
HAL Id: hal-01884772
https://hal.sorbonne-universite.fr/hal-01884772v1

Submitted on 1 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modular static analysis of string manipulations in C
programs

Matthieu Journault, Antoine Miné, Abdelraouf Ouadjaout

To cite this version:
Matthieu Journault, Antoine Miné, Abdelraouf Ouadjaout. Modular static analysis of string manip-
ulations in C programs. SAS 2018, Aug 2018, Freiburg im Breisgau, Germany. �hal-01884772�

https://hal.sorbonne-universite.fr/hal-01884772v1
https://hal.archives-ouvertes.fr

Modular static analysis of string manipulations
in C programs?

Matthieu Journault, Antoine Miné, Abdelraouf Ouadjaout

Sorbonne Université, CNRS,
Laboratoire d’Informatique de Paris 6, LIP6,

F-75005 Paris, France
(matthieu.journault‖antoine.mine‖abdelraouf.ouadjaout)@lip6.fr

Abstract. We present a modular analysis able to tackle out-of-bounds
accesses in C strings. This analyzer is modular in the sense that it infers
and tabulates (for reuse) input/output relations, automatically parti-
tioned according to the shape of the input state. We show how the
inter-procedural iterator discovers and generalizes contracts in order to
improve their reusability for further analysis. This analyzer was imple-
mented and was able to successfully analyze and infer relational contracts
for functions such as strcpy, strcat.

1 Introduction

1while (*q != ’\0’) {
2*p = *q;
3p++;
4q++;
5}
6*p = *q;

Program 1.1: strcpy

Abstract interpretation [9] enables the development of
sound static analyzers that infer and prove invariants
on the set of states reachable in a program. Consider
for instance the strcpy function in C, shown in Pro-
gram 1.1. This function is often called and may cause
out-of-bounds errors. Therefore the implementation of
a modular static analyzer able to infer and prove contracts on such functions
without losing precision would yield a scalable analyzer able to prove the absence
of buffer overruns in C projects manipulating strings.

In a C string, a ’\0’ character designates the end of the string. Henceforth
the length of a string is defined to be the index of the first ’\0’ character
appearing in the string. As emphasized in Program 1.1, the correctness of a string
manipulating program (in the sense that it does not yield an out of memory
access) depends upon the length and the allocated size of the buffer in which it
is contained. Therefore in the fashion of [24] we summarize strings by two values:
the position of the first ’\0’ character and the buffer size.

The fragment of C on which we want to perform modular analysis supports
string manipulations, unions, structures, arrays, memory allocations (static and
dynamic), pointer casts, function calls, Accordingly we need to build our

? This work is supported by the European Research Council under Consolidator Grant
Agreement 681393 – MOPSA.

analyzer, that manipulates predicates and can perform modular analysis, upon
an existing analyzer able to deal with low level features of C.

An analyzer computing invariants by induction on the syntax of programs
requires abstract transformers for function calls. A straightforward way to achieve
this, provided that there is no recursivity, is to analyze the body of the function at
each call site. Therefore a way to improve scalability is to design modular analyzers
able to reuse previous analysis results so that reanalysis is not always needed (as
emphasized in [11]). As an example, in a project containing an incrementation
function, we want to be able to express and to infer that ∀x, incr(x) = x + 1.
Once this relation discovered, no further analysis of the body of incr is required.
Abstract interpretation is always sound and inferred invariants describe an over-
approximation of the reachable set of states. Therefore the use of input/output
relations discovered on statements must yield an over-approximation. Nonetheless
we do not want to give up too much precision to achieve scalability. This was
done by using classical techniques to express input/output relations on numerical
variables as performed in [11], partitioning these relations according to symbolic
conditions in the abstract state as proposed by Bourdoncle [4], and generalizing
them using widening operations.

By mixing the idea of representing a string as its length using a numeric
abstraction and input/output relations, our analyzer is able to handle the strcpy
example. More precisely, consider that char* p points to some char[10] dest

string and char* q points to some char[20] src string with dest 6= src,
furthermore let variables oq, op denote the initial offset of p and q, variable lsrc
codes for the length of src, and variable adest denotes the size of the allocated
memory of the string pointed to by dest. Our analyzer is able to prove that
if lsrc < asrc and lsrc − oq < adest − op then no out of bounds access are
performed. Moreover enabling modular analysis would yield that lsrc = l′src and
ldest = l′src where primed variables (resp. unprimed variables) denote the state
at the beginning (resp. at the end) of the analysis of the body of the function.
Therefore these two relations state that the length of src was not modified by
the call to strcpy, while the length of dest is now that of src.

Outline. Section 2 describes the subset of C we wish to analyze, Sect. 3 defines
a low-level C abstraction upon which our analyzer is based, Sect. 4 details the
String abstract domain, Sect. 5 outlines the lifting of our analyzer to a modular
analysis, Sect. 6 contains a few remarks on the implementation of the analyzer.
Finally Sect. 7 gives an overview of related works, while Sect. 8 concludes.

Contributions. The main contributions of this article are : (1) The development
of a static analyzer able to reason on low level C, while performing higher level
abstractions (such as the String domain that will be presented thereafter) (2)
The lifting of this analyzer to a precise modular framework based on numerical
input/output relations [11], partitioning [4] and input generalizations.

int-type
∆
= s8 | s16 | s32 | s64
| u8 | u16 | u32 | u64

scalar-type
∆
= int-type | ptr

type
∆
= scalar-type
| type[n] n ∈ N
| struct{u0 : type, . . . , un−1 : type}
| union{u0 : type, . . . , un−1 : type}

lval
∆
= *scalar-typeexpr | v ∈ V

expr
∆
= cst cst ∈ N
| &lval
| expr � expr � ∈ {+,≤, . . . }

stmt
∆
= v = malloc(e)

v ∈ V, e ∈ expr
| type v v ∈ V
| · · ·

Fig. 1: The syntax of the C-- subset of C.

2 Syntax and concrete semantics

Syntax. We will thereafter call C-- the language defined in Figure 1 and denote
by V a set of variables. The description of Figure 1 omits some classical state-
ments but make precise some low-level features of the language. Note moreover
that int-types are denoted by their signededness (s for signed integers, u for
unsigned integers) and their length in bits, instead of char or unsigned long.
This transformation is made before the analysis, and depends on the platform.
Moreover, in order to simplify the presentation we will consider strings as arrays
of u8 (or unsigned char), results can be easily extended to arrays of s8 (char).

