetaD [101], and/or using
the whole arsenal of possible hybrid methods. For example, one could easily
devise a PT-Well-Tempered-Ensemble-PBMetaD, where many CVs are
biased by PBMetaD including the potential energy (Well-Tempered
Ensemble [37]) and an optimal number of replicas are run in parallel at
different temperatures as in parallel-tempering MetaD [90].

Even by using a large number of CVs, relevant slow DoF can still escape
from the list and the intuition. Furthermore, using too many CVs can become
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computationally demanding. How can one alleviate this issue and simplify or
standardize the choice of the CVs? Ideally, it should be possible, either
iteratively or on-the-fly, to identify those DoF that are slow with respect to
the timescale accessible by standard MD. One possibility is that of extracting
information from preliminary simulations, for example making use of dimen-
sionality reduction techniques such as principal component analysis [102],
Isomap [103] or Sketchmaps [104] (e.g. Figure 1). Alternatively, if the initial
and final structures of a transformation process are known and well defined, a
path variable could be optimized on-the-fly [105]. These methods try to
indirectly solve an additional problem: If we could identify the slowest CVs
of a process we could use this information to optimally enhance the sampling.
Recent methods try to directly face this problem: in the case of SGOOP,
spectral gap optimization of order parameters, [106] starting from a CV
defined as the linear combination of simpler CVs it is possible to optimize
the coefficients in order to maximize the spectral gap. Interestingly, the
method can be used to iteratively move towards a better and better CV.
What we think is very relevant in this direction are two complementary
strategies [107,108] that have been recently proposed. Both are based on a
recent advancement in the field of conformational dynamics, namely time-
lagged-independent component analysis (TICA) [109,110] (of notice that
TICA has also been used in combination with US [111]). TICA is a signal
analysis procedure, related to principal component analysis, where one

Figure 3. Metadynamics variants that allow increasing the number of CVs employed in a
simulations. In Bias-Exchange MetaD, an H-REX scheme is employed to couple the sampling
obtained by many independent unidimensional MetaD. The final sampling is obtained by
merging that of all replicas making use of WHAM or other reweighing schemes. Replica
exchange with collective-variable tempering is again an H-REX scheme where each replica is
biased by many unidimensional bias potentials, with different replicas featuring different bias
factors, including a neutral unbiased replica to extract the final sampling. In Parallel Bias
MetaD, a single replica is biased by many unidimensional MetaD. The rate of deposition is
tuned to keep into account for cross-biasing of non–orthogonal CVs. The final sampling is
obtained reweighing for the accumulated bias.
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identifies directions with the slowest autocorrelation times. In the first
approach [107], closer in spirit to the SGOOP method, a first CV is defined
as a linear combination of a basis set of simpler CVs (e.g. the dihedral angles of
a protein). Then a WTMetaD simulation is performed to get a preliminary
estimate of the free energy and of the direction to overcome a free-energy
barrier; after reweighing, the TICA eigenvalues and eigenvectors are obtained.
From the characteristic time of the eigenvectors, one has the indication of how
many CVs are needed to sample the system given the available computing
time. In the second approach [108], a preliminary sampling by multiple MD
simulations in the spirit of Markov State Model analysis is performed and
projected again on a basis set of simple CVs, while TICA is once again used to
determine optimal CVs to sample the system accurately. A relevant observa-
tion is that one should be able to bias all the eigenvectors associated with a
timescale longer or comparable to the one affordable by standard MD; this
goes towards a better formalization of howmany CVs should be biased so that

Figure 4. Illustration of the two most common approaches to the construction of kinetic
models starting from dynamical trajectories in the full 3N -dimensional space. Projection on
one (or a few) CV leads to stochastic differential equations (Langevin equations) containing
the gradient of the potential of mean force (here indicated as UðxÞ) as well as friction and
noise terms modelling the effect of the ‘bath’ coordinates. Discretization of configuration
space and introduction of a lag time τ lead to Markov state models where the population of
different configurational clusters (here depicted as cells) evolves in time based on a matrix of
transition probabilities.
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all other DoF can be sampled at convergence in the available simulations time.
From this point of view we think it is appealing the combination of these
approaches with multiple-CVs methods like Bias Exchange MetaD, RECT or
PBMetaD. Note that a set of CVs that is optimal according to the preceding
criteria, is expected to be optimal in particular for studying the kinetic proper-
ties. The last years saw also the beginning of the use of machine learning
techniques aimed at finding both the optimal CVs and the optimal bias at
once [112–115], so that new interesting developments and applications are
expected in the near future (see also ref. [116].).

