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Abstract

Mycobacterium africanum consists of Lineages L5 and L6 of the Mycobacterium tuberculosis complex (MTBC) and causes human

tuberculosis in specific regions of Western Africa, but is generally not transmitted in other parts of the world. Since M. africanum

is evolutionarily closely placed between the globally dispersed Mycobacterium tuberculosis and animal-adapted MTBC-members,

these lineages provide valuable insight into M. tuberculosis evolution. Here, we have collected 15 M. africanum L5 strains

isolated in France over 4 decades. Illumina sequencing and phylogenomic analysis revealed a previously underappreciated

diversity within L5, which consists of distinct sublineages. L5 strains caused relatively high levels of extrapulmonary tuberculosis

and included multi- and extensively drug-resistant isolates, especially in the newly defined sublineage L5.2. The specific L5

sublineages also exhibit distinct phenotypic characteristics related to in vitro growth, protein secretion and in vivo immuno-

genicity. In particular, we identified a PE_PGRS and PPE-MPTR secretion defect specific for sublineage L5.2, which was inde-

pendent of PPE38. Furthermore, L5 isolates were able to efficiently secrete and induce immune responses against ESX-1

substrates contrary to previous predictions. These phenotypes of Type VII protein secretion and immunogenicity provide valuable

information to better link genome sequences to phenotypic traits and thereby understand the evolution of the MTBC.

Key words: Mycobacterium africanum, Lineage 5, Tuberculosis, PPE38, PhoPR, Antibiotic resistance.

Introduction

Tuberculosis remains the most deadly infectious disease of

humankind (WHO 2017). Mycobacterium tuberculosis is the

main causative agent of human tuberculosis, but closely

related species of the M. tuberculosis complex (MTBC), such

as Mycobacterium bovis, are able to infect a wide range of

domestic and wild animals (Malone and Gordon 2017). The

majority of the more than 10 million annual human cases are
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caused by M. tuberculosis strains of Lineages (L)1–4,

but besides M. tuberculosis, the so-called Mycobacterium

africanum strains are also known as causative agents of hu-

man tuberculosis in West Africa. M. africanum strains were

first described in 1968 from tuberculosis patients in Senegal

(Castets et al. 1968), and based on phenotypic differentiation

criteria these strains showed characteristics that were inter-

mediate between M. tuberculosis and M. bovis (David et al.

1978; Thorel 1980). However, the use of primarily phenotypic

criteria resulted in the situation that the exact phylogenomic

position of M. africanum strains remained rather vague, as

within the strains defined as M. africanum, some groups of

strains also closely resembled M. tuberculosis (Haas et al.

1997; Frothingham et al. 1999; Mostowy et al. 2002;

Niemann et al. 2002; Sola et al. 2003). Finally, it was the

use of comparative genomics, which allowed a clearer phylo-

genic positioning of M. africanum strains to be established

(Brosch et al. 2002; Gagneux et al. 2006). According to this

classification, M. africanum strains share a common ancestor

that has undergone deletion of the region of difference

RD9 and are subdivided into Lineages L5 (also known as

M. africanum 1) and L6 (also known as M. africanum 2)

(Brosch et al. 2002; Gagneux et al. 2006). In addition to the

absence of region RD9, M. africanum L6 strains also lack RD7,

RD8, and RD10, similar to the animal adapted strains of the

MTBC. These latter three regions have been retained in the

genomes of M. africanum L5 strains, indicating that L5 strains

have branched from the common RD9-deleted ancestor be-

fore the deletion of regions RD7, RD8, and RD10 occurred. This

grouping was confirmed by single nucleotide polymorphism

(SNP) analyses of whole genome sequences from a few se-

lected strains, which suggest that M. africanum L5 strains show

about 2,100 SNPs (filtered) in their genomes relative to the M.

tuberculosis H37Rv reference sequence (Comas et al. 2010;

Coscolla et al. 2013). Mycobacterium africanum L5 strains

thus occupy an ancestral and particularly interesting place in

the phylogeny of the tubercle bacilli, which encouraged us to

investigate the M. africanum L5 strains in more detail.

Up to now, only a small number of L5 strain genomes have

been analyzed and published (Comas et al. 2010; Winglee

et al. 2016; Zhu et al. 2016) and phenotypic traits of these

strains that might affect their diagnosis, transmission, or viru-

lence characteristics are rarely investigated (de Jong et al.

2010; Gehre, Otu et al. 2013). M. africanum L5 strains are

endemic in a number of countries around the Gulf of Guinea,

such as Cameroon, Nigeria, Benin, Ghana, Ivory coast, and

Sierra Leone, where they cause between 6% and 39% of all

tuberculosis cases (de Jong et al. 2010). Some rare M. africa-

num L5 cases are recorded outside of this region, which are in

the large majority associated with patients that were born in

this region (de Jong et al. 2010; Sharma et al. 2016). Thus, the

geographic restriction of M. africanum is an interesting char-

acteristic, investigation of which may lead to novel insights

into the global dispersal of related MTBC members, such as

M. tuberculosis sensu stricto and the animal adapted M. bovis

(Brites and Gagneux 2015; Stucki et al. 2016).

In this study, we have investigated a panel of 15 L5 strains

comprising a large part of the collection of both the current

and former French national reference centers for tuberculosis

during the last four decades. We sequenced the genomes of

these isolates and performed phylogenomic analysis and com-

parative genomics. The obtained data were combined with

phenotypic assessment of drug susceptibility, protein secre-

tion, immunogenicity, and growth characteristics and allow

identification of genomic sublineages with a surprising level of

genomic and phenotypic variation.

Materials and Methods

Growth Conditions

All newly analyzed isolates of M. africanum (supplementary

table 1, Supplementary Material online) were isolated in differ-

ent locations in France and subsequently sent to the national

reference laboratory. Strains were grown on solid culture me-

dia of Löwenstein–Jensen (Beckton–Dickinson) and Coletsos.

Cultivation of all isolates (supplementary table 2,

Supplementary Material online) was performed on 7H11 solid

medium with OADC supplement (Difco), or in liquid 7H9 me-

dium supplemented with ADC (Difco), 0.05% Tween 80, and

0.2% w/v pyruvate (Keating et al. 2005). Kanamycin was

added at a concentration of 25 mg/l where appropriate.

Plasmids and Primers

All primers that were used for initial antibiotic resistance test-

ing have been described (Brossier et al. 2017). Other primers

used in previous studies (Brosch et al. 2002; Abdallah et al.

2006; McEvoy et al. 2009; Otchere et al. 2016) can be found

in supplementary table 4, Supplementary Material online. The

pMV::mt2419-22 (ppe38-71) plasmid was previously pub-

lished (Ates, Dippenaar et al. 2018).

Phenotypic Drug Susceptibility Testing

In vitro drug susceptibility testing was performed on

Löwenstein–Jensen medium with the standard proportions

method, as previously described (Canetti et al. 1963), with

the following concentrations: 40 mg/l rifampicin, 0.2 (Low)

and 1 (High) mg/l isoniazid, 2 mg/l ethambutol, 4 mg/l

streptomycin, 2 mg/l ofloxacin, 20 mg/l amikacin, 30 mg/l

kanamycin, 40 mg/l capreomycin, 40 mg/l ethionamide,

30 mg/l cycloserin, 1.0 mg/l para-aminosalicylic acid, 1.0 mg/l

linezolid (Barrera et al. 2008; WHO 2014).

DNA Sequencing of Genes Associated with Drug
Resistance

Genomic DNA, used for genomic susceptibility testing, was

isolated from bacteria grown on Löwenstein–Jensen medium.
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A loop of culture was suspended in water (500ml) and heated

at 95 �C for 15 min. The DNA used for polymerase chain

reaction (PCR) amplification was obtained by heat shock ex-

traction (1 min at 95 �C and 1 min on ice, repeated five times).

Five microliters were submitted to PCR amplification using the

oligonucleotide primers described (Brossier et al. 2017). After

amplification, unincorporated nucleotides and primers were

removed by filtration with Microcon 100 microconcentrators

(Amicon, Inc., Beverly, MA), and the amplicons were se-

quenced by using the BigDye Terminator cycle sequencing-

ready kit according to the manufacturer’s instructions.