Cells. Our C-like language features a rich type system. In a classic way, we will
present the semantics of operations on scalar data-types: integers of various size
and pointers, and reduce structured data-types, such as arrays, struct and unions,
malloced blocks, to collections of scalar objects, we call cells. A simple solution
would be to use the type of a structured variable and decompose it statically into
such collections; left-values thus become access paths. Unfortunately, this static
view does not hold for programs that abuse the type system and access some
block of memory with various types, which is possible (and even common) in C

using union types and pointer casts. One solution would be to model the memory
as arrays of bytes or even bits, and synthesize non-byte access (for instance,
reading a 16-bit integer a would be expressed as a[0]+256*a[1]), but such a
complex modeling would put a great strain on numeric abstract domains and
cause huge precision losses. We thus rely on previous work [18], that proposes
to model memory blocks as collections of (possibly multi-byte) scalar cells, that
are inferred and maintained dynamically during the analysis, according to the
memory access pattern effectively employed by the program at run-time. For our
purpose, we can assume that all memory accesses have the form *τe, where τ is
a scalar type and e is a pointer expression using pointer arithmetic at the byte
level (this reduction can be performed statically as a pre-processing).

Remark 1. In addition to the definitions of Figure 1, we assume that we are given
a function typeof ∈ (V → type). The type of a variable is given by its declaration
in a C-- program. Moreover we assume given a sizeof function from type to N
that gives the size in bytes of each type (e.g. sizeof(int) = 4).

A cell denotes an addressable group of bytes to store a scalar value, it is represented
by a base variable (V), an integer coding for the offset of the cell (o), and the type

of the cell (t). Therefore we define the following set of cells: Cell ∆= {〈V, o, t〉 | V ∈
V, t ∈ scalar-type, 0 ≤ o ≤ sizeof(typeof(V)) − sizeof(t)}. By construction Cell
represents the set of all addressable memory locations. The abstract states we will
build contain a subset of those cells. Cells might denote overlapping portions of
the memory. In such cases the underlying state satisfies every constraint implied
by a cell : cells are understood conjunctively. Therefore removing cells induces a
loss of information. A key aspect of [18] we reuse is that new cells from Cell are
added to the current environment dynamically to account for the access patterns
encountered during the analysis, in a flow-sensitive way. As we do not rely on
static type information, which can be misleading in C, we can handle union types,
type-punning, and untyped allocated blocks transparently.

Concrete semantic. We will not detail here the complete concrete semantic of the
C-- language, however we give a definition of the set of concrete environments
using cells, noted E . An environment is a set of cells C and a function ρ mapping
each cell to a value. A value can be either a numerical value or a pointer. A
pointer is represented by: the base variable towards which it points and its offset.
The set of pointer Ptr is augmented with two special values: the NULL pointer

and the invalid pointer : Ptr ∆
= (V × Z) ∪ {NULL, invalid}

E ∆
=

⋃
C⊆Cell

{〈C, ρ〉 | ρ ∈ R ∆
= C → (N ∪ Ptr)}

3 Cell abstract domain

Let us consider the Cell abstraction [18], an abstract domain able to abstract
the semantic of C programs manipulating pointers. This abstract domain comes
with an abstract interpreter that can successfully analyze C programs with no
recursion and no dynamic memory allocation. The abstraction we propose here
is built upon the cell abstract domain, it extends this domain so as to handle
dynamic allocations and higher level string manipulations.

Pointers bases. When C ⊆ Cell is a set of cells, we define C to be the set of cells

denoting pointers : C
∆
= {〈V, o, t〉 ∈ C | t = ptr}. Upon this we define PC = C →

℘(V ∪ {NULL, invalid}). PC represents the possible memory locations pointed
to by cells representing pointers (note that PC only accounts for the base variable
that is pointed to and not for the offset).

Numerical domain. We assume that for any set of variables V we are given
a numerical domain N]

V abstracting ℘(V → N) with concretization function

γV ∈ N]
V → ℘(V → N). For example we can use the polyhedra domain [15] or the

interval domain [10]. These domains come with an environment change operator

�|V such that: ∀V ′, if S] ∈ N]
V′ then S]|V ∈ N

]
V . S]|V is obtained by removing all

variables not in V and adding all variables in V but not in V ′ (with unconstrained
value), so that the result is defined exactly over the variable set V. Furthermore

we assume given a function range(x, S]V), yielding an interval of N containing all

concrete values associated to variable x in N]
V . For any subset C ⊆ Cell we can

therefore rely on a numerical abstraction N]
C abstracting ℘(C → N). We give the

numerical domain of our abstraction a double role:
– For a cell containing a pointer, the variable (from the numerical domain)

assigned to this cell codes for possible offsets of the pointer (thus paired with
information from PC we will describe completely the pointer contained in
the cell)

– For other cells (containing e.g. a u8, a s32) the variable (from the numerical
domain) codes for values contained in the cell.

Abstract states. We define the domain D]m with concretization γm ∈ D]m → E as:

D]m
∆
= {〈C,R], P 〉 | C ⊆ Cell, R] ∈ N]

C , P ∈ PC}

γm〈C,R], P 〉
∆
= 〈C, {ρ′ ∈ R,∃ρ ∈ γC(R]), ∀c = 〈V, o, t〉 ∈ C,ρ′(c) = ρ(c) if t 6= ptr

ρ′(c) = 〈p, ρ(c)〉 if t = ptr ∧ p ∈ P (c) ∩ V
ρ′(c) = p if t = ptr ∧ p ∈ P (c) \ V

}〉

Example 1. Consider the abstract state: S] = 〈{〈a, 0,u64〉}, {〈a, 0,u64〉 = 232 +
2}, ∅〉. Moreover we assume that due to some cast operations, cells {〈a, 0,u32〉}
and {〈a, 4,u32〉} are needed (imagine for example the encoding in little-endian
of a pair of u32 as a u64). S] is equivalent to: 〈{〈a, 0,u64〉, 〈a, 0,u32〉, 〈a,
4,u32〉}, {〈a, 0,u64〉 = 232 + 2, 〈a, 0,u32〉 = 2 (= (232 + 2) mod 232)), 〈a, 4,
u32〉 = 1 (= (232 + 2) /232)}, ∅〉.

1int a = 1;
2int p = &a;
3*p = *p + 1;

Program 1.2:
Dereferencing

Abstract operators and abstract transformers. Abstract oper-
ators (join, meet, widening) are defined by first unifying the
operands, and then performing the operation in the underlying
unified numerical domain and pointer map. The unification
operator transforms two abstract elements into abstract ele-
ments with the same set of cells. This is done by adding cells in both elements
so that the resulting set of cells in both elements is the union of the initial
sets of cells. We do not give here the definition of all the abstract transformers
operating on our abstract states, however the following example emphasizes how
an abstract state is modified by expressions and statements of the C language. In
particular, we note that when cells are available, most expressions are treated as
expressions on a language where cells are the variables. When cells mentioned
in the expressions are not available, they are added to the set of cells of the
abstract state, by collecting information available in the overlapping cells, such
as joining two byte-cells to synthesize the initial value of a new u16-cell at the
same position.

