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Over the last 20 years, a significant part of the research in exploratory robotics partially

switches from looking for the most efficient way of exploring an unknown environment to

finding what could motivate a robot to autonomously explore it. Moreover, a growing

literature focuses not only on the topological description of a space (dimensions,

obstacles, usable paths, etc.) but rather on more semantic components, such as

multimodal objects present in it. In the search of designing robots that behave

autonomously by embedding life-long learning abilities, the inclusion of mechanisms of

attention is of importance. Indeed, be it endogenous or exogenous, attention constitutes

a form of intrinsic motivation for it can trigger motor command toward specific stimuli,

thus leading to an exploration of the space. The Head Turning Modulation model

presented in this paper is composed of two modules providing a robot with two different

forms of intrinsic motivations leading to triggering head movements toward audiovisual

sources appearing in unknown environments. First, the Dynamic Weighting module

implements a motivation by the concept of Congruence, a concept defined as an

adaptive form of semantic saliency specific for each explored environment. Then, the

Multimodal Fusion and Inference module implements a motivation by the reduction of

Uncertainty through a self-supervised online learning algorithm that can autonomously

determine local consistencies. One of the novelty of the proposed model is to solely

rely on semantic inputs (namely audio and visual labels the sources belong to), in

opposition to the traditional analysis of the low-level characteristics of the perceived data.

Another contribution is found in the way the exploration is exploited to actively learn the

relationship between the visual and auditory modalities. Importantly, the robot—endowed

with binocular vision, binaural audition and a rotating head—does not have access to

prior information about the different environments it will explore. Consequently, it will

have to learn in real-time what audiovisual objects are of “importance” in order to rotate

its head toward them. Results presented in this paper have been obtained in simulated

environments as well as with a real robot in realistic experimental conditions.
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1. INTRODUCTION

One of the most critical and important task humans are able
to do is to explore unknown environments, topologically or
semantically, while being able to create internal representations
of them for localization in it and interaction with it. Such
cerebral representations, or maps as it is often referred to O’Keefe
and Nadel (1978) and Cuperlier et al. (2007), enable humans
and animals in general to gather and organize perceptual cues
(visual, acoustic, tactile, olfactory, proprioceptive. . . ) in semantic
components. In parallel, in the mobile robotics community,
exploration of unknown environments has been one of the most
important fields studied, back to the artificial turtles of Walter
(1951) and later to the vehicles of Braitenberg (1986). Indeed,
being able for a mobile robot to simultaneously (i) map the world
it is exploring, (ii) locate itself in it, and (iii) trigger relevantmotor
actions for further exploration (i.e., the three key tasks to perform
in an exploration scheme according to Makarenko et al., 2002),
has shown to be a hard, but critical for robots’ existence, problem
to solve. While many artificial systems have been implemented
with the sole purpose of exploring the most of an environment
with only efficiency as a goal (Smith et al., 1987; Henneberger
et al., 1991; Montemerlo et al., 2002; Carrillo et al., 2015), some
more recent algorithms emerged on the basis of the precursor
works of Berlyne (1950, 1965), who stated that Motivation is a
fundamental mechanism in spontaneous exploratory behaviors
in humans. Following this principle, exploration would not be
driven by a goal defined by an external agent (such as the
human experimenter) but rather by internal goals defined by the
robot itself, that is intrinsic motivations (Ryan and Deci, 2000;
Oudeyer and Kaplan, 2008). Amongst them are the motivations
by Curiosity, first mathematically modeled by Schmidhuber
(1991), by Uncertainty (Huang and Weng, 2002), by Information
gain (Roy et al., 2001), or by Empowerment (Capdepuy et al.,
2007). Intrinsic motivation has extensively been used during the
last 20 years in several powerful systems, in particular by Oudeyer
et al. (2007) with the development of the Independent Adaptive
Curiosity algorithm (IAC) and the later updated systems (R-
IAC, Baranes and Oudeyer, 2009 and SAGG-RIAC, Baranes
and Oudeyer, 2010). Systems based on such motivations to
explore/understand an environment incorporate in particular
the notion of reward, a principle that is of high importance in
learning in primates and humans (Rushworth et al., 2011). As
such, these systems are particularly suited for adaptive life-long
learning robots for they bring to them wider motivations to react
to their environments: instead of compelling the robot to “explore
as quickly as possible every inch of the room”, it becomes closer
to “just be curious”. But beyond the topological characteristics
of unknown environments, their content also provides valuable
information for the robots internal representation of the world
(object formation, their affordance, etc.). Then, while one of the
most predominant issue in driving topological exploration is
to decide what is the next point or area to explore, semantical
exploration can be also introduced to determine what is the
next component to discover. Such considerations are close
to attentional behaviors, which have also been extensively
studied (Downar et al., 2000; Hopfinger et al., 2000; Corbetta

and Shulman, 2002; Corbetta et al., 2008; Petersen and Posner,
2012).

Among others, saliency is known to be a key feature in
attention thanks to its sensitivity to discontinuity in perceived
data. A significant literature can be found on saliency-driven
exploration: eye saccades modelization (Itti et al., 1998; Oliva
et al., 2003; Le Meur and Liu, 2015), detection of auditory
salient events (Kayser et al., 2005; Duangudom and Anderson,
2007), or audiovisual objects exploration (Ruesch et al., 2008;
Tsiami et al., 2016). However, most of these models propose
either a solely off-line solution requiring prior training from large
databases, or an immutable saliency characterization of events.
Moreover, the fact that these models only deal with the low-level
characteristics of the perceived data leads often to an absence
of wider context inclusion, be it through a form of memory,
or through the semantics of the events. In addition, saliency
can somehow differ from importance, depending on the task to
accomplish: attention can be driven by behaviorally important
but not salient stimuli while, on the other hand, very salient
stimuli but showing no behavioral importance can be disregarded
by the attentional networks (Corbetta and Shulman, 2002;
Indovina and Macaluso, 2007). However, it is worth mentioning
the interesting feature of the multimodal model of salience
of (Ruesch et al., 2008) as the implementation of an additional
inhibition map to the ones already used for saliency. Such map
promotes the exploration of unknown parts of the environments
and avoids deadlock situations caused by local minima. This
has also to be brought close to the notion of motivations for
exploration mentioned above since a form of Curiosity is here
implemented.

In this paper is presented a computational system, The Head
Turning Modulation system (HTM), which aims at giving a
mobile robot endowed with binaural hearing, binocular vision
and a rotating head, the ability to decide which audiovisual
sources present in unknown environments are worth the robot’s
attention. The principle of attention mentioned in this paper is
based on the prime definition originating from James (1890):
“Everyone knows what attention is. It is the taking possession
by the mind, in clear and vivid form, of one out of what seem
several simultaneously possible objects or trains of thought”.
More particularly, the proposed HTM system is dedicated to
the implementation of an overt and endogenous (Driver and
Spence, 1998; Le Meur et al., 2006) attentional reaction: the
head turning. This reaction, known to be one of the attentional
behavior involved in the mechanism of attention reorientation to
unpredictable stimuli (Thompson andMasterton, 1978; Corbetta
et al., 2008; Corneil et al., 2008), aims at bringing the visual
sensors in front of the sources of interest hence enabling the
robot to gather and analyze additional data. In addition, the
HTM system provides the robot with an adaptive enough
online learning behavior so that it can endlessly integrates
new useful information to its self-created audiovisual database.
However, this learning relying intensively upon the triggering
of head movements, it is also necessary for the robot to
understand when this knowledge is robust and relevant enough,
thus not requiring further motor reaction. The HTM is part
of a much wider system, implemented as the TWO!EARS
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software1, which aims at providing a computational framework
for modeling active exploratory listening that assigns meaning
to auditory scenes. More precisely, it consists in perceiving
and analyzing a multimodal world through a paradigm that
combines a classical bottom-up signal-driven processing step
together with a top-down cognitive feedback. In there, the
HTM is in charge of building an internal semantic map of the
explored environment, made of localized audiovisual objects
coupled with their respective semantic importance, the so-called
congruence.

