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ARTICLE

Vegetation response to exceptional global warmth
during Oceanic Anoxic Event 2
Ulrich Heimhofer1, Nina Wucherpfennig1, Thierry Adatte2, Stefan Schouten3,4, Elke Schneebeli-Hermann 5,

Silvia Gardin6, Gerta Keller7, Sarah Kentsch1 & Ariane Kujau 8

The Cenomanian–Turonian Oceanic Anoxic Event (OAE2; ~94.5 million years ago) represents

an episode of global-scale marine anoxia and biotic turnover, which corresponds to one of the

warmest time intervals in the Phanerozoic. Despite its global significance, information on

continental ecosystem response to this greenhouse episode is lacking. Here we present a

terrestrial palynological record combined with marine-derived temperature data (TEX86)

across an expanded OAE2 section from the Southern Provençal Basin, France. Despite high

TEX86-derived temperature estimates reaching up to 38 °C, the continental hinterland did

support a diverse vegetation, adapted to persist under elevated temperatures. A transient

phase of climatic instability and cooling during OAE2 known as Plenus Cold Event (PCE) is

marked by the proliferation of open, savanna-type vegetation rich in angiosperms at the

expanse of conifer-dominated forest ecosystems. A rise in early representatives of

Normapolles-type pollen during the PCE marks the initial radiation of this important

angiosperm group.
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Past time intervals of exceptional climatic warmth, typically
associated with elevated pCO2, had profound impacts on
floral compositions and biogeographic patterns of con-

tinental vegetation1–3. Within the overall greenhouse climate
characterizing the Mesozoic, the Late Cretaceous Oceanic Anoxic
Event (OAE) 2, which spans the Cenomanian–Turonian
boundary [94.1 million years ago (Ma)], marks the onset of an
extreme phase in ocean temperatures known as the “Cretaceous
thermal maximum”4–6. This phase is characterized by one of the
highest (>35 °C) proxy data-derived sea-surface temperature
(SST) estimates of the last 150Myrs, which are recorded by both
planktonic foraminifera δ18O and archaeal membrane lipid-based
TEX86 data6. A significant rise in low- and mid-latitude open
ocean SSTs (2–4 °C) and mid-latitude shelf-sea temperatures
(4–5 °C) accompanied the onset of OAE2, resulting in the Late
Cenomanian–Turonian hothouse5,7–9. Besides the exceptional
thermal conditions, the OAE2 (lasting 700–800 kyrs10,11) is
associated with widespread formation of organic-rich deep-water
deposits12,13, a major positive carbon isotope excursion (CIE) in
carbonate and organic carbon reflecting massive burial of 13C-
depleted carbon14,15, and major biotic turnover in marine
ecosystems16,17.

Despite the outstanding position of OAE2 as one of the most
remarkable events of the Mesozoic18, the responses of terrestrial
ecosystems and continental flora to the changes of the global
climate system remain largely unexplored. To date, just a few
isolated plant macrofossil discoveries have been reported from the
organic-rich Bonarelli Level, which is the sedimentary expression
of the OAE2 in Marche–Umbria, Italy19. Microfloral evidence is
essentially lacking due to the overwhelming predominance of
amorphous kerogen in most marine OAE2 black shales, diluting
any continent-derived spore-pollen signal. However, based on a
shift in the δ13C signature of leaf-wax n-alkanes, a change from
C3 to C4-dominated low-latitude vegetation triggered by a pCO2

drop has been proposed20 for the early phase of OAE2. According
to theoretical considerations21, the exceptional warmth that
prevailed during Late Cenomanian–Turonian times may have
exceeded the heat tolerance of continental ecosystems, which
potentially resulted in widespread vegetation dieback.

Here we present a high resolution and taxonomically differ-
entiated spore-pollen record across a stratigraphic interval cor-
relating to the OAE2. The record is from an expanded marine
section (Cassis) from the Southern Provençal Basin (SPB) of S’
France (Fig. 1) and has been analyzed for biostratigraphy,

palynology, TEX86 and stable carbon isotopic composition of
carbonates and organic materials. Stratigraphic assignment of the
section is based on existing ammonite data22 combined with new
information from planktonic foraminifera, calcareous nanno-
plankton, and carbon isotopes of bulk carbonate, organic matter
and plant wax-derived long-chain n-alkanes.