Determination of Phylogenomic Lineage

The phylogenomic lineages of our MTBC isolates were

determined by using the mycobacterial interspersed repet-

itive-unit–variable-number tandem-repeat (MIRU-VNTR)

molecular typing method for all NRC-isolates. Standard

24-locus-based MIRU-VNTR typing was performed as de-

scribed previously (Supply et al. 2006), with the MIRU-

VNTR typing kit from GenoScreen. The amplified fragments

were analyzed on a 16-capillary Applied Biosystems 3130

genetic analyzer. To determine the lineages of the isolates,

the 24 numerical values generated by MIRU-VNTR analysis

were compared with those in the MIRU-VNTRplus database

(http://www.miru-vntrplus.org/).

DNA Isolation for Genome Sequencing

Mycobacterial genomic DNA was isolated by bead-beating,

boiling, and ethanol precipitation as described previously

(Howard 2006; Pawlik et al. 2013). Libraries were prepared

from the mycobacterial DNA using the Nextera DNA Library

Preparation Kit (Illumina, San Diego, CA) following the man-

ufacturer’s recommendations for all strains except for strain

01, 72, 65, 66, 68, and 77, which were prepared with the

NextFlex PCR-Free Library preparation. Specific indexes were

introduced in both library adapters (double indexing) to allow

multiplexed paired-end sequencing. Quality and quantity for

each library were checked with the Fragment Analyzer

(Advanced Analytical Technologies, Inc., Ames, IA). A total

of 108 bp paired-end runs were performed on an Illumina

HiSeq 2500 platform for all previously published strains (sup-

plementary table 2, Supplementary Material online) and

newly described isolates were sequenced by an Illumina

MiSeq using a paired-end (2� 255 bp) approach.

Preprocessing, Alignment, and Variant Detection

Illumina paired-end sequencing data for all isolates pub-

lished in the current study (N¼ 16) and 49 genomes, rep-

resentative of the members of the MTBC, published

previously or available in public databases (supplementary

table 3, Supplementary Material online) were analyzed with

a pipeline composed of open source software as described

previously (Dippenaar et al. 2017). Briefly, trimming of

adapters and low-quality bases (Phred quality score of less

than 20) using a sliding window approach, and filtering for

a minimum read length of 36 was done with Trimmomatic

(Bolger et al. 2014). Reads were aligned to the M. tuberculosis

H37Rv (Genbank: AL123456) and M. tuberculosis CDC1551

genome (Genbank: AE000516) using three different align-

ment algorithms: The Burrows–Wheeler Alignment (BWA)

Tool (Li and Durbin 2009), Novoalign, and SMALT (Ponstingl

and Ning 2010). For all sequenced isolates, over 97% of the

reference genome was covered by at least one read and an

average depth of coverage of 189� (minimum 89, maximum

328) was achieved, when considering the average depth of

coverage for each isolate aligned to M. tuberculosis H37Rv

with BWA, Novoalign and SMALT. The alignment files were

subjected to local realignment and deduplication using the

Genome Analysis Toolkit (GATK) (McKenna et al. 2010) and

Picard (Winglee et al. 2016). Variants [SNPs and insertion/

deletions (indels)] in coding and noncoding regions were iden-

tified from each alignment file using GATK (McKenna et al.

2010), and the variants identified in all three alignments were

used for further analysis. Variants were annotated using an-

notation data from TubercuList (Lew et al. 2011), and drug

resistance was inferred from a drug resistance mutation li-

brary (Coll et al. 2015). SpolPred and SpoTyping were used

to predict the spoligotype patterns of all the sequenced M.

africanum isolates (Coll et al. 2012; Xia et al. 2016). Genotypic

drug resistance prediction based on WGS was done using

TBprofiler (Coll et al. 2015).

Phylogenomic Analysis

The raw sequencing data generated for the purpose of this

study and 49 selected mycobacterial genomes published pre-

viously or available in public databases (Comas et al. 2010;

Biek et al. 2012; Blouin et al. 2012, 2014; Coscolla et al. 2013;

Bradley et al. 2015; Alexander et al. 2016; Winglee et al.

2016; Zhu et al. 2016), depicted in supplementary table 3,

Supplementary Material online, were analyzed. Variants in

repetitive regions, such as pe/ppe and pe_pgrs gene families,

were excluded for phylogenomic analysis and only variants

supported by at least 90% of reads at a given position with

a minimum depth coverage of ten reads were considered.

Concatenated sequences containing high-confidence variable

sites (coding and noncoding SNPs) with respect to the M.

tuberculosis H37Rv reference genome were used to infer

the phylogenomic relationship between the various strains

analyzed as previously described (Dippenaar et al. 2017).

The general time reversal model of nucleotide substitution

was applied to generate a maximum likelihood phylogeny

of the isolates included in this analysis with Randomized

Axelerated Maximum Likelihood (RaxML) with 1,000 boot-

strap pseudoreplicates (Stamatakis 2015). Positions contain-

ing gaps or missing data were not considered for the analysis.
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De Novo Assembly and Annotation

De novo assembly of the sequenced M. africanum isolates

was done with SPAdes using one Illumina paired-end library

for each isolate (Bankevich et al. 2012). The M. tuberculosis

CDC1551 genome annotation was transferred to the assem-

bled scaffolds of each isolate using RATT (Otto et al. 2011).

Contigs containing the regions of interest were further stud-

ied in Artemis (Rutherford et al. 2000), Artemis comparison

tool (Carver et al. 2005) and/or Integrative genomics viewer

(Robinson et al. 2011).

Growth Assessment

Growth in liquid culture was performed as previously de-

scribed (Le Chevalier et al. 2015). In short, precultures were

grown until exponential phase, washed one time in fresh

growth medium and inoculated in 5 ml 7H9 containing

ADC, Pyruvate, and Tween 80 in 25 ml glass tube. OD600

was measured at indicated time-points. Regular aeriation of

the tubes was undertaken by opening tubes under sterile

conditions to ensure the presence of oxygen for optimal

growth. The experiment was performed in biological tripli-

cates of technical duplicates. Please note that OD600 was

only measured during weekdays and therefore not every

data point represents three biological replicates.

Growth on solid medium was assessed by diluting 200ml of

the liquid culture at Day 1 of the growth curve in 10-fold

dilutions. A 20ml of each dilution was spotted on

7H11 þ OADC solid growth medium and incubated for

18 days, after which colonies were counted and photo-

graphed, colonies were recounted 7 days later.

Secretion Analysis

Secretion analysis was performed broadly as described previ-

ously, with some modifications (Houben et al. 2012; Ates

et al. 2015). Strains were precultured as described above until

all strains reached the exponential phase (OD600 between 0.6

and 1.2), after which they were washed with 7H9 medium

without ADC, but supplemented with 0.2% dextrose, 0.2%

pyruvate, and 0.025% Tween 80. Washed cells were inocu-

lated in the same medium at a starting OD600 of 0.5 for M.

africanum strains or 0.4 OD600 for M. tuberculosis H37Rv and

were incubated at 37 �C under shaking conditions over two

nights. Cultures were centrifuged and supernatants were fil-

tered (0.22lm filters, Millipore) and precipitated with

Trichloroacetic acid (TCA). Cells were washed with PBS and

suspended in solubilization/denaturation buffer, heat inacti-

vated for 2–4 h at 80 �C, sonicated to disrupt cells and boiled

for 10 min at 95 �C.

SDS-PAGE gels were loaded with an equivalent of 0.225

OD-units for whole cell lysates and 0.6 OD-units for culture

filtrates. Western blots were stained with antibodies: Anti-

PGRS 7C4.1F7 (antibody-producing clone kind gift by MJ

Brennan, Aeras, Rockville, MD) (Abdallah et al. 2009), anti-

SigA (Kind gift from Ida Rosenkrands, Statens Serum Institut,

Copenhagen, Denmark), anti-GroEL2 antibody CS-44 (Kind

gift from J. Belisle, Colorado State University, Fort Collins, CO)

Rabbit polyclonal anti-EsxN (rMTb9.9A) (Alderson et al. 2000),

and monoclonal ESAT-6 hyb 76-8 (Harboe et al. 1998).