Example 2. Consider Program 1.2, starting from > = 〈∅, ∅, ∅〉. The first statement
requires the existence of the cell a = 〈a, 0, s32〉. The set of cells constrained
by our abstract state is dynamically updated to mention a, yielding: 〈{a}, ∅,
∅〉, then we rewrite the statement in the following manner: a = 1. We execute
this statement in the underlying numerical domain, and get: 〈{a}, {a = 1}, ∅〉.
The second statement adds a new cell p = 〈p, 0,ptr〉 and an element to the
pointer map: 〈{a,p}, {a = 1,p = 0}, {p 7→ {a}}〉. Note that p = 0 codes for the
value of the offset of pointer p. Finally the expression *p of the third statement
is evaluated by following the P component of the abstract state, therefore the
statement is transformed into a = a + 1. Thus yielding: 〈{a,p}, {a = 2,p = 0},
{p 7→ {a}}〉. Henceforth, in order to clarify the presentation, a denotes 〈a, 0, τ〉
when τ is the declared type of variable a.

4 String abstract domain

4.1 Domain definition

The introductory example shows that describing a string by a set of cells (one
cell per character of the string) was usually not necessary to prove the absence
of buffer overrun in string manipulations. Therefore we propose to add to our
existing low-level abstraction of C--, an abstraction of strings that sums up all
of its characters into two variables, one coding for the length of the string and
the other for the allocated size of the buffer in which it is contained. Memory
blocks will therefore be abstracted either by the cell abstract domain or by the
string abstract domain. In order to simplify the presentation we assume given
a set of memory locations V for which we will use a string summary, however
this set can be dynamically modified and reductions could be proposed in order
to store information on some memory locations in both the String domain and
the Cell domain. We assume that for each memory location s ∈ V, we are given
two variables denoted sl and sa. Those variables code for the length and the
allocated size of the string, they will be added to the numerical domain of the
cell abstract domain so that we are able to describe relations between length of
variables and offsets of pointers. In the following V? denotes

⋃
s∈V{sa, sl}, this

is the set of all numerical variables needed to describe strings in V.

Definition of the String abstract domain. We define the String abstract domain

to be: S]m
∆
= {〈C,R], P 〉 | C ⊆ Cell \ {〈V, , 〉 | V ∈ V}, R] ∈ N]

C∪V? , P ∈ PC}.
This abstract domain is ordered by the same relation as the cell abstract domain:

vS]m
∆
=vD]m . We recall that vDm will test the inclusion of the two numerical

domains once cell sets have been unified, therefore our definition of S] vS]m S]′

amounts to verifying that the constraints on the string variables (sl and sa) are
stronger in the left member of the inequality.

Galois connection with the Cell abstract domain. The String abstract domain is
an abstraction of the Cell abstract domain. Indeed we forget information that do

not help us track the position of the first ’\0’ character. We define the Galois
connection between the Cell domain and the String domain using two functions :
to cell and from cell. The to cell(s, S]) function computes the range of sl in
the numeric abstract domain, for each possible length value we set the cells placed
before (resp. at) the length to [1; 255] (resp. 0), this yields an abstract element per
possible value in the range, those are then joined. Conversely from cell(s, S])
computes the minimum length value (the index of the first cell whose range
contains 0), and the maximum length value (the index of the first cell whose
range is exactly {0}), finally those constraints are added to the numerical domain.
If a string does not contain any ’\0’ character, we define its length to be the
allocated size of the buffer it is contained in. Both functions can be found in
Appendix A.1. With V = {s0, . . . , sn−1}, we can define:

γS]m,D]m(S]) = to cell(s0, . . . , (to cell(sn−1, S
])) . . .)

αS]m,D]m(S]) = from cell(s0, . . . , (from cell(sn−1, S
])) . . .)

Example 3. Consider the string abstract elements 〈∅, {sl = 2, sa = 4}, ∅〉 when
sizeof(type(s)) = 4. We have: γS]m,D]m = 〈{〈s, 0,u8〉, 〈s, 1,u8〉, 〈s, 2,u8〉}, {〈s, 2,
u8〉 = 0, 〈s, 0,u8〉 6= 0, 〈s, 1,u8〉 6= 0}, ∅}〉. The corresponding concrete state is
the set of states in which there is a memory location where the first two bytes are
non zero bytes, the third byte is set to zero and the fourth byte is unconstrained.

Remark 2. The interest of the definition of γS]m,D]m and αS]m,D]m is twofold: it
enables us to define the semantic of the String abstract domain, but we also
note that both functions to cell and from cell are computable. Therefore the
set of memory locations dealt with by each domain can easily evolve during the
analysis. Moreover with γS]m,D]m and αS]m,D]m being both computable, we can
define a reduction operator between the String abstract domain and the Cell
abstract domain. For efficiency reasons we can remove some information from the
Cell domain, knowing that information from the String domain can be brought
back to the Cell domain. This situation is similar to a reduction between octagons
and the, strictly less expressive, interval domain as proposed in [12].

4.2 Operators and transformers

Operators. As for the definition of the vS]m operator, the join (tS]m), meet (uS]m)

and widening (OS]m) of two abstract elements is defined by applying the according

operator in the underlying numerical abstract domain (after the addition on both
sides of potentially missing variables and the unification of the set of cells).

Example 4. Consider Program 1.1 of the introductory example where typeof(p) =

typeof(q) = u8*, if S]1 = 〈{p,q}, {p = 0,q = 0, srcl ≥ 0, srca ≥ srcl, destl ≥ 0,
desta ≥ destl}, {p 7→ {dest},q 7→ {src}}〉 is the abstract state from which we

start the analysis then S]2 = 〈{p,q}, {p = 1,q = 1, srcl ≥ 1, srca ≥ destl,
destl ≥ 1, desta ≥ 1, desta ≥ destl}, {p 7→ {dest},q 7→ {src}}〉 is the
abstract state after one analysis of the body of the while loop (constraint

before(e, s, S]) =

{([1; 255],

〈C,R] u {0 ≤ e, e < sl, e < sa}, P 〉}

function tests on offset evaluation

before 0 ≤ o ∧ o < l ∧ o < a [1; 255]

at 0 ≤ o ∧ o = l ∧ o < a 0

after 0 ≤ o ∧ o > l ∧ o < a [0; 255]

eerror o > a ∨ o < 0 ∅

Fig. 2: Evaluation of a dereferencing.

srca ≥ destl comes from the fact that we collect error free executions). There-
fore our analyzer has to perform the join of those two abstract states before
reanalyzing the body of the loop. S]1 tS]m S]2 = 〈{p,q}, {p = q,p ≤ 1,p ≥ 0,

p ≤ destl, desta ≥ destl,p ≤ srcl,p ≤ srca}, {p 7→ {dest},q 7→ {src}}〉.

The state transformations induced on our abstract state by the semantic of
the C language is mainly dealt with by the Cell abstraction. In order to ease
the presentation of the relation between the Cell abstraction and the String
abstraction, we add expressions of the form @[v,e] with e ∈ expr and v ∈ V to
the C-- language. Such expressions denote pointers to variable v, with offset e:
((char *) &v) + e.