Results
Stratigraphy. The ~235 m thick Cassis section represents a het-
erolithic succession with its lowermost part being composed of
clays and marls overlain by (in part) turbiditic sandstones (0.0‒
19.7 m). An exposure gap in the outcrop separates the siliclastic
facies from a conspicuous limestone slope deposit characterized
by intense slumping and disintegration (33.4‒46.1 m). Above
another exposure gap, the main part of the section is continuously
accessible (55.8‒236.0 m) and consists of homogenous marls with
intercalated bundles of nodular limestone together representing
basinal facies. Existing ammonite data combined with new bios-
tratigraphic results constrain this section to the Upper
Cenomanian–Lower Turonian22 (Supplementary Note 1). This
age assignment is further corroborated and refined by carbon
isotope data, which show a characteristic positive CIE revealing
an initial high-amplitude positive peak (a) followed by a trough
interval, which gives way to a plateau with two consecutive peaks
(b, c) (Fig. 2). The characteristic pattern of the CIE is mimicked in
the δ13Corg signature of bulk organic matter (Supplementary
Fig. 1) and corroborated by the isotopic composition of long-
chain n-alkanes derived from plant leaf-wax. Backed by high-
resolution biostratigraphic data, the CIE evolution can be closely
correlated with the reference carbon isotope record from East-
bourne, UK23,24 (Fig. 2). The significantly increased δ13Ccarb

values of the CIE peak (a) at Cassis (6.0‰) compared to East-
bourne (4.8‰) may reflect a shift in the dominant carbonate
source in the SPB during this particular interval. In fact, the
Calcaires du Corton Fm. corresponds to a calcareous unit com-
posed of upper slope deposits, which can be traced toward the
shoalwater carbonate platform bordering the SPB to the north
where similarly high δ13Ccarb signatures are observed in OAE2-
equivalent platform limestones25. Carbonate carbon isotope sig-
natures > 6.0‰ for the OAE2 CIE are also described from the
epeiric Iberian seaway26 and may reflect variations in the ara-
gonite content of the periplatform ooze exported from the adja-
cent platform27. The correlation thus reveals very good
stratigraphic coverage of the uppermost Cenomanian–Turonian
at Cassis with an expanded ~200 m thick OAE2 interval (Fig. 2).
High sedimentation rates accompanied by increased input of
continental organic debris in a transtensive geotectonic setting28

may have prevented the accumulation of black shales enriched in
marine-derived organic carbon in the SPB.

Palynology. At Cassis, high numbers of inaperturate and bisac-
cate gymnosperm pollen (avg.= 48.2%) are essentially produced
by Araucariaceae and Cupressaceae-type plants (Araucariacites
spp.; Inaperturopollenites spp.) and Cheirolepidiaceae (Classo-
pollis spp.) with subordinate contributions from Pinaceae (Cere-
bropollenites spp.) and Podocarpaceae (Podocarpidites spp.).
Other gymnosperms, including cycads-ginkgophytes (Cycadopites
spp.), gnetaleans (Ephedripites spp.), and seed ferns (Alisporites
spp.) are quantitatively of minor importance (avg.= 2.5%).
Spores produced by a diverse assemblage of ground ferns and fern
allies occur in moderate quantities (avg.= 12.8%). The assem-
blage contains a variety of eudicotyledonous angiosperm pollen
represented by various tricolporate and triporate types, the
majority of which can be assigned to early forms of the
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Fig. 1 Palaeogeographic map illustrating Cenomanian–Turonian biome
distribution. Palaeo-map is modified after ref. 48 and includes the extent of
the Normapolles palynofloral province29. Color code representing (A)
tropical moist, open canopy mixed forest with shrub understory; (B)
savanna-type dry low understory with sparse trees; (C) deciduous dry/
warm shrubland; (D) mid-latitude evergreen closed canopy conifer forest;
(E) Normapolles province; (F) evergreen wet/cool shrubland; (G) high-
latitude moist, open canopy forest with shrub understory; (H) boreal closed
canopy conifer forest. Asterisk marks approximate location of the Southern
Provençal Basin
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Normapolles complex (predominantly Atlantopollis and Com-
plexiopollis groups; avg.= 18.9%) (Supplementary Fig. 2).