Given the level of efficiency and sophistication reached today by
enhanced sampling techniques, we believe that the time is ripe to address
some open challenges. First, the reproducibility of simulations should be
improved: in this respect, an important role can be played by libraries such
as COLVAR [117], PLUMED [67,68] and SSAGES [118], making
enhanced sampling protocols available on multiple MD engines (a good
practice consists in sharing the input in the supporting material of papers
or on platforms like GitHub). A related problem is reaching agreement in
the community around robust methods to estimate errors: unfortunately
many computational works lack error estimates, and in several cases there
is no consensus yet, even in principle, on the best statistical tools to
employ. Finally, our understanding and quantification of the kinetic prop-
erties of biomolecular systems – the subject of next section – is often
insufficient: as discussed above, advances in this direction can be highly
beneficial to improve sampling and free-energy calculation methods.

Theoretical and computational approaches to kinetics

As explained in the previous section, the reconstruction of free-energy
landscapes is nowadays a mature field, where a number of successful
strategies have been highly optimized and, in most cases, theoretically
formalized. An important current challenge consists in devising systematic
approaches to predict the kinetics of complex biological systems in an
affordable and accurate way. Clearly, thermodynamics can be obtained
from kinetics, but not vice versa, and a complete in silico picture of a
biophysical process includes a detailed account of kinetics. The latter is
particularly important in order to compare with experiments, examples
being temperature-jump and fluorescence techniques for protein folding
[119] or surface plasmon resonance for protein-ligand interaction
[120,121].

A deep connection between free-energy landscapes discussed in the previous
section and kinetic concepts is represented by the committor (or commitment)
probability function, i.e. the probability pBðRÞ, in a two-state system, that a
given atomic configurationRwill evolve to reach state B before reaching state A
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[2,122,123]. An example popular in biophysics is pfoldðRÞ, indicating the prob-
ability to reach the folded state of a globular protein [122]. Even if the commit-
tor function cannot be estimated explicitly in the whole configuration space due
to computational cost (multiple trajectories must be evolved from each R until
ending in a metastable state), it nevertheless provides a definition of ideal
reaction coordinate for drawing free-energy landscapes, and it is well suited
as a benchmark tool: e.g. a structure belongs to the transition state ensemble if it
is committed to A and B with equal probabilities [2,89,123,124].

In a few, ideal situations, mean first passage times (i.e. inverse rates)
connecting metastable states can be directly measured from long MD
simulations displaying an ergodic behaviour. An example is the conforma-
tional dynamics of few-amino acid peptides, as reconstructed from trajec-
tories on the microsecond timescale, nowadays easily feasible. Remarkably,
for small proteins close to the melting temperature (where ΔG ¼ 0
between folded and unfolded states), reversible folding/unfolding millise-
cond trajectories in explicit solvent could be generated using a specifically
designed supercomputer, Anton [125,126]. Unfortunately, in more general
cases and for a vast range of biophysical processes, kinetics remains a
difficult and prohibitively expensive simulation target. Other fields, such as
materials science and solution chemistry, face a similar unsatisfactory
condition.