Example 5. We want to perform the analysis of the statement

stmt = *u8t = *u8(p + *s32(&u + 2))

(where typeof(p) = typeof(t) = u8*) in the following abstract state: S] = 〈{p,
〈u, 2, s32〉, t}, R], {p 7→ s′, t 7→ s}〉 where R] is a numerical abstract state built
from the set of constraints we do not need to explicit for this example. The Cell
abstraction rewrites stmt into: *u8@[s,t] = *u8(@[s

′,p + 〈u, 2, s32〉]). The
operations that remain to be defined are therefore:

S]J*τ@[s,e1] = e2K(S]) where s ∈ V, e1 ∈ expr, e2 ∈ expr, τ ∈ scalar-type
E]J*τ@[s,e]K(S]) where s ∈ V, e ∈ expr, τ ∈ scalar-type

Abstract evaluation. Let us first consider the evaluation of the dereferencing
of a pointer to a string. The analyzer we want to define performs partitioning
on the abstract state during the evaluation of expressions, therefore evaluation
results are pairs (evaluated expression× abstract state). This set is understood
disjunctively and greatly improves the precision of the analyzer. The result of
an evaluation is therefore a finite element of ℘(exp × S]m). Five cases can be
distinguished during the evaluation of *τ@[s,e]:
– before: τ = u8 and @[s,e] points before the first ’\0’ character. In this

case the evaluation can yield any character that is not ’\0’.
– at: τ = u8 and @[s,e] points at the first ’\0’ character. In this case the

evaluation yields ’\0’.
– after: τ = u8 and @[s,e] points after the first ’\0’ character. In this case

the evaluation can yield any character.
– eerror: τ = u8 and @[s,e] points after the end of the allocated memory. In

such a case we generate an out of bounds error.

function tests on offsets tests on rhs transformation

set0 o ≥ 0 ∧ o ≤ l ∧ o < a c = 0 l← o

setnon0 o ≥ 0 ∧ o = l ∧ o < a c 6= 0 l← [o + 1; a]

unchanged o ≥ 0 ∧ o < l ∧ o < a c 6= 0

unchanged o ≥ 0 ∧ o > l ∧ o < a >
l unchanged o ≥ 0 ∧ o > l ∧ o + r ≤ a >
forget o ≥ 0 ∧ o ≤ l ∧ o + r ≤ a > l← [o; a]

serror o + r > a ∨ o < 0 > out of bounds

Fig. 3: Summary of transformations.

– τ 6= u8, in this case we over-approximate the evaluation by the range of the
type τ .
Figure 2 summarizes those cases and gives the example of the before function.

In this table o is the offset of the pointer, l and a are the length and the
allocated size of the string. The definition of these functions can be found in
in Appendix A.2. We can now define E]J*τ=u8@[s,e]K(S]) =

⋃
{before(e′, s,

S]) ∪ at(e′, s, S]) ∪ after(e′, s, S]) ∪ eerror(e′, s, S]) | (e′, S]) ∈ E]JeK(S])} and
E]J*τ 6=u8@[s,e]K(S]) = {(range(τ), S])}.

Abstract transformations. In order to complete the definition of our abstract
interpreter, we need to provide the abstract semantic of an assignment in a string
*τ@[s,e1] = e2. We can distinguish 6 cases in such an assignment:

– set0: τ = u8 and a character that appears before the first ’\0’ is assigned
to ’\0’, in which case we need to set the variable coding for the length of
the string to its new value (the offset of the pointer to the string).

– setnon0: τ = u8 and the first ’\0’ is replaced with a non-’\0’ character,
in which case we need to set the variable coding for the length of the string
to its new value (it can be anything greater than the offset of the pointer to
the string).

– unchanged: τ = u8 and we are performing an assignment that does not
change the position of the first ’\0’ character. Either because we are replacing
a character placed before the first ’\0’ character by a non-’\0’ character,
or because we are assigning a character after the position of the first ’\0’

character.
– l unchanged: τ 6= u8 and we are performing an assignment that does not

change the position of the first ’\0’ character: the only modified characters
are placed after the first ’\0’ character.

– forget: τ 6= u8 and the offset of the pointer is less than the length of the
string, in this case the position of the first ’\0’ character is greater than the
offset of the pointer.

– serror: The writing generates an out of bounds, in which cases we generate
an out of bounds warning.
Figure 3 summarizes these cases. In this table l and a denote respectively the

length and the allocated size of string s, o denotes the offset of the pointer, c
denotes the evaluated right-hand side of the assignment, and finally r denotes

sizeof(τ). The definitions of all these functions can be found in Appendix A.3
and they are similar to the definition of before in Figure 2. Using the 6 trans-
formations aforementioned we can now define:

S]J*τ@[s ∈ V,e1]=e2K(S]) =

•
⊔
{set0(s, e′1, e

′
2, S

]′′) t serror(s, e′1, 1, S
]′′) t unchanged(s, e′1, e

′
2, S

]′′)

t setnon0(s, e′1, e
′
2, S

]′′) | (e′1, S]′) ∈ E]Je1K(S]), (e′2, S]′′) ∈ E]Je2K(S]′)}
if τ = u8

•
⊔
{l unchanged(s, e′1, sizeof(τ), S]′) t forget(s, e′1, sizeof(τ), S]′)t

serror(s, e′1, sizeof(τ), S]′) | (e′1, S]′) ∈ E]Je1K(S])} if τ 6= u8

Example 6. Going back to Example 5, we now assume that R] is a numerical
abstract state built from the constraint set: {t < sa, t = sl,p + 〈u, 2, s32〉 < s′l,
s′l < s′a}. Moreover in the following S][E] denotes the abstract state S] in which
the numerical component has been extended with the constraints set E, and e
denotes the expression p + 〈u, 2, s32〉. E]J*(@[s′,e])K(S]) = {([1; 255], S][{e ≥
0, e < s′l, e < s′a}]), (0, S][{e ≥ 0, e = s′l, e < s′a}]), ([0; 255], S][{e ≥ 0, e > s′l,
e < s′a}])}. With a precise enough numerical domain (e.g. polyhedra), S][{e ≥ 0,
e = s′l, e < s′a}], S][{e ≥ 0, e > s′l, e < s′a}] and S][{e < 0 ∨ e ≥ s′a}] form empty
partitions, meaning that in this example, they represent impossible cases. For
similar reasons S]JstmtK(S]) will compute abstract elements that are reduced to
⊥ for functions set0, unchanged and serror. Therefore: S]JstmtK(S]) = 〈{p, 〈u,
2, s32〉, t}, R]′, {p 7→ s′, t 7→ s}〉 with R]′ = {t < sa, t + 1 ≤ sl,p + 〈u, 2, s32〉 <
s′l, s

′
l < s′a}. This assignment made our abstraction lose the position of the first

’\0’ character, as it wrote a non-’\0’ character in its place.