In comparison with other works, the proposed system is
described as a real-time (Huang et al., 2006) and online behavioral
unit, which is always able to learn new situations while also taking
advantage of its previous experience of the past environments.
In terms of architecture, the proposed system receives data
from several “experts” from the TWO!EARS software, i.e.,
computational elements specialized in very particular tasks, such
as the identification of sounds or images. It means that the
HTM system is placed right after these experts, and thus receives
already highly interpreted data. Two main parts constitute
the system: an attentional component, the Dynamic Weighting
module (Walther and Cohen-Lhyver, 2014), and a learning
component, theMultimodal Fusion & Inferencemodule (Cohen-
Lhyver et al., 2015). On the one hand, the DW module is
dedicated to the analysis of perceived audiovisual objects through
the concept of Congruence, defined as a semantic saliency
and rooted in the principle of optimal incongruity (Hunt,
1965). The DW module implements a form of motivation by
surprise for it favors unexpected audiovisual events. On the
other hand, the MFI module learns the association between
auditory and visual data in order to make the notion of
multimodal object arise from potentially erroneous data of
the aforementioned experts. The MFI module implements a
form of motivation by reduction of uncertainty for it aims
at consolidating as much as needed its knowledge about the
audiovisual objects that the robot encounters. This learning
serves two purposes. First, it might improve the robustness
and reliability of the classification (Droniou et al., 2015).
Secondly, it allows the system to perform missing information
inference (Bauer and Wermter, 2013), as when an object is
placed behind the robot thus having only access to the auditory
information.

The paper is organized as follows. To begin with, the overall
TWO!EARS framework, together with the notations used all
along the paper, are introduced in a first section. On this
basis, the overall HTM system is thoroughly presented in a
second section: after a short insight into the HTM system
architecture, the way the DW module and the MFI module
operate is formalized. This section also presents their respective
evaluation in simulated conditions. Then, the combination of the
two modules is investigated and the evaluation of the approach
in real experimental conditions, that is including a real robot
in a real environment, is made. Finally, a conclusion ends the
paper.

1http://www.twoears.eu

2. CONTEXT AND NOTATIONS

This section presents the context in which is rooted the proposed
HTM system. All the forthcoming development has taken
place inside a specific computational architecture aiming at
modeling an integral, multimodal, intelligent and active auditory
perception and experience. This model physically uses two
human-like ears and visual inputs to make a mobile robot able
to interactively explore unknown environments, see Two!Ears
(2016b). Among other applications, this modular architecture
targets evaluation of bottom-up audiovisual processing coupled
with top-down cognitive processes. The proposed HTM system
relies also on this top-down and bottom-up paradigm providing
the robot with a reliable internal representation of its audiovisual
environment. To begin with, a short overview of the overall
architecture is proposed in a first subsection. A second subsection
introduces the notations used all along the paper, together with all
the notions required to understand the HTM system.

2.1. Global Framework
All the forthcoming developments have been conducted inside
the multilayer TWO!EARS architecture, see Figure 1A. This
figure highlights two different pathways: first, a classical bottom-
up processing way, where raw data coming from the sensors
(microphones and cameras) are first analyzed (features extraction
step), processed (through some specialized pattern recognition
algorithms) and interpreted (representation and decisional
layers). All of the above is computed by dedicated Knowledge
Sources (KS). The main contribution of this architecture is
that all these layers are highly and dynamically parameterizable:
for instance, most of the feature extractions parameters (for
audio data, one could cite the number of Gammatone filters
used, their repartition on the frequency scale, etc.) can be
changed on the fly. In general, the decision to change parameters
comes from upper layers, resulting in a top-down pathway, also
involving decisions concerning the movement of the robot itself.
Such decisions concerning the robot actions are of particular
importance, especially when dealing with attention reorientation
and scene understanding for they add adaptability to new and
unpredictable events.

The HTM system inside the TWO!EARS architecture shown
in Figure 1B is implemented as a Knowledge Source (KS). It
gets data from other KSs available in the architecture through
a blackboard (Schymura et al., 2014) (which can be seen, with
a rough simplification, as a data structure), and provides as an
output a proposition for a motor command, together with an
interpreted representation of the robot’s world. One originality
of the approach is that the HTM system is placed behind other
KS, thus not working directly with the features extracted from the
raw audio and visual signals. All of the KSs the HTM relies upon
contribute to the scene analysis and are fused by the HTM into
a representation of the world that spans wider in time than the
one provided by the individual KSs. This representation is made
of all the unknown environments explored by the robot, each
of them being characterized by the audiovisual objects observed
there in an allocentric representation, coupled with an additional
semantic layer formalized through the notion of Congruence.
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FIGURE 1 | TWO!EARS architecture. (A) On the basis on audio and visual data, features are extracted to provide a compact description of the data. Several audio and

visual experts (or Knowledge Sources, KS) exploit these features to analyze the signals. Each KS is specialized in one task: recognition of one type of sound,

localization, separation, etc. All experts share their knowledge through a blackboard system, thus producing an internal representation of the world. On this basis, the

overall system (but also individual KSs) can decide to modulate either the feature extraction step, or the action of the robot. The proposed HTM system, implemented

as a KS, is–among others–responsible for this last modulation. (B) Focus on the implementation of the HTM system inside this architecture.

The data used by the HTM, together with their notations are
described in the following section.

2.2. Definitions and Notations
The HTM system only relies upon KSs outputs to analyze
the unknown environments the robot explores. These KSs
are classification experts specialized in the recognition of
audio or visual frames (Two!Ears, 2016a), classified in terms
of audio classes cai , with i = 1, . . . ,Na (such as cai ∈
{voice,barking,yelling, . . .}) or visual classes cv

k
, with

k = 1, . . . ,Nv (such as cv
k
∈ {DOG, BABY,MALE PERSON, . . .})

with Na and Nv the number of audio and visual classes,
respectively. All classifiers are mutually independent, each
providing a probability pai [t] and pv

k
[t] for the frame at

time t to belong to the class they represent. All these
probabilities are regrouped by modality in the two vectors
Pa[t] = (pa1[t], . . . , p

a
Na
[t]) and Pv[t] = (pv1[t], . . . , p

v
Nv
[t]). In

addition, the TWO!EARS architecture provides Nθ localization
experts (May et al., 2011; Ma et al., 2015), aiming at localizing
audio and/or visual events in the horizontal plane with respect to
the robot. Each of them outputs a probability paθu [t] and pvθu [t],
with u = 1, . . . ,Nθ , for an audio and/or visual event to originate
from the azimuth θau or θvu (by convention, θ = 0◦ corresponds
to an event placed in front of the robot). All these probabilities
are gathered into the audio and visual localization vectors
2

a[t] = (paθ1 [t], . . . , p
a
θNθ

[t]) and 2
v[t] = (pvθ1 [t], . . . , p

v
θNθ

[t]).

In practice, all these classifiers outputs are regrouped into a single
vector V[t] constituting the sole HTM system input, with

V[t] = (P[t],2[t]),

with P[t] = (Pa[t],Pv[t]) and 2[t] = (2a[t],2v[t]).
(1)

From V[t], the HTM model attempts to build a stable and
reliable internal representation of the world, environment by
environment. Such a representation is obtained by transforming
an audio and/or visual event 9j objectively present in the
environment at azimuth θ(9j) and belonging to the ground truth
audiovisual class c(9j) = {ca(9j),c

v(9j)}, into an object oj
perceived by the robot, i.e.,

9j = {θ(9j),c(9j)} −→ oj = {θ̂(oj), ĉ(oj)},

with θ̂(oj) =
{
θau , with u = argmaxi(p

a
θi
), if θau ≥ |θHTM − θFOV|

θvu , with u = argmaxk(p
v
θk
) otherwise

,

and ĉ(oj) = {̂ca(oj), ĉv(oj)},
(2)

where θHTM and θFOV represent the current azimuthal head
position and the field of view of the camera, respectively. Then,
an object oj is defined by its estimated angular position θ̂(oj) and
its estimated audiovisual class ĉ(oj) made of the estimated audio
class ĉa(oj) and estimated visual class ĉv(oj). Equation (2) also
indicates that the estimated angular position is obtained from
the audio localization experts when the objects are out of the
robot sight; otherwise, visual localization experts are exploited.
Because of localization and/or classification errors, the object
oj might differ from the corresponding 9j. As an example,
Figure 2 plots as a function of temporal frames experimental
data from three audio classifiers outputs corresponding to the
audio classes PIANO, SPEECH and BARKING. This figure shows
first that potential classification errors can obviously occur:
at time t = 7, the BARKING output probability reaches
about 98% while a piano sound is perceived by the robot.
Additionally, the data show the temporal dynamic audio experts
can exhibit: while the piano starts playing at time t = 3, the

Frontiers in Neurorobotics | www.frontiersin.org 4 September 2018 | Volume 12 | Article 60

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Cohen-Lhyver et al. The Head Turning Modulation System

FIGURE 2 | Illustration of the audio classification experts on real perceived data. (Top) Probabilities of the frames to belong to the corresponding audio classes.

(Bottom) Time description of the audiovisual objects appearance.

corresponding audio expert becomes dominant a few frames
later only. This delay observed experimentally will justify later
technical implementation specifics.