Two main theoretical frameworks serve as conceptual basis for existing
numerical approaches to kinetics [127–129]. In the first framework, projec-
tion of the high-dimensional dynamics of a complex system on a low-dimen-
sional manifold of CVs (often only one) leads to dynamical equations of the
Langevin kind, i.e. stochastic differential equations including a deterministic
force (the gradient of the free energy), a friction and a random force (both
conveying the influence of the neglected degrees of freedom) [130–132]. In
the second framework, the configuration space is partitioned into discrete sets
of structures, called clusters or microstates, connected by transitions that
typically are assumed memory-less. This approach results into Markov state
models, complemented withmathematical tools to analyse them [9,133]. Even
if the two theoretical frameworks are interrelated, in practice they lead to
different numerical techniques.

Markov state models represent a widespread approach to kinetics [133–138].
Typically, the approach is applied to protein conformational dynamics, and it
follows four steps:

(1) The configuration space of the system is explored, to some extent,
using an atomistic simulation technique (e.g. MD);

(2) The explored configuration space is partitioned into hundreds of
clusters (sets of similar structures);
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(3) Local transition rates between pairs of connected clusters are esti-
mated, obtaining a kinetic matrix;

(4) Metastable states are identified as kinetically connected basins (sets
of clusters linked by fast internal transitions), and transition rates
between them can be compared with experiments.

The first step is where the computational cost, often very large, is
concentrated. In most cases, a sufficiently long MD trajectory repeatedly
crossing among all the relevant metastable states is unfeasible, and, besides,
it might not be an efficient way of exploiting computer resources. The
main idea is that global equilibration, i.e. observation of steady probabil-
ities and currents over the whole configuration space, can be substituted by
local equilibration, region by region, which is easier to achieve. MSM
analysis is very well suited to the kind of parallel independent simulated
trajectories which can be generated (‘high throughput’) by distributed
computing and GPUs [133,139]. Enhanced sampling techniques can be
invoked to choose in an effective way the starting points of such trajec-
tories [9]. For instance, one can pick them from a preliminary inexpensive
MetaD simulation that explores a wide portion of the configuration
space [140].

In the second step, the configuration space is subdivided into small parts,
clustering together sets of structures on the basis, usually, of a distance metric
for structural similarity. Common choices are the RMSD of Cartesian coordi-
nates, distance in dihedral angles space or contact-map space and principal
components of some of the previous coordinates. A wealth of effective cluster-
ing algorithms is available to this purpose [141–143]. This is a critical step, since
the partitioning, ideally, should group together only structures connected by
fast transitions, and not structures whose interconversion implies long time
scales. Unfortunately, the relationship between distance metrics in configura-
tion space and time-domain distances is unclear [144–148]. Both the spatial
discretization and the choice of an observational lag time are the source of
systematic errors: in this context, it has been proposed that instead of partition-
ing the whole configuration space, Markov state models can be constructed
including only a limited number of core sets, formed by small regions sur-
rounding free-energy minima, allowing to better distinguish real transitions
between metastable states from fast recrossing [134,149]. Furthermore, an
interesting development consists in the use of TICA [109,110], explicitly seeking
an optimal space of slow coordinates for spatial discretization (see also previous
section). In this direction, machine learning approaches are now under inves-
tigation to learn optimal coordinates [115].

In the third step, transition rates between nearby clusters are estimated,
obtaining a kinetic matrix and, hence, an explicit master equation [134]. In
the simplest approach, rates are estimated directly as the inverse of the
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mean first passage time, i.e. by dividing the number of observed i ! j
transitions by the total time spent in the starting cluster i.

In the fourth step, a few kinetic basins – each one formed by quickly
interconverting microstates – are identified out of the set of clusters. Basins
are usually assigned well-defined ‘labels’ (e.g. the native state, the unfolded
state, a misfolded state) and, in favourable cases, can be experimentally
observed. Available techniques for basin identification include the analysis
of the sign structure of the eigenvectors of the kinetic matrix, clustering
algorithms, and hidden Markov state models [150]. A simple approach,
once the attractors of the kinetic basins are identified, consists in explicitly
performing a committor analysis: a large number of random jump sequences
(obtained with kinetic Monte Carlo or stochastic simulation methods
[151,152]) are started from each cluster, and the latter is assigned to the
attractor that is reached first in themajority of cases [94,98]. Finally, transition
rates between kinetic basins – typically much slower than rates between
adjacent microstates – can be estimated either by analysing the kinetic matrix
or, again, using kinetic Monte Carlo, and associated to experimental obser-
vables like folding times or protein-ligand association/dissociation rates.
Available software packages for the estimation, validation and analysis of
Markov state models include PyEMMA [153], HTMD [154], MSMBuilder
[155] and METAGUI [94,95].