String declaration. When encountering a local variable declaration (u8 s[n]
with n ∈ N≥0 and s ∈ V) we can set the allocated size of the string to
n, and set the length to the range [0, n] as shown in the following example:
S]Ju8 s[27]K(〈∅, ∅, ∅〉) = 〈∅, {sl ≥ 0, sl ≤ 27, sa = 27}, ∅}〉. The formal defini-
tion is straightforward (see Appendix A.4).

Example 7. Consider again Program 1.1 from the introductory example, analyzed
starting from an abstract state S] = 〈{p,q}, {p = 0,q = 0, 0 ≤ sl < sa,
0 ≤ s′l < s′a}, {p 7→ s,q 7→ s′}〉. Note that the input state contains the information
that p and q do not alias. The numerical invariant (the rest of the abstract state
is not modified by the analysis) found at the beginning of line 2 is: {−p + q = 0,
s′l ≥ p + 1, s′a − s′l ≥ 0,p ≥ 0, sl ≥ p}. An out of bounds error is generated at
line 3, indeed in the starting abstract state, no hypothesis is made on the relation
between s′l and sa therefore there might be a buffer overrun at line 3. Finally
the numerical invariant discovered at the end of line 6 is: {s′l = sl,q = sl,p = sl,
s′a ≥ sl + 1, sl ≥ 0, sa ≥ sl + 1}, thus showing that we were able to infer that the
two strings pointed to by p and q have the same size at the end of the analysis.

1void aux1(char** x,int e) {

2
1
*x = malloc(e);

3}
4void aux2(char** x,int e) {

5
2
*x = malloc(e);

6}
7int main() {
8char* x;
9aux1(&x,10); aux1(&x,20);
10aux1(&x,30); aux2(&x,40);
11*x = ’\0’;
12}

Program 1.3: Dynamic
memory allocation

Dynamic memory allocation. As mentioned
in Figure 1, we allow dynamic memory alloca-
tions. The Cell abstract domain as presented in
Section 3 is not able to handle those. To model
dyamic memory allocation, we consider a finite
set A of heap addresses, derived from the al-
location site using recency abstraction [2]: for
each allocation site a, one abstract address, as,
is used to model the last block allocated at a,
and another one, aw, to summarize the blocks
allocated previously at a. While we perform
weak updates on the later, we can perform strong updates on the former, which
ensures a gain in precision.

Example 8. Consider now Program 1.3, and assume that as and aw (resp. bs

and bw) are addresses for which we perform strong and weak update at program
point 1 (resp. 2). Starting from > the analysis of the body of function main,
we get: 〈{x}, {0 ≤ awl ≤ awa , 10 ≤ awa ≤ 20, 0 ≤ asl ≤ asa, a

s
a = 30, bsa = 40, bsl =

0,x = 0}, {x 7→ bs}〉 This state gives us that x points to a memory location
starting from a ’\0’ character. We also note that information about the two first
allocations made at program point a have been collapsed into the aw address.

5 Modular analysis

1void strcat(char* dest , char* src)
2{
3int i; int j;
4for (i=0; dest[i]!=’\0’;i++) ;
5for (j=0; src[j]!=’\0’;j++)
6dest[i+j] = src[j];
7dest[i+j] = ’\0’;
8}

Program 1.4: strcat

In a C project that manipulates strings,
calls to functions such as strcpy, strcat
are performed many times and at many
different call sites. Performing a modular
analysis of such functions and inferring a
summary that is reusable at subsequent
calls has potential to greatly improve scal-
ability. We chose to perform our modular
analysis in a classic top-down fashion. This ensures that when a function is ana-
lyzed, we already have some information on its context (in particular, the possible
pointer aliasing and variable range), which helps maintaining the precision of the
function analysis. Therefore we would like to be able to infer a partial function
that, given an input abstract state and a statement, can produce an output
abstract state that is an over approximation of the abstract state we would have
obtained by performing the analysis of the statement. Such a function will be
called a summary. Note that substituting some of the statement analysis by a
call to a summary is sound.

Example 9. Given stmt ∈ stmt, (I], O]) ∈ (S]m × S]m) such that S]JstmtK(I]) v
O], let us define R] = λ(stmt′, S]), if stmt′ = stmt ∧ S] v I] then O] else
undefined. R] is a summary function, built using an input/output relation. This
can be easily generalized using a set of input/output relations. Moreover we can

remove constraints on I] before the analysis of the body of the function in order
to improve the reusability of the input/output relation obtained, the drawback
being that the corresponding output abstract value will be greater thus losing
precision. Furthermore computing and storing new (I], O]) relations whenever
no existing summary could be used can cause the computation of input/output
relations that will never be reused, hence the importance of generalizing I] in the
direction of newly discovered call contexts, so as to tailor summaries to actual
call sites abstract values.

Remark 3. Consider the statement stmt = x = x + 1, and assume our abstract
domain to be the interval domain [6]. For every input state of the form {x 7→
[α, β]}, the output state will be of the form {x 7→ [α + 1, β + 1]}. A summary
function R] defined on {stmt} × S]m in the manner of Example 9 (with a finite
list of input/output relations) will never yield an analyzer able to express that for
every input [γ, δ] the output is [γ + 1, δ + 1]. Indeed the interval domain would
produce a set of input/output relations {[αi, βi] 7→ [αi + 1, βi + 1]}, and for an
input [γ, δ] ([α0, β0] we could only use as output abstract state [α0 + 1, β0 + 1],
thus losing information compared to [γ + 1, δ + 1].

Using relational domains. Relational domains are able to express relations of the
form y = x+ 1. Such a relation can grasp the semantic of stmt from the previous
remark. We use the relational aspect of the numerical domain to express relations
not only between the values of variables, but also between their values and their
input values. This idea was introduced in [7] and is also used in [11]. Consider
two sets of variables V = {x, y} and V ′ = {x′, y′} and the abstract element:
S] = {x = y′, y = x′}. Moreover assume at input that {x = 3, y = 5}, then using
the meet provided by the numerical domain in order to instantiate S] with input
constraints: {x = 3, y = 5}|{x′,y′, x,y} u {x = y′, y = x′} = {x = 3, y = 5, x′ =
5, y′ = 3}, and finally {x = 3, y = 5, x′ = 5, y′ = 3}|{x,y} = {x′ = 5, y′ = 3}.
This example emphasized how relational domains are used to express precise
input/output relations between numerical variables.