At this point, the notion of object already constitutes more
than just a structure of data. In particular, the objects created by
the HTM system embed a short-term temporal smoothing of the
data P(oj) they are associated with, as

P(oj)[t] =
1

Nt

n= t∑

n= t−Nt

P(oj)[n], (3)

whereNt ≤ 10 is the number of frames during which data P have
been associated to oj. This temporal smoothing enables the robot
to take into account its past experience of the audiovisual data the
robot perceived and that have been associated with this object,
but also to lower the impact of the early potential erroneous
outputs from the classification experts. Indeed, experiments have
shown that most of them are prone tomakingmore errors during
the very first frames of perceived events. Thus, it is one of the
goal of the HTM system to make the object identical to the event,
even in the presence of classification errors. In all the following,
the internal representation e(l) of the l-th environment being
explored by the system is defined as the collection of the N(l)

objects inside, i.e., e(l) = {o1, . . . , oN(l)}. Note that N(l) evolves
along time all along the agent life on the basis of the perceived
data. Importantly, this definition of an environment—which will
be augmented later on in section 3.2.1)—aims at making the
difference between the topological and the semantic definition
of an environment (see section 1). While the robot, through
its navigation system, gets to know when a new topological
environment is being explored, the HTM analyzes its audiovisual
content in order to assess whether this environment is really
new or if it similar to a previously explored one (as explained in
section 3.2.1). In that case, this audiovisual similarity enables the
robot to apply previously self-created behavioral rules making its

reaction abilities way quicker. Then, one can define audiovisual
categories C(l)(cai ,c

v
k
) of this l-th representation with

C
(l)(cai ,c

v
k) = {oj ∈ e(l), ĉa(oj) = c

a
i and ĉ

v(oj) = c
v
k}. (4)

Once the events have been interpreted as objects within the
internal representation e(l) of the robot, the HTM system analyses
them through the notion of Congruence, described in the next
section.

3. THE HEAD TURNING MODULATION
SYSTEM

The Head Turning Modulation system is an attempt to provide
a binaural and binocular humanoid robot with the ability to
learn by its own how to react to unpredictable events and to
consequently trigger or inhibit head movements toward them.
Moreover, the system is endowed with a module that provides a
multimodal internal representation of the world through a real-
time learning paradigm that has no access to any prior knowledge
about the environments to be explored. This system, partially
introduced by the authors in Cohen-Lhyver et al. (2015), Cohen-
Lhyver et al. (2016), and Cohen-Lhyver (2017) is defined as a
model of attention supported by an object-based representation
of the world. This section will thus present separately the two
constitutive modules of the HTM system. An evaluation of each
of them will be presented in simulated conditions, while the
evaluation of the whole system, made in real conditions, will be
presented in section 4.

3.1. Architecture of the Proposed System
The overall architecture of the HTM system is depicted in
Figure 3. It exhibits two modules inside, each of them being
dedicated to one specific task. As outlined in section 2.2, the
HTM inputs are made of audio and visual classifiers outputs,
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FIGURE 3 | Architecture of the HTM system. It is made of two modules, dedicated to the estimation of the audiovisual class of an event and to the computation of its

importance. An additional element is in charge with the respective motor orders integration and decision.

which are used by the first module—the Multimodal Fusion
and Inference (MFI) module—to provide an estimation of the
audiovisual class ĉ(oj) = {̂ca(oj), ĉv(oj)} of the currently
analyzed frame. As will be shown later, such an estimation is
made possible by a top-town motor feedback that allows the
system to gather additional audio and visual data. On the basis
on the frame estimated classification, a second module—the
Dynamic Weighting (DW) module—is in charge of deciding
if the currently emitting object is of interest through the
computation of its congruence to the current environment. As a
result, this module also exploits the motor feedback to modulate
the robot attention. Since both modules require motor actions
for their operations, a supplemental element is in charge with
prioritizing them, depending on their respective motor activities
τDW and τMFI, see Figure 3. Motor decisions are taken by
using the localization experts providing an estimated angle of
the processed event. Finally, the overall HTM system outputs
a list of interpreted objects, i.e., an internal representation
of the explored environment, which can be used by other
KS in the TWO!EARS architecture for other tasks (modulating
the exploration depending on the objects in the environment,
deciding which object is of particular interest in the current
scenario on the basis on the DW module module conclusions,
exploiting the top-down architecture to refine the peripheral
processing steps, etc.). All of these modules are introduced in the
next subsections together with some intermediate illustrations
and evaluations of their functioning.

3.2. The Dynamic Weighting Module
The Dynamic Weighting module (DW module) is the attentional
part of the HTM system aiming at giving the robot an hypothesis
about a possible relevant audiovisual object that would present
an interest to it, in the scope of the exploration of unknown

environments. As already stated, this interest is formalized
through the new notion of Congruence, thereafter detailed.

3.2.1. Congruence: Definition and Formalization
Congruence is a notion that defines the relationship between
an audiovisual event to the environment it is occurring in.
It has to be brought next to the well-known and studied
notion of Saliency (Treisman and Gelade, 1980; Nothdurft,
2006; Duangudom and Anderson, 2007) that describes how
the perceived characteristics of a stimulus exhibit continuity,
or not, with its direct surrounding. Whereas saliency is based
on low-level characteristics of the signals (such as intensity,
frequencies, pitch, color, contrast, etc.), Congruence relies on a
higher representation of the audio and visual signals, namely the
audiovisual class they belong to (see section 2.2). Congruence
is thus defined as a semantic saliency for it relies on an already
interpreted representation of the perceived data. Since the robot
does not have any prior knowledge about the possible likelihood
of an audiovisual event to occur in an environment, the DW

module will only base its analysis on a posteriori probabilities,
that is computing statistics only on what has been observed so far
by the system, environment by environment. This probability of
an object oj to belong to a certain audiovisual category C

(l)(cai ,c
v
k
)

is thus defined as

p
(
oj ∈ C

(l)(cai ,c
v
k)
)
= p

(
C
(l)(cai ,c

v
k)
)
=

|C(l)(cai ,c
v
k
)|

N(l)
, (5)

where |C(l)(cai ,c
v
k
)| depicts the number of objects that have

already been associated to the audiovisual category C(l)(cai ,c
v
k
) (as

a reminder,N(l) corresponds to the number of objects detected so
far in the l-th environment). Still following the fact that no prior
knowledge is available for the robot, the system will compare this
a posteriori probability to a threshold K(l) = 1/N

C
(l) defined as
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the equiprobability of an object to belong to any of the categories
detected so far, where N

C
(l) is the number of different audiovisual

categories detected in the l-th environment. Such criterion has
been chosen so that minimal bias is introduced in order not
to promote any audiovisual category. The criterion K(l) evolves
through time: the more audiovisual classes observed, the lower
the criterion. Finally, the congruence decision follows:

oj ∈ C
(l)(cai ,c

v
k) is incongruent ⇔ p(C(l)(cai ,c

v
k)) ≤ K(l). (6)

All the “status of congruence”, that is whether they are
congruent or not, of the audiovisual categories detected by
the system in a given environment are then gathered into
a binary vector W(l) = {p(C(l)(cai ,c

v
k
)) ≤0,1 K

(l)},∀(i, k), with

≤0,1 a binary comparison operator. This vector of size |C(l)|
completes the definition of environments as they become
collections of objects e(l) coupled with their congruence status
W(l). In consequence, an audiovisual class can be incongruent
in an environment, but congruent in another. Since the robot
would explore unknown environments during its whole life, the
knowledge gained from previous explorations has to be reusable
for it might speed up the exploration of new ones. Following
a rule of strict inclusion of the sets of categories observed in
every environment explored so far by the robot, if the set of
categories detected during the exploration of an environment e(i)

has already been observed in a previous environment e(j), then
W(i) = W(j). This redefinition of an environment implies that
there is one instantiation of the DW module per environment.
In addition, even in the case where there has been a reuse of
information, the rules of Congruence are still computed as if the
current environment was a completely new one. Consequently, if
e(j) gets to differ at a point in time from e(i) and that there is no
other correspondence with other environments, the W(j) vector
computed in parallel from the beginning of the exploration of e(j)

will be from now on applied.