Immunogenicity of M. africanum Sublineages

Six-week-old female C57BL/6 x CBA F1 (H-2b/k) mice (n¼ 2

mice/group) received subcutaneous injection of 1 �106 CFU/

mouse of diverse M. africanum, or M. tuberculosis H37Rv

strains. Three weeks postimmunization, total splenocytes

were cultured in 96-well flat-bottom plates (TPP, Denmark)

at 5�105 cells per well in HL-1 medium (Biowhittaker, Lonza,

France), complemented with 2 mM GlutaMax (Invitrogen, Life

Technologies, France), 5�10�5M b-mercaptoethanol,

100 U/ml penicillin, and 100lg/ml streptomycin (Sigma-

Aldrich, France) in the presence of 10lg/ml of synthetic pep-

tides bearing MHC-II or -I-restricted mycobacterial epitopes.

Concanavalin A and PPD were used as positive controls for cell

viabilities and successful immunization, respectively, while

MalE: 100–114 peptide was used as negative control as pre-

viously described (Sayes et al. 2016; Ates, Sayes et al. 2018).

After 3 days of incubation at 37 �C and 5% CO2, IFN-c
produced in the culture supernatant was quantified by sand-

wich ELISA (clone AN-18 for coating and clone R46A2 for

detection, BD Biosciences, San Jose, CA). Data were analyzed

by using Prism software (GraphPad Software, La Jolla, CA).

Results

Strain Isolation and Clinical Characterization

The French National Reference Centre for Mycobacteria (NRC

MyRMA, http://cnrmyctb.free.fr) routinely receives approxi-

mately 1,000 clinical samples and mycobacterial strains per

year that are isolated in France. The isolated MTBC strains are

subjected to phenotypic and genotypic drug susceptibility

testing (WHO 2014). The phylogenetic diversity is evaluated

by determining mycobacterial interspersed repetitive unit

variable-number tandem repeat (MIRU-VNTR) codes of the

strains (Supply et al. 2006). In this capacity, a total of seven

M. africanum L5 strains were isolated between 2007 and 2015

(supplementary table 1, Supplementary Material online).

Although strains were isolated from patients living in dif-

ferent locations in France, the places of birth of these patients

are located in Western or Central Africa in all cases where this

information was available (table 1). Average patient age was

41.7 years [standard deviation (SD) ¼ 0.7]. Three patients

were reported as HIV positive (average age 32.7, SD ¼ 6.1)

and three patients were HIV negative (average age 45.7,

SD¼ 6.5), while the HIV status of one patient was unknown.

Bacterial isolates were derived from different patient samples

and remarkably, were isolated from extrapulmonary sites in
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five out of the seven cases, which was not strictly dependent

on HIV status (table 1). The high proportion of extrapulmonary

tuberculosis caused by these strains suggests that L5 strains

might show a different ability to cause pulmonary disease than

M. tuberculosis senso stricto strains. The low number of

M. africanum L5 strains isolated over 9 years and the lack of

detected transmission episodes are in agreement with an ab-

sence of transmission of M. africanum L5 within France.

Phenotypic and genotypic drug susceptibility testing classified

isolates NRC6 and NRC7 as multidrug resistant (MDR), because

they were resistant to both isoniazid and rifampicin. In addi-

tion, NRC7 was classified as pre-extensively drug-resistant (pre-

XDR: MDR also resistant to the injectable aminoglycoside

kanamycin). Three strains were susceptible to first-line drugs

(table 2). Corresponding to the described association between

HIV and drug resistance described for M. tuberculosis sensu

stricto (Mesfin et al. 2014), the pan-susceptible strains were all

isolated from HIV negative patients. The patient infected with

NRC3 was previously treated for tuberculosis, while no previ-

ous treatment information was available for the patient

infected with NRC6. In contrast, the five other patients were

not documented to have previously received tuberculosis treat-

ment, suggesting transmission of drug-resistant isolates in-

stead of de novo in-patient acquisition of drug resistance.

Phylogeny of M. africanum Lineage 5 Reveals Distinct
Sublineages

To gain more insight into the diversity of M. africanum L5,

genomic DNA was isolated from all L5 strains described

above. This panel of strains was supplemented with eight

additional L5 and two L6 strains from the former National

Reference Laboratory for Mycobacteria (at the Institut

Pasteur, Paris, France). This second collection of strains was

isolated between 1965 and 1998 and these strains were pre-

viously genotyped by spoligotyping to belong to their respec-

tive lineages (Viana-Niero et al. 2001; Brudey et al. 2004)

(supplementary table 2, Supplementary Material online).

Illumina sequencing of the genomic DNA resulted in an

average depth of coverage of between 84- and 328-fold

and between 97% and 99% of reads were mapped to the

Lineage 4 reference genome H37Rv (supplementary file 1,

sheet 1, Supplementary Material online). Based on these

data, a comprehensive table of SNPs and insertions/deletions

(indels) was constructed to compare isolates (supplementary

file 2, sheet 2, Supplementary Material online). More stringent

filtering criteria (Materials and Methods) were used to define

a panel of SNPs with high confidence that was used to define

the phylogenomic relationship between the sequenced M.

africanum isolates and a panel of previously published

genome-sequences (supplementary table 3, Supplementary

Material online) by maximum likelihood analysis. The con-

structed bootstrap consensus tree fully supported the previous

classification of all strains to L5, or L6 (fig. 1A). L5 strains were

clearly separated from L6 and were more distantly related to

the animal adapted strains of the MTBC, consistent with pre-

vious reports (Brosch et al. 2002; Hershberg et al. 2008).

Strikingly, a comparison of only the L5 strains among each

other, revealed at least two separated subgroups in the phy-

logeny, which we propose to name M. africanum sublineage

5.1 and 5.2, respectively (figs. 1A and 1B).

The identified L5 sublineages correspond well to the clas-

sification proposed by Brudey et al., which was based on ex-

tended spoligotyping profiles, obtained from a selection of

these strains (supplementary table 2, Supplementary

Material online) (Brudey et al. 2004). Sublineage 5.1 (L5.1)

corresponds to the previously identified Subgroup A2 de-

scribed by Viana-Niero et al. (2001) or Subgroup A2-1 de-

scribed by Brudey et al. (2004). A second cluster of seven

strains from our collection, which we propose to name

L5.2, corresponds to the previously described Subtypes A2-3

(Brudey et al. 2004). Two strains (69 and NRC1) diverged close

to the root of L5, in between the two larger sublineages.

Strain 69 was previously classified as subtype A2-2 (Brudey

et al. 2004) and based on phenotypic characteristics these

isolates could be seen as an independent sublineage.

However, it should be noted that we were not able to identify

sublineage-specific polymorphisms shared between these

two strains and the phylogenomic distance from each other

and the other sublineages suggest that they are orphan

Table 1

Patient Characteristics Corresponding to Newly Isolated Strains

Strain name Gender Age Country of birth Patient material Isolated in location, year HIV-status Ziehl-Neelsen

NRC1 Female 39 Benin Bronchial aspirate Besançon, 2007 Negative Negative

NRC2 Male 38 Cameroon Lymph node Paris, 2008 Positive Negative

NRC3 Female 26 Unknown Blood Lyon, 2008 Positive Negative

NRC4 Male 52 Unknown Vertebral biopsy Caen, 2008 Negative Positive

NRC5 Male 46 Ivory Coast Lymph node Poitiers, 2010 Negative Positive

NRC6 Male 57 DR Congo Lymph node Angers, 2011 Unknown Unknown

NRC7 Female 34 DR Congo Sputum Lille, 2015 Positive Negative

Information is reported as provided by physicians sending the isolates to the NRC.

DR, Democratic Republic of
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representatives of independent sublineages. Notably, all pre-

viously published L5 genomes, clustered inside L5.1 (Comas

et al. 2010; Winglee et al. 2016; Zhu et al. 2016), suggesting

that the genomic diversity within L5 may have been under-

estimated in previous whole-genome sequencing studies

(Comas et al. 2010; Copin et al. 2014).