Based on stratigraphic variations in relative spore-pollen
abundances, six characteristic assemblage zones (AZ I–VI) are
differentiated from base to top (Fig. 3). A pre-CIE assemblage
(AZ I, 6.5–18.5 m) shows the lowest number of individual taxa
(avg.= 30.2) and a moderately high gymnosperm to angiosperm
(G/A) ratio (avg.= 0.65) with the angiosperm component being
dominated by non-Normapolles-type pollen. Among conifer
pollen, relatively high abundances of Cerebropollenites spp. (avg.
= 7.3%) are paralleled by low Inaperturopollenites spp. content
(avg.= 9.5%). The overlying assemblage (AZ II, 34.7–45.2 m)
corresponds to the first build-up phase (peak a) of the CIE and
shows increased total taxa counts (avg.= 39.9). An increase in
Normapolles-type angiosperm pollen results in slightly lower G/
A-ratios (avg.= 0.62). Conifer-derived Inaperturopollenites spp.
remain similar (avg.= 10.6) but show a marked increase toward
the top of AZ II reaching up to 22.9%. Above, the trough-shaped
CIE interval corresponds to an assemblage (AZ III, 57.1–110.8 m)
characterized by stable numbers of taxa (avg.= 40.1) and a low
dominance index with average D values of 0.06 indicating a high
degree of ecological evenness of the floral association. Increased
abundances of Normapolles-type pollen (e.g., A. microreticulatus)
are paralleled by low conifer pollen contents (e.g., Inapertur-
opollenites spp.) resulting in comparatively low G/A-ratios
(avg.= 0.55). The onset of peak (b) is again characterized by an
assemblage rich in conifer-derived grains and low angiosperm
pollen (AZ IV, 114.2–143.2 m) with increased G/A-ratios
(avg.= 0.70) and high dominance index (avg.= 0.09). Another
increase in Normapolles-type pollen marks the overlying
assemblage (AZ V, 146.3–149.4 m) which shows the lowest

G/A-ratios (avg.= 0.41) paralleled by low D values of 0.06.
Above, the upper part of the CIE plateau up to peak (c)
corresponds to the topmost assemblage (AZ VI, 156.7–225.3 m).
Here, the strong dominance of a few abundant conifer-derived
pollen (with Inaperturopollenites spp. reaching up to 31.8%;
avg.= 20.4%) causes substantially higher G/A-ratios (avg.= 0.77)
and higher dominance indices (avg.= 0.12). Calculated origina-
tion and extinction records show very low values and the range-
through diversity comparatively high and stable values through-
out the studied interval, which are illustrating the absence of
major land plant extinction during OAE2. Increased values at the
base of the origination record and at the top of the extinction
record, as well as reduced values at the base and the top of the
range-through diversity trend are interpreted as consequences of
edge effects.

The overall rich and diverse palynological association obtained
from Cassis is taxonomically distinctive for a position within the
Late Cretaceous Normapolles phytogeographic province29. Strati-
graphic trends in the distribution of the abovementioned groups
and indices are considered to primarily reflect changes in the
vegetation structure of the adjacent continental hinterland of the
SPB.

TEX86 temperature estimates. SST estimates based on TEX86

show continuously high temperatures >35 °C for the SPB dur-
ing Late Cenomanian–Turonian times with maximum SSTs
reaching 38 °C (Fig. 3). These warm SSTs conform with existing
TEX86 studies from early Late Cretaceous mid- and low-latitude
sites5,6,8,9 and highlight the exceptional temperature regime
prevailing during deposition of OAE2. A gradual SST decline is
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indicated by decreasing TEX86 values characterizing the latest
Cenomanian to earliest Turonian at Cassis. In the SPB, the
overall pattern of exceptional high temperatures is punctuated
by several transient drops towards significantly lower TEX86

values (<0.8), which translate into SSTs below 32 °C. These
cooler SST estimates characterize a phase of climatic instability
and occur within an interval stratigraphically placed within the
upper UC3 and UC4 nannofossil zone, below and close to the
R. cushmani-W. archaeocretacea zone boundary and corre-
sponds to the trough-shaped segment of the CIE between peaks
(a) and (b).