To date, most Markov state models were targeted to the folding of small
proteins [156,157] (and, recently, also conformational changes in disordered
proteins [158] and in RNA oligonucleotides [159]). However, a growing field
of application is the binding of small ligands to proteins, a problem of great
interest for drug discovery [120,160–164]. Still, many important biomolecular
processes have time scales beyond the second and remain hard to tackle with
Markov state models based on standard MD. Examples are protein folding far
from the melting temperature, as well as many protein–drug/protein–protein
interaction or protein aggregation processes. In this respect, an alternative
source of data for Markov state models construction is represented by
enhanced sampling simulations. As shown in Ref. [83,87], relatively cheap
bias-exchange simulations (cf. Fig. 3) can be employed for this purpose. In this
approach, multiple replicas of the system are biased along different CVs,
capturing the relevant degrees of freedom, and the results are combined to
reconstruct a high-dimensional (discretized) free-energy landscape by
WHAM [87] (see previous section). Transition rates between adjacent bins
in the landscape are estimated employing an explicit formula containing free
energy differences and the diffusion tensor, obtained by discretizing the
Smoluchowsky equation [87,165,166]. At this point, the Markov state model
can be analysed as explained above. The approach has been applied to
challenging problems including the folding of globular and intrinsically
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disordered proteins [87,121,167] (see Fig. 5), ligand-protein (un)binding
kinetics [62], and drug permeation across membranes [168].

It is interesting to note that, recently, the world of free-energy calculations
and the world of Markov state models have been further connected by the
introduction of trajectory reweighing schemes like the dynamic histogram
analysis method (DHAM) [170,171] and the transition-based reweighing
analysis method (TRAM) [172], exploiting also replica-exchange MD simula-
tions [173,174]. Moreover, within the approximations of transition state
theory, techniques like conformational flooding [175], hyperdynamics [176]
or MetaD [177,178] can be exploited to estimate kinetic rates – provided the
transition state region remains bias free – properly accounting for the boost-
ing effect of the bias. This approach led to interesting results on ligand binding
kinetics and thermodynamics [179,180]. In an alternative approach, the
ranking of unbinding rates for a series of congeneric ligands is inferred

Figure 5. Interconversion kinetics between the conformational states of the C-terminal
domain of Sendai virus nucleoprotein, an intrinsically disorderd protein. Disc areas are
proportional to equilibrium populations, while mean first passage times (in ns) are indicated
on the arrows. The kinetic model has been constructed starting from all-atom explicit-solvent
simulations, exploiting parallel-tempering metadynamics [90] in the well-tempered ensemble
[37], combined with a bin-based Markov state model based on the Smoluchowski equation
[87]. The figure is adapted from Ref. [169].
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based on simulations subject to a scaled (smoothed) potential energy surface,
to which restraints are added to enforce protein stability [181].

In a class of approaches sharing some analogies with Markov state
models, kinetic rates are reconstructed by means of a large number of
relatively short MD trajectories that, taken collectively, reconstruct the
progression of the transition pathways going from an initial to a final
state. The region of configuration space connecting the two metastable
states is subdivided into a number of ‘slices’ by suitable interfaces, and
trajectories are repeatedly initiated at one interface and ended once they
reach the next interface. The collected statistics is analysed, usually in
terms of a Markov model, to access long-time kinetic information. Such
techniques include forward flux sampling [182], milestoning [183], transi-
tion interface sampling [184] and non-equilibrium umbrella sampling
[185]. Typically, a CV is used to define interfaces, and the computational
cost of the protocol can often be large. In principle, even if individual
trajectories evolve in an unbiased manner, the specific algorithm used to
select their starting configurations might introduce a form of bias in the
simulations. Note that in its original formulation, transition path sampling
aimed at the direct generation of continuous pathways joining the end
states, starting from an initial guess, exploiting a Markov chain Monte
Carlo procedure called shooting [2,186]. The software packages
OpenPathSampling [187] and PyRETIS [188] have been specifically devel-
oped to perform and analyse path sampling simulations.