Together, these results largely confirm the previous classi-

fication of these strains based on spoligotyping and PCR-

based methods, but show a markedly different phylogenomic

relationship between the isolates than previously suggested

(Viana-Niero et al. 2001; Brudey et al. 2004). Our analysis

suggests that the orphan representatives NRC1 and isolate

69 diverged from the most-recent common ancestor at a

similar timescale as the sublineages L5.1 and L5.2 and these

may represent independent sublineages, although more in-

sight might be obtained as more sequences become available.

Previously Proposed Phylogenomic Markers Underestimate
L5 Diversity

Different molecular methods have been previously proposed to

distinguish M. africanum L5 from other MTBC lineages. Since

the phylogenomic analysis revealed that all published L5

genomes clustered with the L5.1 strains, we investigated

whether these genetic methods were able to classify all L5

strains accordingly. Vasconcellos et al. (2010) previously de-

scribed two SNPs that were used to uniquely identify L5 and

L6 strains of M. africanum. Indeed, all L5 strains in our

collection harbored the rv1332G-523->T polymorphism that

was absent from the L6 strains. Conversely, both L6 strains

harbored the nat(rv3566c)C-751->T polymorphism, which was

absent from all L5 strains (fig. 1A; supplementary file 1,

Supplementary Material online). These results confirm these

SNPs as reliable genotyping markers for these lineages.

However, single-SNP analysis carries risks of creating false pos-

itives, compared with the analysis of large sequence polymor-

phisms or regions of difference (RD). PCR-based analysis of RDs

has allowed reliable classification of the different lineages of

the MTBC in a cost- and labor-effective way (Gordon et al.

1999; Brosch et al. 2002; Tsolaki et al. 2004).

Mycobacterium africanum L5 has in this way been defined as

a TbD1-intact lineage having a deletion of the RD9 region,

carrying intact RD7, RD8, RD10, and RD702 loci, whereas M.

africanum L6 and animal adapted strains additionally have de-

leted RD7, RD8, RD10, and RD702 regions (fig. 1A) (Brosch

et al. 2002; Hershberg et al. 2008). We utilized the obtained

Illumina sequence data to catalog these large deletions by map-

ping paired-end reads to the M. tuberculosis H37Rv reference

genome, taking also into account the genome-wide depth of

coverage (supplementary file 3, Supplementary Material online)

and visual inspection of the alignment of suspected deleted

regions (supplementary fig. 1, Supplementary Material online).

The thereby obtained lineage differentiation was found to

be robust for all strains tested (fig. 1; supplementary files 1

and 3, Supplementary Material online). However, it would be

preferable to have a single unique and lineage-specific marker

Table 2

Phenotypic and Genotypic Antibiotic Susceptibility Profiles of Newly Isolated Strains

Genotypic Resistance mutations

Name Previously treated Phenotypic resistance rpoB katG PinhA pncA Other

NRC1 No Susceptible wt wt wt wt

NRC2 No Isoniazid (Low), streptomycin wt wt c�15t wt gyrA/gyrB: wt

NRC3 Yes Streptomycin wt wt wt wt gyrA/gyrB: wt

NRC4 No Susceptible wt wt wt wt

NRC5 No Susceptible wt wt wt wt

NRC6 Unknown Isoniazid (High), rifampicin,

ethionamide, streptomycin,

para-aminosalicylic acid

S450(531)L S315T wt wt ethA G124D

ethR: wt

gyrA/gyrB: wt

rrs1400*: wt

embB M306: wt

NRC7 No Isoniazid (High), rifampicin,

pyrazinamide, ethambutol,

ethionamide, streptomycin,

kanamycin, para-aminosalicylic acid

S450(531)L S315T wt S104R embB M306I

ethA: G124D

ethR: wt

gyrA/gyrB: wt

rrs1400*: wt

Genotypic antibiotic susceptibility was tested for first-line drugs isoniazid (katG, PinhA, promoter of inhA), rifampicin (rpoB), pyrazinamide (pncA) (Barrera et al. 2008; WHO
2014), by different PCRs and Sanger-sequencing as described previously (Brossier et al. 2017). When an isolate was resistant to any of these antituberculosis drugs, second-line
drugs ethionamide (ethA, ethR); aminoglycosides (*, rrs region 1400, eis promoter), fluoroquinolones (gyrA/gyrB) and para-aminosalicylic acid were tested. Genotypic susceptibility
is indicated as “wt” (wild-type), or the resulting amino acid (upper case), or base (lower case) changes. First letter depicts amino acid in reference sequence; second letter depicts
detected amino acid/base; rpoB positions between brackets represent positions in older nomenclature system; Position is depicted as number in subscript. N.P., not performed.
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for L5. The RD711 deletion in genes rv1333-36, was first pro-

posed by Mostowy et al. and is often suggested as such a

specific marker for L5 strains (Mostowy et al. 2004; Gagneux

et al. 2006; de Jong et al. 2010). Strikingly, our mapping and

de novo assembly analyses revealed that this region was in-

deed deleted in all L5.1 strains, but was intact in all other L5

strains (fig. 1A). These results show that RD711 cannot be

used as a universal marker of L5 strains, which was previously

suggested (Huard et al. 2006), although it may still be useful

to define L5.1 strains.

Three other RD described by Mostowy et al. were here

found to be shared between all L5 strains: that is, RD713

affecting rv1977-rv1979c, RD743 affecting rv1992c-1996,

and RD715 affecting rv2479c-rv2480c (supplementary fig.

1, Supplementary Material online). Therefore, we propose

that these RD have the potential to pose as more reliable

Fig. 1—Phylogenomic analysis of sequenced and previously published isolates reveals three sublineages within M. africanum L5. (A) Bootstrap con-

sensus tree based on 32,510 variable positions inferred from 1,000 bootstrap replicates is taken to represent the evolutionary history of the isolates

(Felsenstein 1989). Previously published genomes and associated accession numbers are listed in supplementary table 3, Supplementary Material online.

The phylogenomic analysis was performed with RaxML and is based on variable positions identified with respect to M. tuberculosis H37Rv ( Stamatakis 2006,

2014). Lineages 1, 2, 3, and 4 as well as M. bovis and M. caprae strains are depicted as collapsed branches. A strain of the nonclonal, smooth tubercle bacilli

(Blouin et al. 2014; Boritsch et al. 2014) known as Mycobacterium canettii, was used to establish the root of the tree, but is not depicted. Large sequence

polymorphisms specific for the (sub)lineages are depicted within black boxes. SNPs specific for either L5 or L6 are depicted in brown or green, respectively. (B)

Radial tree of L5 strains depicts the clear separation of L5.1 and L5.2 and the intermediate position of the orphan L5 isolates (light blue). Isolates sequenced in

this study are in bold typeset. Newly proposed sublineages are color coded in the tree as: L5.1 (brown) and L5.2 (Lilac). Scale bars depict SNPs/1,000

base pairs.
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markers specific for L5 isolates. However, the flanking region

of RD713 partially overlaps with that of RD7 and therefore

may fail to produce a PCR product in certain strains (supple-

mentary fig. 1, panel 2, Supplementary Material online)

(Mostowy et al. 2004; Huard et al. 2006; Vasconcellos et al.

2010). To our knowledge RD715 and RD743 have not been

widely used for genotyping of M. africanum and should first

be tested rigorously for specificity, before being implemented

in further studies. This is especially true for RD715, which is

corresponding to an IS6110 element and may therefore be

variable and/or unspecific. Unfortunately, we were unable to

identify any large deletions specific for sublineage 5.2 and

therefore propose that this sublineage is better identified by

analyzing combinations of L5.2-specific SNPs (supplementary

file 2, sheet 3, Supplementary Material online). We did not

identify deletions or SNPs specific for the orphan representa-

tives, and therefore these isolates were not classified as an

independent sublineage.