3.2.2. Motor Orders
Based on the congruence of all the objects, an active behavior is
defined: if an object oj is incongruent according to Equation (6),
then it is worth focusing on it. A head movement can
consequently be triggered in the direction of this object. At
the opposite, if p(C(l)(cai ,c

v
k
)) > K(l) the robot would inhibit

this movement. But such a binary motor decision has several
drawbacks, as demonstrated in Cohen-Lhyver et al. (2015).
Among others, it presents a high sensitivity to classification
errors, leading to erroneous motor decisions. Introducing a
temporal weightingwoj of each object oj, inspired by the temporal
dynamic of the Mismatch Negativity phenomenon (Näätänen
et al., 1978), filters out efficiently most of these errors.
These weights are computed thanks to two different functions,
depending upon the probability p(C(l)(cai ,c

v
k
)), along

woj [n] =

{
f •ω[n] = 1/(1+ 100 e−2n) if p

(
C(l)(cai ,c

v
k
)
)
≤ K(l),

f ◦ω[n] = (1/1+ 0.01 e2n)− 1 else,

(7)
where f •ω[n] and f ◦ω[n] are increasing positive and decreasing
negative functions dedicated to the weighting of incongruent and

congruent objects, respectively, and n a time index. Note that
n is systematically reset to 0 whenever the congruence status
of the object oj switches. From these weights, it is possible to
decide which object has to be focused on. Such a decision is
implemented through an adaptation of the GPR model (Gurney
et al., 2001a,b) of the basal ganglia-thalamus-cortex loop involved
in the motor order decision in humans. According to this
model, all possible motor actions are expressed as channels of
information which are by default inhibited by several afferent
external connections. Depending on the goal or on the perceived
stimuli, one of the channels is excited, thus promoting the
motor action it is representing. Inspired by this functioning, all
the objects perceived by the robot are similarly represented as
information channels having a dedicated activity τDW(oj). The
vector of canal activities τ DW can be then defined as

τ DW =
(
τDW(o1), . . . , τDW(oNl

)
)
, with τDW(oj) = −

p
(
C
(l)(cai ,c

v
k
)
)

K(l)
.

(8)
Thus, the higher the weight woj of an object, the lowest the

activity of its corresponding canal. The angle θ̂(oj) estimated by
the audio localization expert corresponding to the canal with the
lowest activity will then be selected as the winning motor order
θDW , i.e.,

θDW = θ̂(oj), with j = argmin
l

(
τDW(ol)

)
. (9)

If two different objects oj and ol have the same weight woj =
wol , then their corresponding channels τDW(oj) and τDW(ol) have
the same value. In such a case, the most recent object in the
representation is promoted, thus introducing a motivation by
novelty (Huang and Weng, 2002, 2004) (see also Walther et al.,
2005). Then, Equation (8) is slightly modified by introducing a
weight which is minimized for recently appeared objects, i.e.,

τDW(oj) = −
p
(
C(l)(cai ,c

v
k
)
)

K(l)
×

1

1t(oj)
, with 1t(oj) = t−temit(oj),

(10)
where 1t(oj) represents the time elapsed between the object
appearance temit(oj) (reset to t when the object starts emitting
again after having stopped previously) and current frame t. Note
that the temporal smoothing introduced by Equation (3) does
not influence the global reactivity to unexpected events, for the
dynamics of the smoothing has the same order of magnitude to
the dynamic of the weighting function in Equation (7).

3.2.3. Simulations and Evaluation of the DW Module
The DW module aims at controlling the head movements of an
exploratory robot through the notion of Congruence of perceived
audiovisual objects. Thus, what is expected from the DW module
is to either trigger movements toward important audiovisual
sources, and to also be able to inhibit them when necessary. To
illustrate this, simulations have been conducted on the basis of
the TWO!EARS architecture. Importantly, twelve audio classifiers
and ten visual classifiers are actually implemented inside the
software (Two!Ears, 2016a), making evaluation scenarios quite
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FIGURE 4 | Audiovisual sources toward which a head movement has been triggered (blue line) by the DW module, (dotted red line) by the naive robot. (Gray boxes)

audiovisual sources emitting sound. A source is focused on when the lines crosses the corresponding box.

limited. Thus, instead of simulating raw (audio and visual)
data used by real classifiers, their outputs pai [t] and pv

k
[t] are

rather simulated. Nevertheless, real conditions will be used later
to evaluate the overall HTM system in section 4. Note that
the forthcoming simulated localization experts are designed to
provide the exact object audio and visual localization, the focus
being put here on the congruence analysis performed by the DW

module.

3.2.3.1. Simulations
Multiple evaluation scenarios are proposed, each of them being
described by the number nS of different sources in the simulated
environment, the description of their azimuthal localization,
their temporal appearance and disappearance, and their ground
truth audiovisual classes c(9)–obviously, the HTM system does
not have access to any of these. The scenarios are also defined by
the maximal number of simultaneously emitting sound sources
nmax
sim . While this number never exceeds five in real extreme

experimental conditions, the simulations allow to incorporate up
to ten audiovisual sources. At every time step t of a simulation,
a vector P[t] = (Pa[t],Pv[t]), from Equation (1) is sent to the
HTM system. In the scope of the sole DW module evaluation, the
estimated audio and visual classes of an event is directly obtained
from P[t], i.e., on the KS outputs, according to a maximum a
posteriori (MAP) estimation, with

ĉ
a
MAP = c

a
i , i = argmax

l
(pal ) and ĉ

v
MAP = c

v
k, k = argmax

l
(pvl ).

(11)
Note that this audiovisual class estimation will be later provided
by the MFI module introduced in section 3.3, as shown
in Figure 3. However, because of the inevitable presence of
classification errors, the corresponding audio and/or visual
classes can be wrong (see Figure 2). It has been simulated
through the implementation of an error rate εP ∈ [0, 100]%.
At time t, a ground truth probability vector corresponding to
the simulated event is generated. With respect to εP, a “wrong”
classification expert index is randomly selected by drawing its
value from a uniform pseudorandom number generator. Then,
its associated probability is set to be the maximal value of the

whole vectors P[t]. In the end, this will allow to judge the
robustness of the approach to such classification errors.

Like proposed in Girard et al. (2002), the performance of
the system is partially evaluated in comparison with a virtual
“naive robot” noted Rn. In particular, Rn will systematically
turn its head toward any audiovisual source occurring in the
environment, independently of its importance. For now, the
simulations are made with an important restriction (explained
and justified later): all the sources are in the field of view of the
robot, i.e., the robot always has access to visual data.

3.2.3.2. Evaluation 1: head movements modulation by the

DW module
A rather complex environment is used in the following to
illustrate the functioning of the DWmodule: nS = 10 audiovisual
sources are present with a maximum of nmax

sim = 7 simultaneously
emitting sources. At first, let’s focus on the ability of the DW

module to modulate head movements by selecting only the
sources of importance through the congruence analysis. Here will
only be assessed the behavioral role conferred by the DW module
to the robot; in consequence the simulated classification experts
will be set as outputting perfect data, that is εP = 0 (evaluations
with higher error rates are made later in the paper).

Figure 4 exhibits one simulated environment, made of
sources (represented as gray boxes) emitting sound along time
(horizontal axis). Each source belongs to an audiovisual category
represented on the left axis. Some sources might have the same
audiovisual category: for instance, in this simulated scenario, the
environment is made of three different telephones ringing. In
addition to this “objects along time” description of the scene,
Figure 4 shows two different lines: both “pass” through objects,
indicating that the robot has decided to focus on them. The
blue line corresponds to the decision taken by the DW module,
while the red dashed one corresponds to Rn. Simulations show
that the DW module considers the audiovisual classes (RINGING,
telephone) and (MUSIC, loudspeaker) as congruent in
less than 100 time steps. This is because of their distribution
with respect to the other categories: in the beginning of the
simulation, objects belonging to these two categories are often
present, making them less important. Consequently, the robot
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FIGURE 5 | Head movements triggered by (blue) the DW module, (red) the

virtual naive robot. Every arrow points toward the position of a source and their

lengths depict the number of movements toward every pointed source. (Bars:)

number of movements triggered by the the MFI module (blue) and the virtual

naive robot (red). The light blue numbers correspond to the position of the

audiovisual sources.

will not turn its head toward those sources: there is no (motor)
attentional reaction anymore. On the other hand, the categories
(ALERT, siren), (SPEECH, male), (CRYING, female), and
(CRYING, male) are considered as incongruent, thus requiring
the robot to focus on them. Importantly, the actual meaning of
those sources is not used here to decide of a reaction: one could
have trade the congruent categories with the incongruent ones
without any change in the global reaction. Only the frequency of
apparition defined in Equation (5) is taken into account to decide
the importance of a source.

In comparison, the naive robot Rn turns its head every time a
source starts to emit sound: it is particularly noticeable between
t = 200 and t = 250 where a lot of movements can be observed.
The comparison between the two behaviors is highlighted in
Figure 5, where is depicted the total number of head movements
triggered to the audiovisual sources in the environment for the
DW module (blue) and naive robot (red). It appears that
a drastic modulation of the exploratory behavior is obtained:
using the DW module conducts to a reduction of 71.3% of the
number of head movements in comparison with the naive robot.
Furthermore, the DW module only triggers movements toward
five sources, instead of ten for the naive robot, thus showing how
Congruence—even with its simple and intuitive definition—can
provide an efficient filter for the attentional behavior of the robot.
Importantly, such a modulation allows the robot to use head
movements, and more generally its exploratory actions, for other
unrelated tasks. As long as no incongruent source is detected,
head movements are free to be used for anything else. But as
soon as an incongruent source pops up in the environment, the
DW module will drive the head toward this source: the robot
then puts its attention on it. In the end, this simple illustration
shows how important it is to be able to inhibit or trigger head
movements.