A different approach to kinetics is based on a projection of the high-
dimensional atomic dynamics on a low-dimensional space of CVs, resulting
in Langevin stochastic differential equations [132,189–191]. The latter are
widely acknowledged as a key conceptual tool to discuss activated processes,
even if their application tomake quantitative predictions on specific systems is
less widespread than Markov state models (probably, also due to the lack of
widespread and flexible software tools). With respect to the latter, the
Langevin approach has a more intuitive physics-based form and avoids the
approximations represented by the discretization of configuration space and
by the choice of a lag time. The price to pay is the effort, often non-trivial, to
identify one (or a few) CV, meant to approximate the ideal reaction coordi-
nate. An important advantage is the possibility to adopt different types of
stochastic equations: for instance, even if the overdamped Langevin equation
(corresponding to the Smoluchowski Fokker–Planck equation [132,189]) is
the most employed form in the biophysical community, inertial and non-
Markovian effects can also be included in Langevin equations when necessary
[131,192–194].

Langevin equations have been shown to represent a flexible and power-
ful tool for the study of a range of complex systems, from proteins to
chemical reactions in solution [195–197]. Given its limited computational
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cost, numerical integration of Langevin equations simplifies the extraction
of mean first passage times, committor functions, etc., according to well-
established mathematical procedures [2,118,123,124,198]. In numerical
applications, the stochastic equation, e.g. for the conformational dynamics
of small peptides, can be obtained from long equilibrium simulations or
from enhanced sampling approaches. The drift, friction and noise fields
can be directly obtained as trajectory averages, or employing self-consistent
maximum-likelihood approaches [166,199–203]. In Ref. [194], an efficient
data-driven Langevin model is constructed on-the-fly starting from local
averages over the original MD trajectory, demonstrating that, already for a
simple 9-residue peptide in solution, five CVs and the inclusion of small-
damping effects can be necessary to accurately reproduce the observed
hierarchy of time scales.

How accurate are in silico predictions and how to improve them?
In the last years, large efforts have been devoted to assess the accuracy of the

most widespread force fields for the simulation of biomolecules. Several studies
evaluated explicit-solvent atomistic models by generating an ensemble of equi-
librium configurations of short peptides and globular proteins in the native
state, comparing the results with NMR observables including chemical shifts,
scalar couplings, residual dipolar couplings, nuclear Overhauser enhancements
and relaxation order parameters [204–210] In these works, employing MD
trajectories ranging from the sub-microsecond to the millisecond timescale
(sometimes in combination with enhanced samplingmethods), themost recent
force fields were found to accurately reproduce experimental structures, while
still missing a quantitative agreement with NMRobservables. Folding times and
free energies, as well as melting temperatures, are, in general, accurately repro-
duced, whereas both folding enthalpies and heat capacities tend to be under-
estimated [210].

Furthermore, unfolded states of proteins as observed in simulations
often display an incorrect balance of secondary structure types, and
typically they are excessively compact compared to, e.g. small angle X
ray scattering experiments: these problems are particularly relevant to
intrinsically disordered proteins, and were the focus of several recent
force-field assessment and improvement studies [210–213]. Among pos-
sible reasons, it has been pointed out the lack of an accurate description
of protein–water interactions and an underestimation of water disper-
sion forces: both problems have been targeted with specific corrections
that significantly improve the agreement with experiments [214–216],
even if results are still force-field dependent.