Bioinformatic Prediction of Drug Resistance is Applicable to
M. africanum L5 and Uncovers a 33-kb Deletion
Responsible for Isoniazid Resistance and a Putative
Association Between L5.2 and Drug Resistance

Genome sequencing is used with increasing frequency in a

clinical setting to predict phenotypic antibiotic resistance of

M. tuberculosis. Development and validation of these meth-

ods are usually based on isolates that are most prevalent in

the local clinical setting. However, it is not clear whether the

same prediction parameters also apply to more distantly

related isolates, such as M. africanum L5 strains. The avail-

ability of phenotypic drug-resistance profiles and whole ge-

nome sequences of the isolated L5 strains, prompted us to

compare the bioinformatic, PCR-based and culture-based

drug-resistance profiles. The predicted drug-resistance pro-

files of first-line antibiotics isoniazid, rifampicin, and pyrazi-

namide fully corresponded to the observed culture-based

antibiotic profiles (table 2; supplementary file 1, sheet 2,

Supplementary Material online). All the L5.1 strains included

in this study were susceptible to all the antituberculosis

drugs tested (table 2; supplementary file 1, sheet 2,

Supplementary Material online). Orphan strain NRC1 iso-

lated in 2007, was also pan-susceptible and orphan isolate

69 harbored a L533P mutation conferring only low level re-

sistance to rifampin. In contrast, four out of the seven L5.2

isolates were resistant to multiple anti-TB drugs (supple-

mentary file 1, sheet 2, Supplementary Material online).

Isolate NRC2 was resistant to isoniazid because of a nucle-

otide substitution c-15t in the inhA promoter. Isolates NRC6

and NRC7 were both MDR (Rifampicin-R plus Isoniazid-R)

and displayed S450(531)L in RpoB and S315T in KatG, which

together represent the most commonly encountered muta-

tions in MDR MTBC clinical isolates. For isolate NRC7, which

is pre-extensively drug-resistant (MDR also resistant to the

injectable aminoglycoside kanamycin), resistance to kana-

mycin was correctly predicted by the mutation in the eis

promoter (g-37t). In addition, NRC7 was also resistant to

pyrazinamide (mutation S103R in PncA) and to ethambutol

(mutation M306I in EmbB). The comparison of the 24 loci-

MIRU-VNTR profiles of the NRC isolates clearly indicates that

NRC6 and NRC7, isolated in 2011 and 2015, respectively,

from 2 patients born in the Democratic Republic of the

Congo, are closely related (supplementary table 1,

Supplementary Material online). They differ only by 1/24

loci, at the level of locus 2163b/QUB11B and are separated

by nineteen high-confidence SNPs (defined as a position

read coverage >10 and a frequency of >90%; supplemen-

tary file 2, Supplementary Material online), suggesting that

the two patients belonged to a chain of transmission of a

clone in circulation during the 2011–2015 period in this

country. However, direct transmission thresholds are usually

set at 5–10 SNPs and these cases are therefore likely sepa-

rated by other cases, which is supported by the finding that

both isolates had unique SNPs (i.e. NRC6: 12 SNPs; NRC7: 7

SNPs). Considering the extended resistance profile of NRC7

compared with NRC6, it is likely that the 2 isolates are ep-

idemiologically linked to a common L5.2 MDR epidemic

clone that has evolved to gain additional resistance to kana-

mycin, pyrazinamide and ethambutol, to yield the pre-XDR

NRC7 strain isolated in 2015. Finally, isolate 77 was

rifampin-resistant with an RpoB N435(516)V mutation.

Interestingly, isolate 77 was also classified as a MDR isolate,

since it was predicted to be resistant to isoniazid due to

deletion of katG. Certain mutations in katG (rv1908) are

known to confer isoniazid resistance, through the role of

KatG as a catalase/peroxidase that transforms the prodrug

isoniazid to its active form (Zhang et al. 1992; Johnsson

et al. 1997). Complete deletion of katG as a mechanism

of isoniazid resistance has been described before, but is

rare and such katG deletion events are commonly associ-

ated with a decreased virulence, as determined in animal

models (Middlebrook and Cohn 1953; Li et al. 1998; Pym

et al. 2002; Tsolaki et al. 2004). However, the ahpC promo-

tor polymorphism at position �48 likely functions as a com-

pensatory mutation for the negative effect of this katG-

deletion (supplementary file 1, sheet 2, Supplementary

Material online). PCR amplification confirmed the absence

of katG in isolate 77 and revealed its presence in all other

isolates tested. Culture-based phenotypic resistance

showed that isolate 77 was indeed highly resistant

(MIC> 1.0mg/ml) to isoniazid, whereas the closely related

isolate 68 was phenotypically susceptible (MIC< 0.2mg/ml).

Closer inspection of read-coverage in the genetic region

containing katG, revealed a very large deletion affecting

genes corresponding to rv1879 to rv1917c (supplementary

fig. 1, panel 2, Supplementary Material online). The deletion

concerns a 33.8 kb genomic region corresponding to posi-

tions 2,129,643 to 2,163,457 in the M. tuberculosis H37Rv
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genome (Cole et al. 1998; Kapopoulou et al. 2011). This is

to our knowledge the largest-known genomic deletion in

the MTBC and includes 38 open reading frames (supple-

mentary file 3, sheets 2 and 16, Supplementary Material

online).

Sublineage-Dependent In Vitro Growth Characteristics

M. africanum is known to exhibit specific in vitro growth

characteristics compared with M. tuberculosis sensu stricto

(Castets et al. 1968; Gehre, Otu et al. 2013). Most notable

are a relatively slow growth, dependence on pyruvate in liquid

media and small colonies on solid media, which can lead to

underdiagnosis in a clinical setting (Castets et al. 1968;

Keating et al. 2005; Gehre, Otu et al. 2013). Since early bio-

chemical studies did not discern between different lineages of

M. africanum (Castets et al. 1968) and to our knowledge the

only systematic evaluation of M. africanum growth rate was

performed in L6 strains (Bold et al. 2012; Gehre, Otu et al.

2013), we investigated in vitro growth behavior of our L5

strain collection.

When handling the strains, we noticed a trend of slower

growth on solid media for L5.1 strains and therefore per-

formed in vitro growth curves in our standard M. africanum

culture medium. M. tuberculosis H37Rv clearly grew faster

than all M. africanum isolates (fig. 2). During exponential

growth, no lineage-, or sublineage-specific growth character-

istics could be observed. However, a sublineage-dependent

trend of different maximum optical densities was seen. While

L6 and L5.1 strains all reached a plateau of optical density

between OD600 1.35 and 1.50, all L5.2 strains reached a

lower plateau between OD600 1.06–1.28. The two L5 orphan

strains seemed to exhibit an intermediate phenotype. In par-

allel, we performed assessment of growth on solid 7H11 me-

dium, by serial dilution and spotting of 20ml of liquid cultures

at Day 1 of the growth curves. This confirmed a previous

observation by Bold et al. that a culture of M. africanum L6

of a given OD600 contains fewer CFU than that of the L4

isolate H37Rv, possibly because of larger bacterial size (Bold

et al. 2012) and extends this observation to all M. africanum

sublineages tested here (supplementary fig. 2, Supplementary

Material online). In contrast to the growth curve, this analysis

confirmed the observed slower growth phenotype of L5.1

compared with all other (sub)lineages (microcolonies appear-

ing after>20 days of culture). L6 and other L5 isolates grew at

similar rates (microcolonies appearing after 15 days culture)

while H37Rv clearly outgrew all M. africanum isolates (micro-

colonies after 12 days). This observation was confirmed and

quantified by counting the CFUs of all isolates after 17 and

24 days of culture (supplementary fig. 2, Supplementary

Material online). These results show that different sublineages

of M. africanum L5 have different growth characteristics

in vitro depending on the used culture medium.

Secretion analysis of M. africanum Unexpectedly Reveals
Fully Functional ESX-1 Secretion in L5

Type VII protein secretion by the secretion systems ESX-1

and ESX-5 are important virulence determinants for M. tu-

berculosis isolates, which can be affected by relatively small

polymorphisms (Gonzalo-Asensio et al. 2014; Ates,

Dippenaar et al. 2018). Recently, polymorphisms in the

PhoPR two component regulatory system were found to

impair virulence, by impacting espACD-mediated secretion

of ESX-1 proteins (Blasco et al. 2012; Gonzalo-Asensio et al.