3.2.4. Conclusion and Limitations
The DW module is a crucial part of the HTM system in
charge with providing a semantic understanding of the unknown
environments the robot is supposed to explore. One of the
cornerstone of this module is to be able to work without prior
knowledge about the potential distribution of the audiovisual
sources occurring in these environments. Thus, the DW module
has to create congruence rules on the sole basis of what the robot
sees and hears, that is the audio and visual labels the classification
experts output. The behavior rules created are, firstly, adaptive
enough to always take into account new information, since the
congruence status of all the objects are computed every time a
new object is detected in the environment; and secondly, broad
enough to limit any bias possible in the interpretation of the
perceived information: an audiovisual class can be incongruent
in an environment but congruent in another one, as will be
illustrated in section 4. Moreover, by not creating any prior
behavioral rules (such as if-else statements) and by letting the
system continuously being sensitive to new information, the
DW module provides the robot with a life-long learning of the
environments composing the world it is living in. However, one
important limitation appears here: the DW module needs to have
access to a complete audiovisual information in order to compute
the congruence of any object appearing in the scene. Indeed,
in the situation where a source is placed behind the robot, it
would have to first turn its head toward it in order to get the full
audiovisual data, to then be able to take a decision on whether or
not a head movement is necessary. . .which is what can be called
a deadlock situation. This is why the previous illustration of the
DWmodule has used a setup where all the visual data were always
perceivable to the robot. Obviously, this is not a realistic context
at all. This is where the secondmodule of the HTM system comes
into play.

3.3. The Multimodal Fusion and Inference
Module
The Multimodal Fusion & Inference module (MFI module)
is in charge of providing the DW module with a complete
information about the audiovisual sources, even when they are
placed behind the robot. Moreover, the MFI module is able to
cope with classification errors, i.e., to provide a stable and reliable
estimation of the audiovisual classes of an object. This module
is based on an online self-supervised active learning paradigm
that enables the overall system to create knowledge about the
audiovisual classes that are present in the environments the robot
is exploring. Basically, the idea is to exploit head movements
to learn the relationship between the audio and visual classes
of the sources, making the robot becoming afterwards able to
infer a missing modality. To begin with, the learning paradigm
of the MFI module is described in a first subsection. Then, the
way motor orders are triggered to learn the association between
audio and visual classes is presented. An illustration of the MFI

module functioning together with new details concerning the
simulations, are then provided. A short discussion ends this MFI

module presentation.
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FIGURE 6 | Illustration of (A) the Multimodal Fusion and Inference module, (B) the Multimodal Self- Organizing Map. The M-SOM embeds one SOM per modality

used for the definition of an object (audio and vision in our case). The representation here depicts the two subnetworks as a map containing neurons split in two parts

defined by their own weights vectors, one part being dedicated to the mapping of audio data, the other to visual data.

3.3.1. The Multimodal Self-Organizing Map
The MFI module is based on a Self-Organizing Map
(SOM) Kohonen (1982) which is a learning algorithm relying
upon a low dimensional map on which is performed a vector
quantization of a high dimensional input matrix of data, while
allowing its categorization. The input data are here made of
classification experts outputs gathered in the vector P[t], see
Figure 6A and Equation (1). However, the traditional SOM
algorithm shows one important limitation: it is unable to cope
with missing data. In the case where an event originates from
behind the robot, visual classifier outputs will not be relevant:
the visual modality is missing. Then, two options can be chosen:
(i) remove the corresponding visual components of P[t], or
(ii) set the corresponding components to the same arbitrary
value. In the former case, this would imply a change in the data
dimensionality. In the latter case, this would create arbitrary
meaningful data which would be misinterpreted by the SOM.
Then, these two options do not offer any solution to missing data
inference. This is why it is proposed to transform a classical SOM
into aMultimodal-SOM in order to keep what makes it powerful
and usable with the constraints listed before. Interestingly,
Papliński and Gustafsson (2005) have developed a bio-inspired
system of interconnected SOMs allowing the learning of complex
multimodal data for classification purpose. But while this system
possesses interesting multimodal classification properties, it lacks
the essential capability of inferring missing information. More
recently, Bauer and Wermter (2013) and Schillaci et al. (2014)
have proposed original models based on the SOM paradigm.
But while they allow the multimodal learning of perceptual data
in an unsupervised way, their major drawbacks reside either in
their need of significant amount of data or in the time required
to converge to a stable representation of the processed data.

3.3.1.1. The subnetworks
Lets recall that a SOM is a map composed of I× J interconnected
rij nodes, or neurons. The proposed modification of the original
SOM consists in creating one SOM per modality, as shown in
Figure 6B. Thus, the M-SOM is made of two (interdependent)

maps, also composed by I × J interconnected r
a/v
ij nodes, of size

⌈
√
Na × Nv⌉×⌈

√
Na × Nv⌉ (where a/v stands for audio or visual

in a compact notation). This size has been selected to ensure that
there will be at least one node available per possible audiovisual
class combination, given that no prior information is available
about the plausible audiovisual classes the robot will perceive
during its life-long exploration. To each node is associated (i) a
weights vector wa

ij = (wa
ij(1), . . . ,w

a
ij(Na)) of sizeNa for the audio

subnetwork, and a weights vector wv
ij = (wv

ij(1), . . . ,w
v
ij(Nv))

of size Nv for the visual one, (ii) a (i, j) position in the map,

and (iii) connections χ(ij)→(kl) between the r
a/v
ij nodes and their

neighbors in the same map, where [i, k] ∈ [1, I] and [j, l] ∈ [1, J]
(with an exception for the nodes located at the edges of the
map where the connectivity is reduced). The weights vectors

w
a/v
ij associated to all the r

a/v
ij nodes will become, through the

iterative learning phase, the representatives of the different kinds
of vectors constituting the input matrix, and thus, of the different
audiovisual classes the input data capture.

3.3.1.2.Weights update
Traditionally, at every iteration nit of the original SOM algorithm
(the total number of iterations classically going from thirty to
thousands, given the complexity of the data to be processed),
the input matrix is parsed randomly until every vector has
been processed once (Kohonen, 2013). For every vector explored
the algorithm looks then for the closest weights vector wij
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associated to the node rij to the current input vector, in terms
of their Euclidean distance. The winning neuron, that is the
one presenting the closest distance to the input vector, is called
the Best Matching Unit (BMU). It will be the location in
the map where the propagation of the resemblance between
the input vector and the weights vector wBMU will start. This
propagation follows a Gaussian neighborhood function hij[nit]
(see Equation 14) of variance σ [nit] that defines the spread of
the propagation. The neighborhood function is modulated by
a factor α[nit], the learning rate, making the learning powerful
in the first iterations but almost non-existent in the last ones.
Spreading the resemblance to the BMU’s neighbors has two
effects: (i) lowering the distance between the BMU and the
input vector so that this neuron becomes more and more the
representative of the information coded by this vector, and (ii)
partially shaping the map around the BMU so that the closest
to the BMU in terms of distance, the closest also in terms of
information coded by the input vector. This leads to an self-
organized map where regions have emerged, regions that code
for similar categories. Once every vector of the matrix has been
explored, a new iteration of learning starts. At every iteration
nit is incremented making α[nit] and σ [nit] both decrease. Such
decreasing leads to the following behavior of the learning process:
at start, the propagation spreads largely in the SOM and the
learning rate is at its highest; at the end of the learning, the
propagation barely spreads around the BMU and the learning
rate is at its lowest.

Within theM-SOMhowever, several changes of the traditional
algorithm have been performed, changes that impact the way
weights are updated. First, an audiovisual BMU ravBMU is now
computed as the combination of the two (audio and visual)
subnetworks, according to

ravBMU = rIJ , with (I, J) = argmin
i,j

(
‖Pa − wa

ij‖ × ‖Pv − wv
ij‖
)
,

(12)
where ‖.‖ depicts the Euclidean distance between the vectors.
This combined audiovisual BMU is associated to the combined
weights vector wav

BMU = (wa
BMU ,w

v
BMU).