Importantly, in the case of the simulation of RNA structures, even if the
corresponding atomistic force fields traditionally lack the accuracy of their
protein counterparts, significant improvements have been recently
reported [217,218]. Finally, we only mention that coarse grained models
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can be an effective alternative to fully atomistic ones when it is necessary to
simulate significantly larger system sizes and time scales: this is a broad
and very active field of research that goes beyond the scope of the present
review.

The fact that, clearly, discrepancies between simulation and experiments
can arise both from force-field limitations and from sampling limitations
underlines, once again, the important role of enhanced sampling
approaches in molecular simulations [219]. The interplay between the
two types of limitations is crucial also in the difficult field of protein-ligand
interactions [6,220,221]: one of the major open challenges of biomolecular
simulations, both from the theoretical point of view and for its practical
implications, remains the accurate and affordable prediction of the binding
free energy and kinetic rates of protein-protein and protein-drug
complexes.

Several attempts were done to critically compare the performance of
different free-energy calculation methods [139,222–228]. This is a non-trivial
task, which becomes even more difficult if kinetic properties are the target. In
this context, software tools that implement a range of different enhanced
sampling approaches can facilitate the comparisons [67,68,117,229]. It is
desirable to enlarge the set of agreed benchmark systems of higher complexity
than customary 2–10 residue peptides, including also protein-protein [230]
and protein-ligand association cases (see e.g. the SAMPL challenge [231]),
better approximating the rich behaviour observed in realistic systems of
interest. In the case of folding, the set of extensive trajectories generated
with the Anton supercomputer [125] recently played a constructive role in
the development and assessment of sampling methods.

Generallyspeaking,onecananywaywonderwhethertransferableforce-fieldscan
be quantitatively and equally accurate for a large class of different systems.What
usuallyhappensisthatasimulationisperformed,agreementwithsomedataistested,
andthenachoiceisdonebetweenusingtheresults(forpredictionorinterpretationof
experiments)or, alternatively, repeating the simulationwithadifferent forcefield
hopingforthebest.Fromastatisticalperspective,onecantrytotackletheproblemof
the accuracy of a simulation before running it, or try to reweigh a posteriori the
simulation to improve the agreement with the available experimental data (cf.
Figure 6). The question to ask is, followingBayes, given our prior knowledge and
someavailabledata,whatisthebestmodelthatdescribesthedata?Ourpriorknowl-
edge isa state-of-the-art force-field, thedataareusuallyequilibriumexperimental
observableslikethoseavailablefromnuclearmagneticresonance,fluorescence,small
anglesX-rayscattering,etc.[232–235].

Reweighing approaches can always be used a posteriori without chan-
ging the original results and are usually computationally inexpensive. On
the other hand, they are strongly affected by the original sampling. If
relevant states have not been sampled, reweighing will not make them
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appear. Alternatively, there are hybrid methods based on the direct inclu-
sion of additional energy terms related to the experimental information,
than can in principle overcome intrinsic limitation of force-fields func-
tional forms [234].

The problem one wants to solve is what is the minimum perturbation of
the force-field that will result in an ensemble of conformations in agreement
with an equilibrium experimental data. The minimum perturbation is an
important ingredient because it allows to include only the experimental
information and nothing more. This can be theoretically formulated using
the principle of maximum entropy (pMaxEnt) [236]. Pitera and Chodera
[237] showed how to implement pMaxEnt by a linear bias applied on a single
simulation with an unknown force constant (the Lagrangian multiplier) that
can be obtained iteratively or on-the-fly during the simulation [228,237–239].
Alternatively, instead of searching for the Lagrangian multiplier, one can
perform multiple simulations in parallel and couple them with an harmonic
potential centred on the value of the equilibrium observable of interest, the so
called replica-averaging approach [240–242]. Particularly important is the
ability of such methods to take into account errors, affecting the experimental
data as well as the predictors used for their back-calculation. Again, both
linear, single replica-approaches, as well as replica-averaging approaches can
be extended to consider errors [239,243,244]. Note that, by using these

Figure 6. Hybrid schemes for the integration of experimental and theoretical information. A
posteriori reweighing schemes allow to modify the weights of the sampling resulting from a
MD simulation, while on-the-fly schemes can integrate directly experimental data in the
energy function employed in the simulation. Among on-the-fly schemes, in the case of the
MaxEnt method based on the solution of the Lagrangian multiplier[235], the energy results
from the energy of the force-field Eff and a linear contribution from experimental observables.
In the case of replica-averaging methods like Metainference [244], multiple replicas of the
systems are simulated in parallel and the energy is given by Eff plus an harmonic coupling
with experimental data whose strength is related to an estimated error σi.