2014; Lou et al. 2017). Since some of these mutations were

predicted to be present in M. africanum strains (Gonzalo-

Asensio et al. 2014; Malone and Gordon 2017) (supplemen-

tary file 2, Supplementary Material online), we analyzed

their occurrence in combination with a detailed phenotypic

Fig. 2—Sublineage-specific growth characteristics of M. africanum

sublineages. Precultures of the indicated strains were grown until midlo-

garithmic phase and were diluted to 0.05 OD600/ml in glass tubes con-

taining 5 ml of liquid 7H9 medium supplemented with 0.05% Tween 80,

ADC supplement and 0.2% pyruvate. Optical density was measured at the

indicated time points (symbols). Data points are averages of three individ-

ual experiments performed in technical duplicates. Colors of line indicate

the specific (sub)lineage of M. tuberculosis (Mtb) or M. africanum (Maf) on

the legend (top left). Individual isolates can be identified by combination of

colors and symbols used (bottom right).
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protein expression and secretion analysis. Our analysis

showed that the PhoR V71I polymorphism was present in

all M. africanum strains of our collection (supplementary file

2, Supplementary Material online), while the deletion of

region RD8 (Orgeur and Brosch 2018) was only detected

in the L6 strains (supplementary fig. 1, Supplementary

Material online). Secretion of EsxA (also known as the

6 kDa early secretory antigenic target ESAT-6) was detected

in all M. africanum L5 isolates and occurred at comparable

levels to M. tuberculosis H37Rv, while the two M. africanum

L6-isolates secreted elevated levels of EsxA (fig. 3).

Interestingly, EsxA was detected efficiently in the whole-

cell lysates of all L5 and L6 isolates, but only scarcely in

H37Rv, probably because H37Rv is a relatively weak EsxA

producing strain due to the specific mutation in the pro-

moter region of whiB6 regulatory gene (Solans et al. 2014).

In conclusion, we found similar EsxA secretion in M. tuber-

culosis H37Rv and M. africanum L5, and relatively elevated

levels in L6 strains, whereby the latter phenomenon is likely

linked to the RD8 deletion.

A Sublineage Specific PE_PGRS Secretion Defect
Independent of PPE38

We previously showed that the ESX-5 substrate PPE38 is re-

quired for the secretion of two large subgroups of other ESX-

5 substrates called the PE_PGRS and PPE-MPTR proteins (Ates,

Dippenaar et al. 2018). Deletions of the ppe38-locus and con-

curring secretion defects increase virulence of M. tuberculosis

during late stage infection. The locus encoding ppe38 and its

highly similar copy ppe71, is highly variable in different M.

tuberculosis isolates due to frequent recombination/deletion

events and/or introduction of an IS6110 insertion element and

is part of the RD5 locus that is deleted in M. bovis, M. bovis

BCG, and several other animal adapted isolates (Brodin et al.

2002; Garnier et al. 2003; McEvoy et al. 2009; Ates,

Dippenaar et al. 2018; Ates, Sayes et al. 2018). Conflicting

results about the deletion of RD5 in M. africanum have been

reported varying between 0% and 45.4% of M. africanum

strains (Viana-Niero et al. 2001; Brosch et al. 2002; Gaudrat

et al. 2006). Genome analysis and PCR amplification of the

RD5-associated gene plcA (Brosch et al. 2002) and the ppe38-

71 locus revealed that only one L5 strain (77, L5.2) had RD5

deleted. Interestingly, all other L5 strains were found to have

only one copy of ppe38, while the L6 strains and H37Rv pos-

sessed the more common four-gene ppe38-71 locus (McEvoy

et al. 2009; Ates, Dippenaar et al. 2018; Ates, Sayes et al.

2018).

Based on the finding that only one strain was a natural

ppe38-deletion mutant, we hypothesized that only this strain

would be deficient in PE_PGRS secretion. Contrary to this

hypothesis, all lineage 5.2 strains exhibited a clear deficiency

in PE_PGRS secretion, while all other M. africanum strains

secreted these proteins (fig. 3). It should be noted that three

L5.2 isolates (76, NRC2, and NRC4), reproducibly secreted

residual amounts of PE_PGRS, which is unlike the phenotype

of M. tuberculosis ppe38-deleted strains (Ates, Dippenaar

et al. 2018). The pattern of both expressed (whole-cell lysate)

and secreted PE_PGRS proteins of L6 strains were clearly dis-

tinguishable from the other strains (fig. 3).

Furthermore, all M. africanum isolates secreted relatively

low levels of the ESX-5 substrate EsxN (fig. 3). This reduced

secretion coincided with accumulation of EsxN in the whole-

cell lysate of L6 strains as well as L5.1 and L5 orphan isolates,

Fig. 3—Secretion analysis of different M. africanum sublineages reveals functional EsxA secretion in L5 isolates and a PE_PGRS secretion defect in L5.2.

The phylogenomic relationship of the indicated isolates is depicted by the tree on top of the figure where red indicates L4, brown L5.1, blue orphan L5

isolates, purple L5.2 and green L6. Whole-cell lysates (Left) reveal similar expression levels of PE_PGRS proteins although the detected pattern is different in L6

isolates. EsxN is intracellularly accumulated in all M. africanum isolates except Lineage 5.2. Culture filtrates (right) reveal the L5.2 specific PE_PGRS secretion

defect and overall functional EsxA secretion, while EsxN secretion is lower in all M. africanum isolates compared with H37Rv. GroEL2 and SigA staining were

used as loading and lysis controls.
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but not in L5.2, where EsxN seemed to be expressed and

secreted only in isolate 68 (fig. 3).

Together, these data reveal a L5.2-specific PE_PGRS secre-

tion defect that is seemingly independent of the genetic pres-

ence of ppe38. Therefore, we investigated whether this

defect might be caused by a loss of transcription or translation

of ppe38. Closer investigation of the ppe38 gene locus in all

affected isolates (except the RD5-deleted isolate 77) revealed

a c! a synonymous SNP corresponding at position 1026 of

the ppe38 gene in the L5.2 strains, but not in other M. afri-

canum isolates (supplementary file 2, sheet 2, Supplementary

Material online). This SNP results in a codon that is approxi-

mately four times less commonly utilized in M. tuberculosis

(codon occurrence per 1,000 in M. tuberculosis H37Rv coding

sequences: gcg ¼48.7 ! gcu 10.9. Source: http://www.

kazusa.or.jp/codon/). To test if reduced ppe38 transcription

or translation was a possible explanation for the PE_PGRS

secretion defect, we introduced an integrative plasmid that

constitutively expresses the ppe38-71 locus (mt2419-22) and

successfully complements PPE38-dependent secretion in L2,

L4, or BCG isolates, in two L5.2 strains, that is, isolate 68, with

functional EsxN secretion and in the RD5-deleted isolate 77

(Ates, Dippenaar et al. 2018; Ates, Sayes et al. 2018). Three

PCR-confirmed plasmid-containing clones were tested for

PE_PGRS secretion. Low levels of PE_PGRS secretion could

be observed in all complemented colonies, showing that

L5.2 strains have a PE_PGRS secretion defect, which seems

to be independent of ppe38 and may therefore help to un-

cover novel factors required for the secretion of these

proteins.

We set out to uncover such a novel factor by comparison

of our genome sequence of L5 orphan representatives and

L5.2 and identifying genomic variants specific for L5.2, which

may contribute to this PE_PGRS secretion defect. A compar-

ison of large sequence polymorphisms uncovered only one

deletion shared by all L5.2 strains, but none of the other M.

africanum strains. This polymorphism was a putative in-frame

deletion of 1,728 bp within the ppe-mptr gene ppe54.

Unfortunately, we were unable to confirm this deletion by

PCR, because of the highly repetitive nature and large size

of the gene. In parallel, 43 nonsynonymous SNPs or indels

were found to be shared between all L5.2 strains (isolate 77

was excluded for this analysis), but with no other M. africa-

num strains (supplementary file 2, sheet 3, Supplementary

Material online). None of these L5.2 specific variants were

located in the esx5 locus or could be directly linked to a

PE_PGRS secretion defect, although a number of variants

were found in ESX-5 substrates, which could be of future

interest.