Secondly, the HTM does not have access to the whole matrix
of data: the robot gets one vector at a time, every time a frame is
analyzed by the set of KSs in the architecture. Thus, the iterative
process has been revisited accordingly to this online paradigm.
At every time step, the M-SOM will perform only 1 iteration
of learning with the current vector (that is, there is no infinite
memory of the past perceived data). However, the key principle of
augmenting the resemblance between the BMU and the current
vector, together with its spread, must be kept in order to reach
an organized map. Taking also into account the fact that the
audio classification experts from TWO!EARS get more and more
precise the longer they gather data from a same sound source, the
evolution of α[nit] and σ [nit] has been reversed. The first steps
of learning correspond to the minimum values of the learning
rate and the variance of the neighborhood function, so that less
importance is put to the very first classification experts data, and
more to the next ones, following also the definition of an object
(see section 2.2). Thirdly, still from the fact that the system does

not have access to the whole data to be processed, it is necessary
to adapt how the algorithm converges. Since the robot will always
get to explore new environments during its life, there is no priorly
known solutions to this learning problem. Consequently, instead
of trying to reach a global convergence of the overall M-SOM, the
MFI implements a local consistency (Chapelle et al., 2002; Zhou
et al., 2004) at the audiovisual-class level (see also section 3.3.1.4).
This local consistency enables the M-SOM to judge by itself
whenever the learning of a particular class can be stopped or
has to be continued. Thus, the value of the iteration nit, that will
have an impact on the values of α and σ , will be computed object
by object: every object has its own iteration value corresponding
to a certain degree in the learning process of the audiovisual
class it belongs to. The choice of implementing an iteration index
object by object instead of class by class, which would seem more
logical, comes also from the potentially erroneous behavior of the
classification experts during the first perceived audio or visual
frames associated to the objects (see section 2.2). Indeed, relying
directly on these outputs could promote, on the mid- to long-
term, the learning of false audiovisual classes that could hamper
the learning of the correct ones. The learning iteration nit is now
defined by

nit[t] = max
(
(Nit − n

oj
it [t])+ 1, 1

)

with n
oj
it [t] = tinit(oj)+ (t − tinit(oj)),

(13)

where tinit(oj) is the temporal index corresponding to the initial
time the object emitted sound in the current environment, and
Nit = 10 corresponds to the maximal number of iterations. The
value ofNit = 10 time steps has been defined experimentally with
respect to two factors: (i) a too low value would put too much
importance on the very first frames detected by the classifiers for
a given object, and (ii) a too high value would significantly delay
the local convergence of the learning for it would also delay the
moment α and σ would be high enough to make the learning
actually efficient.

Once ravBMU is found, all the weights vectors associated with
every node are then updated, as described above, and according
to

w
a/v
ij [t + 1] = w

a/v
ij [t]+ α[nit] hij[t, nit] ‖Pa/v[t]− w

a/v
ij [t]‖,

with hij[t, nit] = exp

(
−
‖ravBMU[t]− rij‖2

2σ [nit]2

)
,

(14)
where α ∈ [0.02, 0.9] represents the increasing learning rate (first
and last values from Kohonen, 1990), and hi,j[t, nit] → R is the
Gaussian neighborhood function of variance σ [nit].

3.3.1.3. Estimation of the audio and/or visual classes
Every time data P[t] are available from the KS, the M-SOM
proposes a corresponding estimated audio and visual classes ĉa

and ĉv, respectively. In the case where all the data are available,
then the corresponding classes can be estimated along

ĉ
a = c

a
i , i = argmax

l
wa

BMU(l), and ĉ
v = c

v
k, k = argmax

l
wv

BMU(l).

(15)
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Thus, the audiovisual class ĉall, estimated when all the modalities
are available, is given by ĉall = {̂ca, ĉv}. All the interest of
the M-SOM is its ability to provide both audio and visual
classes, even if a part the KS outputs are not available. Of
course, no learning is then performed, but it is the step
where the network is actually exploited for inference. In
the case where, for instance, the visual data are missing
(i.e., the event is out of the field of view of the robot),
then:

1. audio only is exploited to determine the winning
(audio) node raBMU in the audio map, whose associated
weight vector wa

BMU can be used to estimate the audio
class ĉa = cai , with i = argmaxl w

a
BMU(l) like in

Equation (15);
2. the winning (visual) node is deduced from audio by rvBMU =

raBMU : this is exactly where the learned interlink between
audio and visual data is exploited. The corresponding
visual class ĉv can then be deduced from the associated
weight vector wv

BMU along ĉv = cv
k
, with k =

argmaxl w
v
BMU(l).

In the end, the audiovisual class ĉmiss, estimated when one
modality is missing, is then given by ĉmiss = {̂ca, ĉv}. Of
course all the reasoning is identical when the other modality
is missing: the available data drive the missing modality for
inference.

3.3.1.4. Convergence and the inference criterion
A key principle in learning algorithms is their ability to converge
to one of the acceptable solutions of the problem to be solved.
However in the proposed context, different environments made
of possibly different audiovisual sources might be explored
during the robot life. Then, it is clearly impossible to define
one global good solution to the problem. Nevertheless, the
proposed M-SOM possesses a characteristic of local consistency
(see section 3.3.1.2). Within the classical SOM algorithm,
convergence means that the whole map is organized such that
the different nodes are grouped in meaningful entities that code
part of the input data. In the proposed M-SOM, it is proposed
that the algorithm always keeps a free part in the map, i.e., nodes
not coding for any audio or visual classes. This would allow the
network to include new audiovisual classes, discovered all along
the interaction with new environments during the robot life.
Looking for local consistencies, rather than reaching for global
convergence, is implemented through the definition of a criterion
for each audiovisual category already created, indicating how
much this category has been learned so far and if its learning
can be stopped. The multimodal learning performed by the MFI

module is supported by head rotations to the sources to be
learned. It allows to bring the visual sensors in front of them
in order to learn the association between the corresponding
audio and visual classes. But these head movements are no
longer useful once the M-SOM has enough knowledge about the
audiovisual classes, thus justifying the need to (i) inhibit these
head movements, and (ii) being able to judge when this amount
of knowledge is sufficient. Then, an inference ratio q(C(l)(cai ,c

v
k
))

for the audiovisual category C(l)(cai ,c
v
k
) is defined as

q
(
C
(l)(cai ,c

v
k)
)
=
∑n= t

n= 1 δmiss
i,k

[n− 1] δall
i,k
[n]

∑n= t
n= 1 δmiss

i,k
[n]

,

with δall/miss
i,k =

{
1 if ĉall/miss(oj) = {cai ,c

v
k
},

0 else.

(16)

This inference ratio is computed by comparing the number of
times the audiovisual category C(l)(cai ,c

v
k
) has been obtained (or

inferred) with one missing modality (δ
(miss)
i,k

= 1) at time n − 1

and confirmed at time n (δ
(all)
i,k

= 1) by a head movement with
all modalities available, with the total number of inference. Thus,
q(C(l)(cai ,c

v
k
)) captures the ability of the MFI module to infer

correctly a missing modality, category by category. The inference
ratio always lies between 0 and 1, where 1means that the category
has always been perfectly inferred. On this basis, q(C(l)(cai ,c

v
k
))

is compared to a criterion Kq ∈ R
+ = [0, 1]: if a modality

is missing, the MFI module will attempt to infer it, and as long
as the inference ratio of the corresponding audiovisual category
is lower than Kq, a head movement will be triggered toward
the corresponding source. Thus, the system grabs the missing
information and feeds the M-SOM, which can then learn the
audiovisual association. Of course, once the full audiovisual data
is obtained, a comparison with the previous inference is made
and the inference ratio is updated accordingly. If the inference
ratio gets higher than the criterion Kq, the learning is considered
as being good enough to trust the inference made by the MFI

module, and inhibit consequent head movements toward the
sources belonging to the corresponding audiovisual category.
Remark that the criterion Kq has an influence on the behavior
of the MFI module (Cohen-Lhyver, 2017). A low threshold allows
a quick confidence in the inference, thus freeing headmovements
for other tasks, whereas a high Kq value pushes the system to be
very careful about its inferences.