Discussion
Critically high temperatures have been put forward as a
mechanism for the suppression of terrestrial plant and animal life
during the end-Permian extinction and basal Triassic events30–32.
For these intervals, exceptional climatic warmth is considered a
first order control for the well-documented turnover in con-
tinental vegetation3,33. During the Cretaceous thermal maximum,
exceptional warmth and associated heat stress have also been
suggested to significantly affect plant growth by inhibiting pho-
tosynthesis to a certain extent at daytime temperatures ranging
between 35° and 42 °C21. Continental temperatures in this range
are considered life-limiting to plants, resulting in serious thermal
stress and potential die-off34,35. However, the rich and diverse
flora reconstructed from palynological datasets across the OAE2
does not support the idea of widespread heat-induced die-off in
continental vegetation—at least not in the hinterland of the stu-
died SPB. Despite maximum TEX86-derived SSTs of up to 38 °C
reconstructed for the SPB, the hinterland supported a rich and
diverse flora, which is roughly similar in composition to the type
of vegetation thriving in Late Cenomanian to Early Turonian
times in other parts of the palaeo-European archipelago36,37.
Mid-latitude terrestrial plant ecosystems were apparently well
adapted to the exceptional warm conditions prevailing during the

Cretaceous thermal maximum. The potential effects of tempera-
ture extremes might have been more aggravated in continental
interior regions of the subtropics and close to the equator, where
even higher mean annual surface temperatures are to be
expected38.

Despite the absence of major plant extinction associated with
OAE2, variations in the relative contribution of individual taxa and
groups reflect compositional changes in vegetation. High contents of
Araucariaceae and Cupressaceae-derived pollen indicate the pre-
sence of forest communities composed of large trees forming a
dense emergent cover39,40. An arborescent habit of Cretaceous
araucarioids is supported by abundant fossil wood finds from mid-
latitudes41 and in line with the growth habit of modern Araucaria
types42. Together with high pollen abundances produced by Pina-
ceae, Podocarpaceae and xerophytic Cheirolepidiceae, this type of
assemblage (AZ II, IV, and VI) is interpreted to reflect mixed forest
dominated by arborescent conifers with an only moderate angios-
perm component, which grew in mesic habitats with moderate
availability of moisture. Such conifer-dominated ecosystems pre-
vailed during episodes of increased δ13C values including the first
build-up (peak a, AZ II), the second build-up (peak b, AZ IV) and
upper plateau phase (AZ VI) of the CIE. During the trough-shaped
CIE segment and between peaks b and c, conifer forests were
replaced by more diverse, angiosperm-rich vegetation with increased
contents of Normapolles-derived pollen (AZ III and V). Late Cen-
omanian taxa assigned to Atlantopollis and Complexiopollis are the
first representatives of the Normapolles complex36,43, an angios-
perm group, which dominated mid-latitude northern hemisphere
assemblages during the Late Cretaceous and Early Cenozoic. Based
on in-situ findings in fossil flowers, pollen of the Normapolles-type
is related to core Fagales44. The thick, often multi-layered exine and
complex apertures indicate anemophily45 and are considered
adaptions to open vegetation with widely spaced trees under more
dry to seasonally dry climates46. During the late Cenomanian,
Normapolles-producing angiosperms were probably small non-
woody plants or shrubs forming part of a xerophytic savanna-type
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vegetation47,48—a view supported by the rarity of fossil dicot wood
in Cenomanian mid-latitude strata from Europe49. Accordingly, the
palynological record across OAE2 shows changing proportion of
arborescent conifer forests (reflecting more mesic conditions) and
more open, non-arborescent, angiosperm-rich vegetation.

Fluctuations in the overall climatic patterns during OAE2 have
been reported earlier based on marine-derived proxy data.
Exceptional climatic warmth associated with OAE2 is considered
to have caused accelerated hydrological cycling, enhanced
weathering and a generally more humid climate9,50–52. Phases of
enhanced moisture availability may have fostered the spread of
mesic conifer-dominated forest ecosystems during the onset and
later phase of OAE2. Such warm and humid conditions were
punctuated by a series of pronounced climatic coolings during the
so-called Plenus Cold Event, PCE53,54. The PCE represents a
phase of climatic instability and is characterized by several short-
lasting SST drops and increases in the range of 2.5–11 °C5–13 and
paralleled by the southward migration of boreal fauna55. Climatic
instability was accompanied by a shift towards significantly drier
conditions in northern hemisphere mid-latitudes9. Strati-
graphically, the main pulse of the PCE is located above the first
CIE build-up (peak a) at Eastbourne54, where it corresponds
approximately to the boundary between the R. cushmani and W.
archaeocretacea zones and UC3 to UC4 transition, respectively56.
At Cassis, the PCE is expressed in a series of several transient
drops of TEX86-derived SSTs below 32 °C with the strongest SST
decline occurring within the upper part of the CIE trough interval
(Fig. 3), similar to what has been observed elsewhere5. This part
of the CIE with a shift towards lower δ13C values has been related

to improved bottom-water oxygenation, enhanced organic carbon
remineralization and significant fluctuations in atmospheric
pCO2

13,54,57,58. In continental mid-latitude settings such as Cas-
sis, this phase of climatic upheaval is characterized by the pro-
liferation of open, savanna-type vegetation rich in angiosperms at
the expanse of conifer-dominated forest ecosystems (Fig. 4). Once
established, the savanna-type biome was able to persist even
during recurrent phases of exceptional warmth in the course of
the PCE.