Together, these results confirm that ESX-5 secretion can

be markedly different in closely related strains of M. africa-

num. Since EsxN secretion is clearly functional in strain 68,

the PE_PGRS secretion defect in L5.2 strains is no general

ESX-5 secretion defect and occurs in spite of a genetically

intact ppe38. Therefore additional mechanisms may be re-

quired for the secretion of PE_PGRS/PPE-MPTR proteins.

T-Cell Responses Against M. africanum Correlate With In
Vitro Secretion Analysis and Include Strong Responses
Against ESX-1-Dependent Substrates

Secretion of ESX Type VII secretion substrates is required for

the efficient induction of CD4þ T-cell responses (Majlessi et al.

2005; Brodin et al. 2006; Sayes et al. 2012; Ates, Sayes et al.

2018; Sayes et al. 2018). Since we were surprised by the

observed in vitro secretion phenotypes of L5 isolates, we set

out to assess how these characteristics affect the cellular im-

mune responses induced by strains belonging to different M.

africanum sublineages. We infected C57BL/6 �CBA F1 mice

with M. tuberculosis H37Rv, or with M. africanum (sub)line-

age representatives of L6 (strain 01), L5.1 (strain 65), an L5

orphan isolate (strain 69), or Lineage 5.2 with (strain 77) or

without (strains 68) an RD5-like deletion. Three weeks post-

infection, mice were killed and splenocytes were stimulated

with previously identified immunogenic peptides. Interferon-c
(IFNc) production was measured as a readout of induced T-

cell-mediated immunogenicity (Sayes et al. 2012, 2018; Ates,

Sayes et al. 2018). Splenocytes from infected mice produced

similar patterns of IFN-c upon stimulation with immunogenic

peptides derived from the twin-arginine transporter substrate

FbpA (Ag85A241–260), ESX-1 substrates EsxA (EsxA1:20), EsxB

(both MHC-II-restricted EsxB11–25 and MHC-I-restricted

EsxB32–39), EspC (EspC40–54) and PPE68 (PPE68121–136), or

ESX-5 substrates PE19 (PE191–18, an epitope highly specific

to the esx-5 region) and PPE25 (PPE251–20, a shared epitope

by other PPE proteins encoded outside esx-5 region) (Sayes

et al. 2012, 2016) (fig. 4A; supplementary fig. 4,

Supplementary Material online). Only the splenocyte

responses to the two immunogenic peptides PPE10221–235

and PPE10381–395 derived from the ESX-5 dependent

PPE-MPTR protein PPE10 differed markedly between subli-

neages, with an approximately 90% reduction of IFN-c pro-

duction in splenocytes from mice immunized with L5.2

strains, compared with L4 reference H37Rv (fig. 4B; supple-

mentary fig. 4, Supplementary Material online). We previ-

ously showed that not only in vitro secretion, but also in vivo

induction of T-cell immunity against PPE10 is dependent on

PPE38 (Ates, Sayes et al. 2018). However, similar to the

observed in vitro PE_PGRS secretion phenotype, both L5.2

isolates were unable to induce immune responses to PPE10

even though isolate 68 does contain one copy of the ppe38

gene. This result suggests that the presumed PPE38-

independent PE_PGRS secretion defect of L5.2 isolate can

also be extended to the PPE-MPTR proteins. Sublineage L5.1

and L5 orphan representatives induced moderately reduced

IFN-c production in response to PPE10-peptides in compar-

ison to L4 and L6 isolates, possibly because these latter
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isolates possess a full-length ppe38-locus, while L5 strains

only have one copy of ppe38 and no esxXY genes.

Moreover, we found that M. africanum L5 and L6 isolates

were able to induce T-cell responses against selected ESX-1

dependent substrates, confirming the above reported results

on EsxA secretion under in vitro conditions. These results also

suggest that the previously reported mutation in phoR in M.

africanum might not have a strong impact on EsxA secretion

in the genomic background of L5 strains. Alternatively, L5

strains might carry yet unknown compensatory mutations

that limit the impact of the phoR mutation in these strains.

Discussion

In this work, we systematically compared genomic phylogeny

and phenotypic traits of M. africanum L5 isolated over

Fig. 4—Sublineage-specific differences in immunogenicity of M. africanum. (A) Two 6-week-old female C57BL/6 x CBA F1 (H-2b/k) mice per group

subcutaneously received 1�106 CFU/mouse of the indicated mycobacterial strains. Three weeks later, mouse splenocytes were stimulated with peptides

containing known immunogenic MHC-II (closed bars) or MHC-I (open bars) restricted epitopes (listed on the y axes). IFN-c production of stimulated

splenocytes was measured as a readout of T-cell stimulation (x axes). The (sub)lineage of the tested strains is indicated in bold typeset in the top-right of

each panel. Colors indicate the nature of the tested immunogenic peptides. Green: twin-arginine transported substrate; blue: ESX-1 substrate; orange/pink

ESX-5 substrate; pink putative PPE38-dependent substrate; black: positive and negative controls. (B) Relative immunogenicity of ESX-5-secreted substrate

PPE10 in M. africanum compared with M. tuberculosis H37Rv (dotted line at 100%), reveals PPE-MPTR secretion defect in L5.2 isolates 68 and 77 (purple

bars), while other ESX-5 dependent substrates PE19 and PPE25, or the TAT-secreted substrate Ag85A were not significantly affected.
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multiple decades in France. In contrast to the high incidence

of these strains in their endemic region (de Jong et al. 2010),

L5-isolates are only rarely detected in France and are strongly

associated with patients born in countries endemic for L5

(Viana-Niero et al. 2001; de Jong et al. 2010; Sharma et al.

2016). This is emphasized by the finding that only seven L5

isolates were submitted to the French National Reference

Centre for tuberculosis between 2007 and 2016, while ap-

proximately 1,000 samples of M. tuberculosis/MTBC strains

are received each year. Furthermore, all these strains were

isolated from patients in different French cities and therefore

fully support the hypothesis that there is no direct transmis-

sion of M. africanum L5 in France and the transmission events

probably occurred in the countries of birth of the patients.

However, the finding that five out of the seven newly de-

scribed strains were isolated from extrapulmonary tissues

opens the question whether L5 strains are reduced in their

pathogenic potential once infection has been established. In

fact, it would be an interesting subject of further work to

assess whether this high rate of extrapulmonary tuberculosis

is truly associated with M. africanum L5 and if this may con-

tribute to the low levels of transmission. Although three of the

seven patients carrying L5 isolates were HIV positive, three

others were tested to be HIV-negative, suggesting that L5

strains can also multiply in immunocompetent hosts. An im-

portant clinical finding is the isolation of pre-XDR L5-isolate

NRC7, which was isolated from a patient who did not report

previous antituberculosis treatment, suggesting that this

strain was transmitted in its current pre-XDR form. MDR iso-

late NRC6 and pre-XDR isolate NRC7, which share identical

spoligotypes and very similar MIRU-VNTR profiles, were the

two most-recently isolated L5-isolates submitted to the NRC

and highlight that development of drug-resistance is not lim-

ited to M. tuberculosis L1–L4, but may also be increasing for

M. africanum L5 isolates. Finally, it is particularly intriguing

that all the multidrug-resistant strains belonged to sublineage

L5.2, suggesting these strains may transmit more efficiently or

develop drug-resistance more readily than their closely related

counterparts.

Although the isolation of these strains from France is an

interesting observation, these strains do not significantly con-

tribute to the French tuberculosis burden. However, the

strong geographical restriction of M. africanum and lack of

transmission within France, in spite of relatively severe symp-

toms associated with infection, is of significant fundamental

scientific interest to identify the factors that have contributed

to the global success of the so-called generalist (sub)lineages

of M. tuberculosis (Brites and Gagneux 2015; Stucki et al.

2016). Furthermore, the recent increase in availability of my-

cobacterial genomes allows for valuable meta-analyses about

general variation and adaptation of the MTBC (Comas et al.