3.3.2. Motor Orders
As for the DW module, the MFI module is able to trigger head
movements toward sources of interest. This interest is now
formalized by the lack of confidence in the knowledge of the
audiovisual category a source might belong to. As previously
explained, turning the head toward a source might enable the
visual sensors to get the missing visual data, thus giving to
the MFI module the opportunity to learn the interlink between
the audio and visual modalities, but also to eventually
confirm/refute an inference. Like for the DW module, the head
movements modulation is inspired by the GPR model (see
section 3.2.2), but through a different expression of the activities
τMFI(oj) for the object oj with audiovisual category C

(l)(cai ,c
v
k
),

now given by

τMFI(oj) =
q(C(l)(cai ,c

v
k
))

Kq
× δ(i,k)(n),

with δ(i,k)(n) =
{
−1 if n < (tp = 10),
1 else,

(17)
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FIGURE 7 | Impact of the temporal persistence, introduced in Equation (17), (left) on the number of triggered head movements in a complex environment, and (right)

the behavior of the robot in a simplified case for illustration purposes. (Blue bars:) robot driven by the MFI module, (red bars) naive robot. Percentages depict the ratio

between the naive robot and the MFI module.

where n = t − tfoc(oj), with tfoc(oj) the first time the object
has been focused on by the MFI module. Then, the angle θ̂(ol)
estimated by the localization expert and corresponding to the
canal with the lowest activity is selected as the winning motor
order θMFI , i.e.,

θMFI = θ̂(ol), with l = argmin
j
(τMFI(oj)). (18)

The term δ(i,k)(n) in (17) introduces a form of temporal
persistence through a positive feedback loop, as observed in
the thalamus by Redgrave et al. (1999), Gurney et al. (2001a),
and Meyer et al. (2005). The value of tp = 10 has been set
experimentally after several comparisons and evaluations. The
impact of this persistence in a complex environment (eight
sources with five simultaneously emitting) is illustrated in the
left panel of Figure 7, where the blue bars depict the number
of head movements triggered by the MFI module, while the
red bars, by the naive robot Rn (these numbers are obviously
not affected by the temporal persistence applied to the MFI

module). The main point is that the temporal persistence tp
constitutes only a small part of the head movements control:
13.6% less head movements between tp = 1 and tp = 25.
The real benefits of temporal persistence is shown in Figure 7

(right): with tp = 1, the robot exhibits oscillations between two
sources, potentially damaging the internal representation of the
world (confusions in binaural cues computations, speed of the
movement. . . ). With tp = 25, a pervert effect of a too long
persistence is also shown: the system often ghosts completely
the (SINGING, female) source, preventing itself from learning
it.

3.3.3. Evaluation 2: Classification Rates of the mfi

module
The MFI module aims providing a corrected audiovisual
information from the classification experts. In order to assess
the contribution brought by this module, a good audiovisual
classification rate Ŵ(oj)[t] is defined by comparing the audio and

visual classes associated to all the objects detected by the system
with the ground truth, according to

Ŵ(oj)[t] = a×
t∑

k= ti

γ (oj)[k]

with γ (oj)[k] =
{
1 if ĉ(oj)[k] = c(9j)[k],
0 else,

(19)

with c(9j)[k] being the ground truth audiovisual class of the
event 9j captured as the object oj at time k in the internal
representation, and a = 1/[1, ..., (t − ti)+ 1] corresponding to
the elapsed time between the first time step ti when the MFI

module provided a classification of the object oj, and the current
time t. The overall good classification rate is given by applying a
sliding window on all Ŵ(oj) computed from the beginning of the
exploration, along

Ŵ̄MFI[t] =
1

Nc
obj
[t]

Nc
obj

[t]∑

j= 1

Ŵ(oj)[t] (20)

with Nc
obj
[t] the number of processed objects by the MFI module

at time t (this number could be inferior or equal to the total
number of objects present and emitting, noted Nobj). In parallel,
the same process is made for the naive robot Rn [knowing
that this one performs the fusion of the classification experts
themselves through a maximum a posteriori approach, along
Equation (11)], according to

Ŵ̄Rn [t] =
1

Nobj[t]

Nobj[t]∑

j= 1

Ŵ(oj)[t]. (21)

In addition, a measure of the classification performance of an
omniscient (thus unrealistic) robot is also computed, noted
Ŵ̄′

Rn
[t]. This robot has full access to every auditory and visual
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TABLE 1 | Simulation setup for Evaluation 2.

Evaluation 2

e(l) nS nmax
sim

T |C(l)| Kq εP

1 to 5 3 3 1000 2 0.8 0.1, 0.3, 0.5, 0.7, 0.9

6 to 10 5 5 1000 3 0.8 0.1, 0.3, 0.5, 0.7, 0.9

11 to 15 7 7 1000 4 0.8 0.1, 0.3, 0.5, 0.7, 0.9

16 to 20 10 10 1000 6 0.8 0.1, 0.3, 0.5, 0.7, 0.9

Each setup is repeated 5 times for a total of 100 simulations.

information, even when the objects are out of the sight of
the robot. The simulation setup is presented in Table 1.
Twenty different multisource environments are simulated, each
of them in possibly different conditions (number of sources,
number of simultaneously emitting sources, error rates, etc.).
The resulting good audiovisual classification rates are regrouped
in Table 2, mainly organized by increasing error rates εP =
{0.1, 0.3, 0.5, 0.7, 0.9}.

At first, let us consider the naive omniscient robot R
′
n. As

expected, it presents a mean good audiovisual classification
rate Ŵ̄R′

n
almost equal to 1 − εP for all tested conditions. In

contrast, the realistic naive robot Rn (having only access to the
data it is able to perceive) systematically exhibits lower rates
Ŵ̄Rn . Clearly, the main flaw of this robot is its incapacity to
perform any inference, which turns to be a critical capability
in multisource environments. In comparison, the proposed
MFI module outperforms both naive robots, for almost any
error rates and number of sources (except for only one case:
εP = 0.1 and nS = 10). The last column in Table 2

exhibits the ratio between the best naive robot Rn (given
by Ŵ̄′

Rn
[t = T]) and the MFI module: the greater εP, the

higher the ratio, except with εP = 0.9. In this case, the
error rate is anyway so high that the interest in exploiting
such corrupted data is almost null. However, even in very
challenging conditions involving a very high εP = 0.7 in a
multisource context, the MFI module provides on average a 2.4
times better good audiovisual classification rate than with the
classifier outputs.

3.3.4. Discussion
The proposed MFI module, mainly based on the M-SOM,
provides an online self-supervised active learning paradigm
to be able to process erroneous and/or missing data in the
particular context of the exploration of unknown environments.
The overall goal of the MFI module is thus to feed the DW

module with correct audiovisual classes the perceived objects
belong to, with respect to a very short learning time constraint
(down to a few seconds only). The active capabilities of the
MFI module is of very much importance here, for it enables
the intensive use of head movements to gather, whenever it
is necessary, and in real-time, additional data to refine the
knowledge the module has of the world under exploration.
A fundamental question arises with the problem of audio
and visual classes association when considering one-to-one

TABLE 2 | Good classification rates for different error rates and different numbers

of sources.

Evaluation 2: Results

εP nS — nmax
sim

Ŵ̄MFI[t = T] Ŵ̄
′
Rn

[t = T] Ŵ̄Rn
[t = T] ratio:

Ŵ̄MFI[t=T]

Ŵ̄
′
Rn

[t=T]

0.1 3 — 3 0.982 (0.027) 0.894 (0.021) 0.503 (0.073) 1.098

5 — 5 0.988 (0.025) 0.899 (0.012) 0.339 (0.039) 1.099

7 — 7 0.960 (0.023) 0.893 (0.016) 0.264 (0.021) 1.075

10 — 10 0.866 (0.047) 0.887 (0.018) 0.182 (0.014) 0.976

Mean 0.949 0.893 0.322 1.063

0.3 3 — 3 0.992 (0.020) 0.703 (0.042) 0.414 (0.055) 1.411

5 — 5 0.987 (0.022) 0.692 (0.017) 0.265 (0.014) 1.426

7 — 7 0.942 (0.028) 0.691 (0.014) 0.198 (0.017) 1.363

10 — 10 0.883 (0.041) 0.689 (0.011) 0.145 (0.014) 1.281

Mean 0.951 0.693 0.255 1.372

0.5 3 — 3 0.973 (0.026) 0.493 (0.020) 0.280 (0.031) 1.973

5 — 5 0.965 (0.043) 0.496 (0.021) 0.189 (0.034) 1.945

7 — 7 0.899 (0.048) 0.492 (0.018) 0.145 (0.019) 1.827

10 — 10 0.836 (0.042) 0.492 (0.018) 0.103 (0.010) 1.699

Mean 0.918 0.493 0.179 1.862

0.7 3 — 3 0.774 (0.087) 0.282 (0.030) 0.165 (0.028) 2.744

5 — 5 0.737 (0.105) 0.294 (0.014) 0.120 (0.023) 2.506

7 — 7 0.683 (0.133) 0.296 (0.016) 0.081 (0.012) 2.307

10 — 10 0.550 (0.117) 0.293 (0.016) 0.064 (0.011) 1.877

Mean 0.686 0.291 0.107 2.357

0.9 3 — 3 0.213 (0.060) 0.092 (0.019) 0.054 (0.019) 2.315

5 — 5 0.152 (0.064) 0.102 (0.012) 0.039 (0.007) 1.490

7 — 7 0.174 (0.075) 0.100 (0.009) 0.031 (0.005) 1.740

10 — 10 0.140 (0.066) 0.100 (0.009) 0.019 (0.006) 1.400

Mean 0.169 0.098 0.035 1.724

Every results is an average of 5 repetitions of every conditions with standard deviation in

parentheses, for a total of 100 simulations. Rn corresponds to the naive robot, and R
′
n

to the unrealistic omniscient robot. Values are rounded up to the third decimal.

audiovisual pairs, i.e., that each audio label is associated with
only one visual label, and vice and versa. In the evaluations
presented in this section, such pairing limitation was not
used: an audio label could have several visual correspondences,
such as SPEAKING, male, SPEAKING, female, or SPEAKING,
child. However, given these audiovisual labels examples, it
is not possible for the MFI module to create an information
that does not exist: from the audio label SPEAKING, it is
impossible to determine whether the corresponding visual label
is male, female, or child. The MFI module still outputs
an hypothesis corresponding, given how the M-SOM learning
algorithm works, to the most observed so far audiovisual pair.
Such limitation of the MFI module only comes from the limits
of the classification experts themselves: if the classifiers cannot
distinguish a female voice from a male one, nor would the
MFI module. Such a case will be shown and also discussed
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in section 4.4, when evaluating the whole system in real
environments.