The onset of the Cretaceous thermal maximum including OAE2
took place against the background of a major turnover in global
land plant vegetation, namely the rise of angiosperms towards
ecological dominance. In mid-latitude settings of North America
and Europe, this floral change is marked by the Late Cenomanian
radiation of Normapolles-producing plants related to core
Fagales43,45. In the Cassis record, early representatives of this group
show a pronounced increase in the uppermost Cenomanian
assemblage zone III, subsequent to their Mid- to Late Cenomanian
origination36. Within the overall warm and humid greenhouse
conditions characterizing OAE2, a transient shift towards relatively
drier climates and punctuated cooling during the PCE may have
fostered a first spread of Normapolles-type angiosperms, which
henceforward became a very diverse and successful group dom-
inating mid-latitude plant ecosystems throughout the Late Cretac-
eous to Early Cenozoic for more than ~50Ma.

Methods
Stable isotope analyses of carbonate and organic carbon. Measurements of
stable carbon and oxygen isotopes of sedimentary carbonates were carried out on
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(b)
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Fig. 4 Tentative changes in mid-latitude vegetation patterns during OAE2. During OAE mode A (e.g. represented by AZ II, IV and VI), the prevailing climate
was characterized by exceptional warmth and high moisture availability, giving way to conifer-dominated forests with moderate angiosperm contribution.
During OAE mode B (AZ III and V), climatic conditions were cooler and less humid resulting in an open, savanna-type vegetation community with
increased abundances of Normapolles-producing angiosperms. (a) Araucariaceae, (b) other conifers incl. Cheirolepidiaceae, (c) Cupressaceae,
(d) angiosperms incl. Normapolles-producing forms, (e) ferns
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powdered bulk rock material (~0.5 mg) on a total of 292 samples. Stable isotope
analysis was conducted using a Thermo Fisher Scientific Gasbench II carbonate
device connected to a Thermo Fisher Scientific Delta V Advantage IRMS, available
at the Leibniz University Hannover, Germany. The gas bench uses viscous water-
free (98 g/mol) orthophosphoric acid at 72 °C to release CO2 of the calcite from the
sample material 1 h before the start of the measurement. Repeated analyses of
certified carbonate standards (CO-1, NBS-18, NBS-19) show an external repro-
ducibility ± 0.08‰ for δ18O and ± 0.06‰ for δ13Ccarb. Values are expressed in
conventional delta notation relative to the Vienna-Pee Dee Formation belemnite
(VPDB) international standard, in per mil (‰) Stable carbon isotope analyses of
bulk organic carbon (δ13Corg) were performed on 117 decarbonated samples.
Powdered samples were treated twice with 6M HCl for 12 h to remove any car-
bonate phases and rinsed subsequently with deionised H2O until neutrality was
reached. Stable carbon isotope composition of bulk Corg was determined using an
organic elemental analyser (Thermo Scientific Flash 2000) connected online to a
Thermo Fisher Scientific Delta V Advantage IRMS, available at the Leibniz Uni-
versity Hannover, Germany. The analytical accuracy and reproducibility is checked
by replicate analyses of international standards (NBS 22). Reproducibility was
better than ±0.1‰ for δ13Corg. Values are expressed in conventional delta notation
relative to the Vienna-Pee Dee Formation belemnite (VPDB) international stan-
dard, in per mil (‰).