ADVANCES IN PHYSICS: X 903



methods, it is possible to obtain results that depend less and less from the
initial choice of the force field [245–247].

Single-replica as well as replica-averaging approaches can also be
coupled with enhanced sampling techniques [235,248,249], the former
usually making use of H-REX with an unbiased neutral replica, the latter
by directly biasing all the replicas. For example, in the case of
Metadynamic Metainference (M&M) [249], the sampling is typically
enhanced by PBMetaD, accumulating the biases from all the replicas as
in multiple walkers MetaD. This allows calculating weighted averages for
the used observables, whose coupling with the experimental values (the
errors) is sampled by Monte Carlo. These methods allow obtaining an
equilibrium sampling of processes not accessible by standard MD, in
agreement with the available experimental knowledge within some rea-
sonable errors. Furthermore, they also provide an indication of the
contribution of different sources of experimental data to the quality of
the simulation, and can provide feedbacks about the quality of the
experimental data themselves. Last but not least, these techniques make
the dependence of the results on the initial choices less important,
rendering overall more robust all the simulation process. MaxEnt
approaches (with and without replicas) as well as Metainference are
available and well documented in PLUMED (cf. EDS, ENSEMBLE,
MAXENT and METAINFERENCE in the PLUMED manual), including
a large number of methods to calculate experimental observables pro-
vided in the PLUMED-ISDB module [250].

Hybrid methods have been successfully employed in a number of
problems to obtain results in quantitative agreement with experimental
data, mostly NMR, including the characterization of the dynamics of
folded [240,251,252] and unfolded/disordered proteins [253–257], in mole-
cular recognition [258,259], membrane proteins [260,261] and nucleic acid
dynamics [239,262].

An approach based on MaxEnt has also been proposed to reweigh and
optimize a Markov State Model [263] to match experimental equilibrium
observables. In addition to equilibrium observables, the Maximum Caliber
approach [264] (cf. Ref. [265,267] for a review) can be used to infer
distributions of trajectories in agreement with kinetic quantities
[266,268]. A recent suggestion on how to couple Maximum Caliber with
Markov state models can be found in Ref. [269], while a replica-averaging
implementation has been proposed in Ref. [270]. This particular direction
can be very promising in pushing the boundaries of out-of-equilibrium
MD simulations.
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Perspectives

Molecular modellers are living in an exciting time. Computing power is
increasing and MD engines are getting better and better at exploiting it
[271–276]. These improvements are effectively multiplied by using the
computational approaches to free-energy landscapes and kinetic networks
discussed in the previous sections, often reducing by several orders of
magnitude the timescale needed to simulate rare events. A trend in method
development, that hopefully will continue in the future, consists in com-
bining thermodynamic and kinetic concepts more and more tightly
together.

The first result is an increasing ability to obtain insight into biological
problems, with an ever growing complementarity between simulations and
experiments. A second, significant result, consists in the critical assessment
of force-fields and their overall improvement to the benefit of the whole
community. Whenever force-fields are not accurate enough, statistical
inference, through hybrid methods for the inclusion of experimental data
in MD simulations or reweighing, allows to increase the accuracy and the
predictive power of simulations. Altogether, this is allowing simulations to
move from a descriptive technique, ‘useful at least for theoretical chemists’
(quoting the joke in the introduction to the chemistry 2013 Nobel lecture)
to a predictive and quantitative in silico platform for biomolecular
experiments.
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