Building the summary function. We feel that two analyses starting from different
aliasing patterns should be kept separated in order to improve precision. Indeed,
analyzing strcat(p,q) (see Figure 1.4) without any hypothesis on the possible
aliasing of p and q would result in a huge loss of precision and in false alarms being
raised at every call (p and q might be aliased, which would raise a segmentation
fault). Therefore we must use partitioning of the abstract domain, performing an
analysis for every possible aliasing scheme would result in a combinatorial blow up,
moreover we might perform analysis for partitions that will never occur at any call
site. For these reasons we will only analyze partitions on demand. Our goal is there-
fore to build a summary that is a set of numerical relations such as defined above.
The decision to extend a partition or to build a new one will be based on the ”sym-
bolic” part of the abstract domain. The heuristic we chose was to separate abstract
states with different aliasing, but also those where the unification of the cell or
string sets would induce major differences in the numerical domain set. Moreover

the summary function is extended on demand, meaning that when the analyzer en-
counters a function call, it tries to use an existing relation and if none can be found
it builds a new relation or it generalizes an existing one. Generalization of a rela-
tion is done in the following way: assume known a relation with input I] and an ab-
stract state S], such that S] 6v I]. If the analyzer deems that S] and I] should be
in the same relation (e.g. because they have the same aliasing), we perform a new
analysis of the function starting from I]O(S]tI]), that is a generalization, of I], by
the mean of the widening operator. This ensures that, given an aliasing, a function
will be analyzed only a finite number of times and that the input of the obtained
relation is tailored to the actual values at call site. Building numerical relations
does not require a transformation of the intra-procedural iterator. Indeed variables
are added to the numerical domain with equality constraints between primed and
unprimed variables. Analysis is then performed as if primed variables were not
present in the numerical domain and they are removed after storing the summary.

Example 10. Consider the statement s32 x = a + 1 (with typeof(a) = s32),
from input state: 〈{a′}, {a′ = a,a ≥ 0}, ∅〉. The output state is then 〈{a′,x′},
{a′ = a,x′ = a + 1,a ≥ 0}, ∅〉. From this we deduce the relation: let I]α be some
input state, if the set of cells of I]α is precisely {a} and if the numerical domain
of I]α satisfies the condition a = α and if the pointer map is empty, then the best
possible output state is 〈{a,x}, {a = α,x = α+ 1}, ∅〉.

Example 11. Consider now the function strcat of Figure 1.4. The modular
analysis of this function yields a relation stating that:
if dest points (at offset 0) to some memory location s, with length sl and

allocated size sa, and if src points (at offset 0) to some memory location t
with equivalent length and allocated size definition and t 6= s

then {s′l = tl + sl, s
′
a = sa, t

′
a = ta, t

′
l = tl, t

′
l ≥ 0, t′l ≤ t′a− 1, t′l ≤ s′l, s′l ≤ s′a− 1}

Therefore thanks to the s′l = tl+sl relation, if another call to strcat is performed
in a state where sl = α and tl = β for some α and β, our analyzer, can conclude
(without reanalysis) that the length of the string tl at the end of the analysis is
α+ β.

Remark 4. The following improvements were added:
– in order to improve reusability, we increase the input state by removing some

memory blocks (meaning we leave out constraints on these regions) from the
input state. This plays the role of the framing rule in separation logic. Note
that this improvement does not induce any precision loss.

– when a summary is created, some memory blocks are quantified universally,
therefore when trying to apply a summary we try to unify the memory blocks
from the actual input state with those of the summary input state.

6 Implementation

The analyzer was implemented in OCaml in the novel and still in development
Mopsa framework. Mopsa enables a modular development of static analyzers

defined by abstract interpretation. An analyzer is built by choosing abstract
domains, and combining them according to the user specification. Abstract
domains are either predefined (e.g. Cell abstract domain, loop iterators, . . .)
or user-defined (e.g. String abstract domain). The String abstract domain was
added to the library of existing domains, and a new inter-procedural iterator was
added to implement the modular analysis presented in Section 5. The current
analyzer is in development, it is able to analyze all C code fragments presented
in this article, but can not tackle complete realist C projects yet. To test our
modular string analysis, we thus considered the examples and benchmarks used
in previous works on string analysis [1], [16].

In related works, Allamigeon et al. mentioned in [1], Section 5, that the most
difficult example they had to deal with were calls to strcpy performed on string
placed in a structure, itself placed in a matrix, and accessed via pointer manipula-
tions (see Program 1.6, in Appendix B). This example was successfully analyzed
with the version of strcpy defined in Program 1.1 and with an alternate imple-
mentation found in Qmail (see Program 1.7), the second case was more complex
and required the use of partitioning. Our ability to easily deal with such manipu-
lations comes from the use of the Cell domain to deal with low-level features of C.

1char * insert_long (cp)
2char *cp;
3{
4char tbuf[BUFSIZ];
5int i;
6for (i=0;& buf[i]<cp;++i)
7tbuf[i] = buf[i];
8strcpy (&tbuf[i],"(long)");
9strcpy (&tbuf[i + 6], cp);
10strcpy(buf , tbuf);
11return cp + 6;
12}

Program 1.5: insert long

from web2c

We are able to tackle most of the programs
from web2c mentioned in [16] (7 out of 9, pro-
grams that could not be analyzed are due to the
fact that we do not have yet implemented all the
features of the C language). The precision of this
analysis (number of errors and false alarms) is
similar to that of [16] and the execution time of
the analyzer was always below 2 seconds. As an
example consider Prog. 1.5, starting the analysis
under the conditions that: cp points to buf, a
buffer of size BUFSIZ before the first ’\0’ charac-
ter produces alarms at line 9 and 10. Indeed under such hypothesis strcpy tries
to write outside of tbuf. Note moreover that both [1] and [16] defined special
abstract transformations for strcpy, whereas we perform a modular analysis of
the function.

7 Related works

Modular Static Analysis. Cousot and Cousot mentioned in [11] the importance
of performing modular analyses and described several methods to design them.
An efficient way is to use user-provided contracts as in [17]. Our goal was to infer
contracts, as in [14], therefore works closest to ours would be the input/output
inference performed by Bourdoncle in [4], however this method was limited
to non-relational (interval) domains, unlike our method, which is thus more
expressive (see Remark 3). In [11], numerical relations are used to represent the
semantic of a set of statements, however this is limited to numerical programs
whereas we extend the method to consider both numbers and pointers, including

pointer arithmetic. The analyzer proposed by Sotin and Jeannet in [23] is able
to infer input/output relations of the form proposed in Section 5. Nevertheless
they consider a subset of C that does not contain pointer arithmetic, union
types nor pointer casts. Müller-Olm and Seidl [19] and Sharma and Reps [20]
proposed domains specialized in the discovery of numerical input/output relations
on statements, in both cases the relations discovery is performed during the
analysis of the statement by a special domain. In Sec. 5 we mentioned that we
implemented a mechanism to infer framing in order to improve analysis reusability,
framing mechanisms are fundamentals in tools base on separation logic such as
Smallfoot [3] or Infer [5].