2010; Copin et al. 2014; Brites and Gagneux 2015). However,

for such analyses to reach maximum potential it is important

to include strains reflecting the true diversity of the MTBC. In

this light, it is important to note that all previously published

L5 genomes were found to belong to sublineage 5.1 and that

therefore the genomic diversity of L5 has been underesti-

mated. We would like to suggest future phylogenomic and

meta-genomic studies to include at least one representative of

sublineage 5.2 and the genomes of orphan isolates 69 and

NRC1. The latter two strains were classified as orphan L5

representatives, despite of their previous classification as

A2–2 by Brudey et al. (2004), because of their reciprocal ge-

nomic distances from L5.1 as well as L5.2 strains. These iso-

lates may represent orphan members of two different

sublineages. The genomes of all these isolates are publicly

available (Accession number: PRJEB25506) and we have pro-

vided extensive supplementary analyses that may aid biolo-

gists in further pursuing the questions that have been raised

by our work (supplementary files 1–3, Supplementary

Material online).

A direct effect of the low amount of diversity in previously

analyzed L5 isolates is the use of RD711 as a genomic marker

to identify L5 isolates (Mostowy et al. 2004). It was suggested

previously, that this marker may not identify all L5 isolates

(Huard et al. 2006) and this is now confirmed by our finding

that this region is deleted in all L5.1 isolates, but not in other

L5 sublineages. Therefore, the SNP-polymorphisms proposed

by Vasconcellos et al., RD713, or RD743 may be better suited

as lineage-specific markers for L5 (Mostowy et al. 2004;

Huard et al. 2006; Vasconcellos et al. 2010). Hopefully, the

continuing increase in power and decrease in cost of sequenc-

ing techniques will make such typing techniques obsolete, but

they are currently still of importance for epidemiological stud-

ies in the countries where M. africanum is prevalent and

resources and facilities are relatively scarce. This is also true

for spoligotyping and MIRU-VNTR, methods which are more

informative from an epidemiological perspective than lineage-

specific polymorphisms. Spoligotyping has been the predom-

inant technique in the few studies examining the phylogeny

of L5 isolates (Viana-Niero et al. 2001; Brudey et al. 2004;

Gehre, Antonio et al. 2013). Of course, the resolution of

spoligotyping is inferior to that of the whole genome se-

quencing applied here. However, the combination of

whole-genome sequences with spoligotypes and MIRU-

VNTR patterns provided here (supplementary table 1, sheet

3, Supplementary Material online) or previously may increase

the resolution of newly performed analysis by providing a

robust phylogenetic framework (Viana-Niero et al. 2001;

Brudey et al. 2004). Retrospective analysis of the data sets

from Viana-Niero et al. and our study showed that of the

eleven L5.2 isolates, seven were associated with patients

from Cameroon and two with patients from the

Democratic Republic of Congo (the 2 remaining being of un-

known origin), but not with countries such as Ivory Coast,

Benin, Ghana and Nigeria, where L5 is also prevalent

(Viana-Niero et al. 2001; Brudey et al. 2004). Therefore,

L5.2 may be even more geographically restricted to the
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Central-African part of the L5-endemic area, compared with

the Western African countries, which could explain the scar-

city of these isolates in previous publications.

Having the genomes of the different sublineages available,

allows hypothesis-formation with respect to specific muta-

tions associated with predicted or observed phenotypic traits.

One such hypothesis was that L5 strains may secrete lower

levels of EsxA in comparison with L6 or L1–4 strains. This was

based on the previous finding that L5 strains share the phoR71

(GTT! ATT) mutation that was shown to reduce ESX-1 se-

cretion, but do not have the RD8 deletion, which compen-

sates for this reduction by constitutive expression of the

EspACD proteins (Gonzalo-Asensio et al. 2014; Ates and

Brosch 2017). However, we were unable to provide evidence

for this hypothesis, since all L5 isolates secreted EsxA at levels

that were at least comparable to H37Rv and induced compa-

rable T-cell responses to different ESX-1-dependent secreted

antigens in vivo. It has to be mentioned, however, that M.

tuberculosis H37Rv expresses and secretes lower amounts of

EsxA than other M. tuberculosis strains (Solans et al. 2014).

Another possible explanation for this observation could be

that the L5 isolates have another yet unknown secondary

mutation to compensate for the reduction in EsxA secretion

caused by the phoR71 (GTT ! ATT) polymorphism, which is

not present in the M. tuberculosis genomic background. The

two L6 isolates secreted slightly, but reproducibly higher levels

of EsxA, which are likely to be caused by the deregulation of

the espACD locus linked to the RD8 deletion in these strains.

Finally, it should be mentioned that EsxA is only one of several

ESX-1 substrates and might not be solely responsible for the

PhoPR/ESX-1-associated virulence phenotype of tubercle ba-

cilli (Conrad et al. 2017), which also involves a wide range of

virulence lipids (Gonzalo-Asensio et al. 2014; Augenstreich

et al. 2017). Further work on the variation of the PhoPR sys-

tem and the associated secretion and virulence phenotypes in

the different lineages of tubercle bacilli will be of great

interest.

Perhaps one of the most striking phenotypic differences

between the different L5 sublineage was the PPE38-

independent PE_PGRS secretion defect of sublineage 5.2.

Since deletion of ppe38 and the associated PE_PGRS/PPE-

MPTR secretion defect were found to increase virulence of

M. tuberculosis L2 and L4 isolates, L5.2 isolates may have a

similar increased potential of transmission compared with the

other L5 isolates. This hypothesis would account for the find-

ing that (i) 67% (4/6) of the L5 isolates received at the French

National Reference Center between 2007 and 2015 belong

to sublineage 5.2, and (ii) all the resistant NRC isolates, in

particular one MDR and one pre-XDR, are L5.2 isolates.

However, a larger-scale epidemiological study in local West-

African setting would be required to verify this hypothesis.

Even though previously published work suggested that ap-

proximately half of all M. africanum strains may harbor

RD5-deletions (Viana-Niero et al. 2001), we only identified

one strain with such a deletion. Intriguingly, all other L5.2

strains also had a clear PE_PGRS secretion deficiency even

though they contain an intact ppe38 gene. Constitutive ex-

pression of ppe38 by introduction of the vector that was pre-

viously successfully used to complement L2, L4 and BCG

strains (Ates, Dippenaar et al. 2018; Ates, Sayes et al.

2018), did not restore the PE_PGRS secretion defect, suggest-

ing that this defect is PPE38-independent. Unfortunately, we

were unable to identify the genomic cause of this phenotype.

However, these results provide the basis to uncover such ad-

ditional factors in future work with the help of the here

reported genomes. Such insight might aid in understanding

the molecular mechanism by which PPE38 is required for the

secretion of PE_PGRS and PPE-MPTR proteins. Since deletion

of ppe38 and the associated PE_PGRS/PPE-MPTR secretion

defect were found to cause increase virulence in M. tubercu-

losis L2 and L4 isolates, it is tempting to speculate that the

PE_PGRS/PPE-MPTR secretion defect in L5.2 isolates is bal-

anced by another mutation that limits the increase in viru-

lence, since these isolates are also not transmitted outside

their endemic area. In this perspective it should be empha-

sized that many of the animal-adapted strains of the MTBC

have independent deletions of the RD5 region, leading to a

similar secretion defect (Ates, Sayes et al. 2018), which could

be suggestive of convergent evolution in these branches of

the MTBC.

Taken together, by sequencing 15 M. africanum L5 strains

isolated in France during the previous decades, we have un-

covered a surprisingly high level of genomic and phenotypic

diversity. Mycobacterium africanum L5 caused pulmonary

and/or extrapulmonary tuberculosis in both HIV-positive and

negative patients and we report a pre-XDR isolate from a

patient that was not previously treated. The reported genome

sequences of these isolates and their associated phenotypic

traits with respect to growth, secretion, and immunogenicity

may help to increase our understanding of the interesting L5

isolates of M. africanum, which are highly geographically re-

stricted. Understanding this geographic restriction may un-

cover the factors that have allowed other M. tuberculosis

lineages to spread worldwide.
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