Palynology. A total of 67 rock samples from the Cassis section were prepared for
palynological analysis by the Geological Survey of North Rhine-Westphalia in
Krefeld, Germany. Cleaned, crushed and weighed samples (20 to 50 g) were treated
with 30% HCl and 38% HF for carbonate and silica removal, respectively. Residues
were sieved over a 11-μm mesh and mounted on microscope slides, which were
analyzed at ×200 and ×1000 magnification. All samples were productive and stu-
died for their particle content (palynofacies) and sporomorph assemblage (spores
and pollen), respectively. For the quantification of the spore-pollen assemblage, a
minimum of 250 grains were determined per slide (avg. 272 grains) and one entire
slide was scanned for rare elements. Five samples did not provide enough spor-
omorphs to reach the target count of 250 grains. Variations in the spore-pollen
assemblage represent normalized frequencies and are reported in percentage [%] of
the total assemblage. Thermally unaltered preservation of organic matter is indi-
cated by the virtually unchanged coloring of the sporomorphs and shows a thermal
alteration index (TAI) < 259. Preservation of the individual pollen grains varies
from moderate to good. Sporomorphs are assigned to floral groups according to
their botanical affinity60,61.

Biomarker analysis. For TEX86 analysis, a total of 69 powdered and freeze dried
samples (5–10 g dry mass) were extracted with an accelerated solvent extractor,
using a 9:1 (v/v) dichlormethane (DCM):MeOH solvent mixture, 3 times for 5 min.
at a pressure of ca. 7.6 × 106 Pa and a temperature of 100 °C. The obtained total
extracts were rotary evaporated and separated over an activated Al2O3 column
using 9:1 (v/v) hexane:DCM and 1:1 (v/v) DCM:MeOH solvent mixtures into an
apolar and polar fraction, respectively. The polar fraction, containing the glycerol
dialkyl glycerol tetraether lipids (GDGTs), was dried under a pure N2 flow, dis-
solved ultrasonically in a 99:1 (v/v) hexane:isopropanol mixture at a concentration
of 2 mg/ml and filtered over an 0.45 μm mesh PTFE filter (Ø 4mm) prior to
HPLC/MS analysis. High-performance liquid chromatography/atmospheric pres-
sure chemical ionization mass spectrometry (HPLC/APCI-MS) analyses was be
performed on an Agilent 1100 series/Hewlett-Packard 1100 MSD series machine
equipped with an auto-injector and HP Chemostation software following62.

GDGTs were quantified by integration of peak areas and the TetraEther indeX
of tetraethers composed of 86 carbon atoms (TEX86) was determined63. In order to
assess the influence of soil-derived GDGTs on TEX86 values, the BIT index64 was
applied. Samples with BIT index > 0.3 were excluded from SST reconstruction65.
Absolute SSTs were reconstructed for 64 samples using TEX86

H core top
calibration equations66, which has a calibration error of 2.5 °C. The analytical error
of TEX86

H-based SST estimates was 0.07 °C based on duplicate analysis. We used
the TEX86

H calibration rather than other calibrations67 in order to remain
consistent with previous literature6 and as this has recently been shown to match
independent temperature estimates in tropical regions during the Eocene hothouse,
the warmest period in the Cenozoic68. Although the uncertainty of the calibration
used is 2.5 °C, comparisons with other proxy datasets6 suggests that TEX86

sometimes can overestimate SSTs, or have a seasonal bias, e.g., toward summer
temperatures. Nevertheless, even considering this, the here presented SST estimates
of up to 38 °C do suggest hot tropical temperatures well above 30 °C. A level-by-
level comparison of TEX86 values and G/A-ratios based on 42 samples supports a
general link between SSTs and gross vegetation patterns (Supplementary Fig. 3).

For compound-specific carbon isotope measurements, apolar fractions were
treated using an Ag-Silica column with hexane and subsequently ethyl acetate to
gain a mostly n-alkane pure fraction, which was evaporated under N2 stream
followed by dissolution in 25–50 µl hexane. For measuring the δ13C composition of
individual n-alkanes, 1 ml was injected into the gas chromatograph isotope ratio
mass spectrometer (Agilent 6890N GC coupled to a Thermo Delta V advantage
IRMS), equipped with a fuse silica capillary column coated with CP-Sil5, with
helium used as a carrier gas. The oven was programmed at a starting (injection)
temperature of 70 °C, which rose to 130 °C at 20°/min and then 320° at 4°/min, at
which it was maintained for 20 min. Values are expressed in conventional delta

notation relative to the Vienna-Pee Dee Formation belemnite (VPDB)
international standard, in per mil (‰). All biomarker analyses were carried out at
the NIOZ (Royal Netherlands Institute of Sea Research, The Netherlands).

Data availability
All data generated and/or analyzed in this study are included in this published article and
its supplementary information file, and are also available from the corresponding author
on reasonable request.
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