String analysis. One popular technique to avoid buffer overflows is dynamic
analysis. There is a long history of such technique (see [25] for some examples).
These methods induce an overhead cost and do not prevent program failures.
By contrast we employ static analysis. String are arrays of characters, therefore
analysis methods proposed in [13] and [8] could be used to design static analyzers
handling strings. The three following works are the closest to ours and all follow
the idea introduced in [24] to track the length of strings. Dor et al. [16] tackled
the problem by rewriting string manipulating statements into statements over
a numerical variable language, however this transformation induced the usage
of a number of variables quadratic in the number of strings present in the
analysis, in order to account for pointer aliasing. Simon and King [22] proposed
an analyzer for a sub-C language manipulating strings, and allowing dynamic
memory allocation, but some pointer manipulations could not be handled. They
improved their results in [21], the string domain presented here is a combination
of results from [21] and the cell abstract domain, moreover we provided a way to
dynamically balance strings dealt with by the string abstract domain and by the
cell domain. Additionally string length and allocated size are bound to pointers
(whereas we bind them to the actual memory location containing the string),
and this approach seems to prevent the modular integration of this domain in
a full C language analyzer. Allamigeon et al. [1] also proposed an analyzer that
keeps track of the position of the first ’\0’ character, however their analysis is
non-relational, can not handle arbitrary pointer cast, and uses static information
on string length, therefore preventing the domain reusability for dynamically
allocated strings. We believe that our analysis is the first one that is both modular,
able to reason both on the C at a low-level (including pointer casts and unions),
and at a higher-level (on strings using dedicated abstractions).

8 Conclusion

In this article we proposed an abstract domain able to tackle C string of parametric
size, built as an add-on to an existing domain [18] capable of dealing with most
of the features of the C language. We have shown how our analyzer can be
tuned dynamically (by choosing whether the String or Cell domain should deal
with certain memory regions, by changing the partitioning heuristics in the

inter-procedural iterator or by changing the underlying numerical domain) so as
to adjust its precision. Upon the aforementioned analyzer we defined an inter-
procedural iterator designed to increase statement analysis reusability without
having to lose precision.

References

1. Xavier Allamigeon, Wenceslas Godard, and Charles Hymans. Static analysis of
string manipulations in critical embedded C programs. In Kwangkeun Yi, editor,
Static Analysis, 13th International Symposium, SAS 2006, Seoul, Korea, August
29-31, 2006, Proceedings, volume 4134 of Lecture Notes in Computer Science, pages
35–51. Springer, 2006.

2. Gogul Balakrishnan and Thomas W. Reps. Recency-abstraction for heap-allocated
storage. In Kwangkeun Yi, editor, Static Analysis, 13th International Symposium,
SAS 2006, Seoul, Korea, August 29-31, 2006, Proceedings, volume 4134 of Lecture
Notes in Computer Science, pages 221–239. Springer, 2006.

3. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular
automatic assertion checking with separation logic. In Frank S. de Boer, Marcello M.
Bonsangue, Susanne Graf, and Willem P. de Roever, editors, Formal Methods for
Components and Objects, 4th International Symposium, FMCO 2005, Amsterdam,
The Netherlands, November 1-4, 2005, Revised Lectures, volume 4111 of Lecture
Notes in Computer Science, pages 115–137. Springer, 2005.

4. François Bourdoncle. Abstract interpretation by dynamic partitioning. J. Funct.
Program., 2(4):407–423, 1992.

5. Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter Hooimei-
jer, Martino Luca, Peter W. O’Hearn, Irene Papakonstantinou, Jim Purbrick, and
Dulma Rodriguez. Moving fast with software verification. In Klaus Havelund,
Gerard J. Holzmann, and Rajeev Joshi, editors, NASA Formal Methods - 7th
International Symposium, NFM 2015, Pasadena, CA, USA, April 27-29, 2015, Pro-
ceedings, volume 9058 of Lecture Notes in Computer Science, pages 3–11. Springer,
2015.

6. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proceedings of the Second International Symposium on Programming, pages
106–130. Dunod, Paris, France, 1976.

7. P. Cousot and R. Cousot. Static determination of dynamic properties of recur-
sive procedures. In E.J. Neuhold, editor, IFIP Conf. on Formal Description of
Programming Concepts, St-Andrews, N.B., CA, pages 237–277. North-Holland,
1977.

8. Patrick Cousot. Verification by abstract interpretation. In Nachum Dershowitz,
editor, Verification: Theory and Practice, Essays Dedicated to Zohar Manna on the
Occasion of His 64th Birthday, volume 2772 of Lecture Notes in Computer Science,
pages 243–268. Springer, 2003.

9. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In Robert M. Graham, Michael A. Harrison, and Ravi Sethi, editors, Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
Los Angeles, California, USA, January 1977, pages 238–252. ACM, 1977.

10. Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of
generalized type unions. In Language Design for Reliable Software, pages 77–94,
1977.

11. Patrick Cousot and Radhia Cousot. Modular static program analysis. In R. Nigel
Horspool, editor, Compiler Construction, 11th International Conference, CC 2002,
Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings, volume 2304 of
Lecture Notes in Computer Science, pages 159–178. Springer, 2002.

12. Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival. Combination of abstractions in the astrée
static analyzer. In Mitsu Okada and Ichiro Satoh, editors, Advances in Computer
Science - ASIAN 2006. Secure Software and Related Issues, 11th Asian Computing
Science Conference, Tokyo, Japan, December 6-8, 2006, Revised Selected Papers,
volume 4435 of Lecture Notes in Computer Science, pages 272–300. Springer, 2006.

13. Patrick Cousot, Radhia Cousot, and Francesco Logozzo. A parametric segmentation
functor for fully automatic and scalable array content analysis. In Thomas Ball and
Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January
26-28, 2011, pages 105–118. ACM, 2011.

14. Patrick Cousot, Radhia Cousot, and Francesco Logozzo. Precondition inference
from intermittent assertions and application to contracts on collections. In Ranjit
Jhala and David A. Schmidt, editors, Verification, Model Checking, and Abstract
Interpretation - 12th International Conference, VMCAI 2011, Austin, TX, USA,
January 23-25, 2011. Proceedings, volume 6538 of Lecture Notes in Computer
Science, pages 150–168. Springer, 2011.

15. Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Alfred V. Aho, Stephen N. Zilles, and Thomas G.
Szymanski, editors, Conference Record of the Fifth Annual ACM Symposium on
Principles of Programming Languages, Tucson, Arizona, USA, January 1978, pages
84–96. ACM Press, 1978.

16. Nurit Dor, Michael Rodeh, and Shmuel Sagiv. Cleanness checking of string ma-
nipulations in C programs via integer analysis. In Patrick Cousot, editor, Static
Analysis, 8th International Symposium, SAS 2001, Paris, France, July 16-18, 2001,
Proceedings, volume 2126 of Lecture Notes in Computer Science, pages 194–212.
Springer, 2001.

17. Manuel Fähndrich and Francesco Logozzo. Static contract checking with abstract
interpretation. In Bernhard Beckert and Claude Marché, editors, Formal Verification
of Object-Oriented Software - International Conference, FoVeOOS 2010, Paris,
France, June 28-30, 2010, Revised Selected Papers, volume 6528 of Lecture Notes
in Computer Science, pages 10–30. Springer, 2010.

18. Antoine Miné. Field-sensitive value analysis of embedded C programs with union
types and pointer arithmetics. In Mary Jane Irwin and Koen De Bosschere,
editors, Proceedings of the 2006 ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES’06), Ottawa, Ontario, Canada,
June 14-16, 2006, pages 54–63. ACM, 2006.

19. Markus Müller-Olm and Helmut Seidl. Analysis of modular arithmetic. ACM
Trans. Program. Lang. Syst., 29(5):29, 2007.

20. Tushar Sharma and Thomas W. Reps. A new abstraction framework for affine
transformers. In Francesco Ranzato, editor, Static Analysis - 24th International
Symposium, SAS 2017, New York, NY, USA, August 30 - September 1, 2017,
Proceedings, volume 10422 of Lecture Notes in Computer Science, pages 342–363.
Springer, 2017.

21. Axel Simon. Value-Range Analysis of C Programs: Towards Proving the Absence
of Buffer Overflow Vulnerabilities. Springer, 2008.

22. Axel Simon and Andy King. Analyzing string buffers in C. In Hélène Kirchner and
Christophe Ringeissen, editors, Algebraic Methodology and Software Technology,
9th International Conference, AMAST 2002, Saint-Gilles-les-Bains, Reunion Is-
land, France, September 9-13, 2002, Proceedings, volume 2422 of Lecture Notes in
Computer Science, pages 365–379. Springer, 2002.

23. Pascal Sotin and Bertrand Jeannet. Precise interprocedural analysis in the presence
of pointers to the stack. In Gilles Barthe, editor, Programming Languages and
Systems - 20th European Symposium on Programming, ESOP 2011, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS
2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings, volume 6602 of
Lecture Notes in Computer Science, pages 459–479. Springer, 2011.

24. David A. Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A first
step towards automated detection of buffer overrun vulnerabilities. In Proceedings
of the Network and Distributed System Security Symposium, NDSS 2000, San Diego,
California, USA. The Internet Society, 2000.

25. John Wilander and Mariam Kamkar. A comparison of publicly available tools for
dynamic buffer overflow prevention. In Proceedings of the Network and Distributed
System Security Symposium, NDSS 2003, San Diego, California, USA. The Internet
Society, 2003.

A Tool functions

A.1 Definition of the Galois connection

In the following st denotes sizeof ◦ typeof.

to cell(s, S]) =

let 〈C,R], P 〉 = add cells({〈s, 0,u8〉, . . . , 〈s, st(s),u8〉}, S]) in

let [a; b] = range(sl, R
]) ∩ [0; st(s)] in

let (R]i)i∈[a;b] = R] u {〈s, 0,u8〉 6= 0, . . . , 〈s, i− 1,u8〉 6= 0, 〈s, i,u8〉 = 0} in

b⊔
j=0

〈C ′, R]j , P 〉

from cell(s, S]) =

let 〈C,R], P 〉 = add cells({〈s, 0,u8〉, . . . , 〈s, st(s),u8〉}, S]) in

let c≥ = min({i | 0 ∈ range(〈s, i,u8〉, R])} ∪ {st(s)}) in

let c≤ = min({i | {0} = range(〈s, i,u8〉, R])} ∪ {st(s)}) in

let C? = {〈s′, i, τ〉 ∈ C | s 6= s′} in

let R? = R u {sl ≥ c≥, sl ≤ c≤, sa = st(s)} in

〈C?, R?, P 〉

Using functions to cells and from cells, and under the hypothesis that V =
{s0, . . . , sn−1}, we can define the Galois connection between the Cell abstract

domain and the String abstract domain:

γS]m,D]m(S]) = to cell(s0, . . . , (to cell(sn−1, S
])) . . .)

αS]m,D]m(S]) = from cell(s0, . . . , (from cell(sn−1, S
])) . . .)

A.2 Definition of the evaluation of a dereferencing

before(e, s, S]) =

{([1; 255], 〈C,R] u {0 ≤ e, e < sl, e < sa}, P 〉}
at(e, s, S]) =

{(0, 〈C,R] u {0 ≤ e, e = sl, e < sa}, P 〉}
after(e, s, S]) =

{([0; 255], 〈C,R] u {0 ≤ e, e > sl, e < sa}, P 〉}
eerror(e, s, S]) =

let R]1 = R] u {e ≥ sa} tR] u {e < 0} in

test for out of bounds (R]1 vS]m ⊥)?

∅

A.3 Definition of the abstract postcondition of an assignment

set0(s, e1, e2, 〈C,R], P 〉) =

let R]1 = R] u {e1 ≥ 0, e1 ≤ sl, e1 < sa, e2 = 0} in

let R]2 = S]Jsl ← e1K(R
]
1) in

〈C,R]2, P 〉
setnon0(s, e1, e2, 〈C,R], P 〉) =

let R]1 = R] u {e1 ≥ 0, e1 = sl, e1 < sa, e2 6= 0} in

let R]2 = S]Jsl ← [e1 + 1; sa]K(R]1) in

〈C,R]2, P 〉
unchanged(s, e1, e2, 〈C,R], P 〉) =

let R]1 = (R] u {e1 ≥ 0, e1 < sl, e1 < sa, e2 6= 0})
t (R] u {e1 ≥ 0, e1 > sl, e1 < sa}) in

〈C,R]1, P 〉

l unchanged(s, e1, r, 〈C,R], P 〉) =

let R]1 = (R] u {e1 ≥ 0, e1 > sl, e1 + r ≤ sa}) in

〈C,R]1, P 〉
forget(s, e1, r, 〈C,R], P 〉) =

let R]1 = R] u {e1 ≥ 0, e1 ≤ sl, e1 + r ≤ sa} in

let R]2 = S]Jsl ← [e1; sa]K(R]1)in

〈C,R]2, P 〉
serror(s, e1, r, 〈C,R], P 〉) =

let R]1 = R] u {e1 ≥ sa} in

let R]2 = R] u {e1 < 0} in

test for out of bounds ((R]2 tS]m R]1) vS]m ⊥) ?

⊥

A.4 String declaration

S]Ju8 s∈ V[n ∈ N≥0]K(〈C,N], P 〉) = 〈C,S]Jsl ← [0, n]K(S]Jsa ← nK(N])), P 〉

B C programs

1 typedef struct {
2 char* f;
3 } s;
4 char buf [10];
5

6 void init(s* x) {
7 x[1].f = buf;
8 }
9 int main () {

10 s a[2][2];
11 s* ptr = (s*) &(a[1]);
12 init(ptr);
13 ptr = (s*) &(a[0]);
14 strcpy(a[1][1].f,"strcpy ok");
15 strcpy(a[1][1].f,"strcpy not ok");
16 }

Program 1.6: Program from [1]

1void strcpy(char* s, char* t)
2{
3for (;;) {
4if (!(*s = *t)) return ; ++s; ++t;
5if (!(*s = *t)) return ; ++s; ++t;
6if (!(*s = *t)) return ; ++s; ++t;
7if (!(*s = *t)) return ; ++s; ++t;
8}
9}

Program 1.7: Strcpy from Qmail

	Modular static analysis of string manipulations in C programs