3.4. Conclusion
The Head Turning Modulation system is composed with
two modules: the Dynamic Weighting module (DW) and the
Multimodal Fusion and Inference module (MFI), each of them
having been described in this section. The DW module is an
attentional component, working on the sole basis of observed
data in unknown environments, from which it enables the
robot to turn its head to audiovisual sources considered as “of
importance.” Coupled to it is the MFI module that learns the
relationship between the modalities that are used to define an
object (audition and vision in this case). Based on a Multimodal
Self-Organizing Map (M-SOM), the MFI module is able to create
the knowledge required by the DW module to work properly.
This knowledge consists in the fusion of multimodal data into
a corrected database of audiovisual categories, knowledge that
is created through online active self-supervised exploration of
the audiovisual sources appearing in the unknown environments.
Both modules can trigger head movements independently, and
their combination necessitates an adaptation of the motor orders
expressions of the modules.

The next section will present the results obtained in
real environments with the real robot embedding the whole
TWO!EARS software (including the integration of the HTM
system), and processing real audio and visual data.

4. COMBINATION OF THE TWO MODULES

The previous section was dedicated to the individual presentation
of each module constituting the HTM system, while providing
limited evaluations in simulated conditions. This section is now
concerned with the combination of the DW module and the MFI

module together, with their evaluation in realistic conditions,
i.e., on a real robot and with real audio and visual data. At
first, one have to deal with the fact that theses two modules are
both able to generate competitive head movements. The way
they are prioritized is described in a first subsection. Next, the
experimental setup is carefully described in a second subsection.
Then, experimental results are provided in a third subsection,
aiming at demonstrating the benefits of the overall system in the
audiovisual scene understanding.

4.1. Combined Motor Orders: Evaluation 3
It has been shown in section 3 that the DW module and the MFI

module both exploit head movements to better their respective
operations. Trying to make them able to work together then
requires a prioritization of them. On the one hand, the DW

module provides the robot with potential sources to be focused
on, on the basis of their computed congruence; on the other
hand, the MFI module aims at estimating audiovisual classes of
objects inside the environment, even with potential classification
errors and lack of data. It seems then obvious to set the priority to
the MFI module: having a reliable audiovisual classes estimation
system is required for the attentional module to take relevant

decisions. This prioritization introduces a new activity τ ′DW for
the DW module which is now defined, for an object oj, by

τ ′DW(oj) = τMFI(oj)− τDW(oj)× δ(τMFI(oj)),

with δ(x) =
{
1, if x ≥ 1,
0, otherwise.

(22)

On this basis, the motor order θHTM selected to drive the head is
computed along

θHTM = θ̂(ol), with l = argj1 ,j2 min(τ ′DW(oj1 ), τMFI(oj2 ))

where

{
j1 = argminl(τ

′
DW(ol)),

j2 = argmink(τMFI(ok)),

(23)

i.e., the object with the lowest DW module or MFI module activity
is selected. Such a modification of the motor activity expression
enables the MFI module to take over the lead on the DW module.
The evaluation of such a modification in the motor commands
decision system can be performed again in simulation, along
the same procedure as in the previous simulations, see Figure 8.
Let us consider an environment made of five objects, belonging
to three different audiovisual categories. Each of these objects
emit sounds along time, according to the time plot shown
in Figure 8 (bottom). Figure 8 (top) exhibits the three-phase
behavior of the motor decision algorithm. At the very beginning,
only the MFI module is responsible for the head movements: the
system is learning the association between audiovisual classes.
Little by little, the inference provided by the MFI module does
not need motor confirmation for some of the classes: the DW

module can now compute congruence of the corresponding
objects and potentially trigger head movements. In the end, all
the audiovisual classes are correctly learned by the MFI module,
letting the sole DW module in charge with head rotations. Of
course, the head movements triggered by the DW module are also
used to feed the M-SOM.

4.2. Experimental Setup and Data
Generation
The overall system has been evaluated in a realistic environment
by using a real robot integrating the whole TWO!EARS software
and evolving in a real room. In practice, two different robots
have been actually used: one mobile platform from LAAS-CNRS
(Toulouse, France) named JIDO, the other one from ISIR (Paris,
France) named ODI, see pictures in Figure 9. Both platforms
support a KEMAR HATS (Head And Torso Simulator), whose
necks have been motorized to control their head movements
in azimuth (Bustamante et al., 2016). A HATS is a manikin
endowed with two microphones placed inside two pinnae which
mimics the acoustic effect of the head (and torso) on the left and
right ear signals, thus producing a realistic binaural information,
close to what a human could actually hears. The servo control
of the head is ensured by a set including a motor, its gear
head, an encoder, and an Harmonica electronic controller from
ELMO, mounted inside the HATS. A ROS node dedicated to
the head control is in charge of controlling this motorization,
allowing real-time servoing of the head movements by using

Frontiers in Neurorobotics | www.frontiersin.org 15 September 2018 | Volume 12 | Article 60

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Cohen-Lhyver et al. The Head Turning Modulation System

FIGURE 8 | Behavior of the combined modules in three phases. The testing environment is composed of five audiovisual sources and is willingly simple for illustration

purposes. (Top) Module ordering the head movement. (Bottom) Temporal course of the exploration of the environment; gray boxes depict the temporal course of

emitting sources.

FIGURE 9 | The two robotic platforms used in the project, both supporting a motorized KEMAR HATS. ODI has been used in this paper for the HTM evaluation. (A)

The ODI platform. (B) The ODI platform. (C) ODI, facing a loudspeaker with a QR code attached on it.

possibly different feedback control options like position or
velocity setpoints. In this paper, the positions deduced from
Equation (23) are directly sent to the ROS node to control
the head in position. These two robots are very much alike,
except for vision: the one used at ISIR for the experiments
used in this paper is only endowed with monocular vision.
However, as already argued, the HTM system is not dependent
on the way each modality works, but only on the identification
experts, be they dedicated to monocular or binocular vision for
instance.

Everything related to the platform and data acquisition is
handled by the ROS middleware, running directly on the robot:
navigation, obstacle avoidance, image and audio captures, etc.

Note that a dedicated ROS binaural processing node has been
developed during the project, so that most of the audio cues
required for sound localization, recognition and separation are
directly computed in real-time on the robot. State-of-the-art
ROS nodes dedicated to vision (acquisition and processing)
have also been used. All the data computed on the robot are
then transmitted to another computer running the TWO!EARS

framework thanks to a MATLAB-to-ROS bridge. This bridge has
been entirely designed to deal with the proposed bottom-up and
top-down approach of the project, so that all the ROS nodes can
be easily parameterized on the fly and in real time. Then, all the
steps required for the “cognitive” analysis (i.e., object localization,
recognition, fusion, etc.) runs under MATLAB.
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Experiments used in this paper have been conducted in
a pseudo-anechoic room populated with loudspeakers over
which QR codes have been attached to, see Figure 9C. These
are used by a ROS node to extract the visual labels of each
object directly and with a recognition rate similar to the one
obtained through the binocular vision of JIDO with the Line-Mod
algorithm Hinterstoisser et al. (2012). All the sounds emitted
from the loudspeakers belong to a database constituted of sounds
used to train the audio experts in recognition. In other terms,
all the sounds can be recognized by at least one expert in the
architecture. Then, the HTM has been evaluated in experimental
conditions by two scenarios: the first emphasizes the global
behavior of the system, while the second focuses on the fusion
and classification abilities of the MFI module. Whatever the
scenarios, they all works the following way: sounds are emitted
from one or multiple loudspeakers, possibly at the same time.
Depending on how the head of the KEMAR is turned, some
QR codes can be manually changed from one loudspeaker to
another to simulate an object movement in the environment. The
HTM system then gathers classification and localization results
coming from the audio and visual experts, and triggers some
head movements accordingly. A scenario is entirely described
by the number of different objects in the scene and by the time
description of their localization, appearance and disappearance,
exactly like in the previous simulations. Of course, ground truth
audio and visual classes of each object are known, thus allowing
a careful evaluation of the overall system performance. Note that
the audio experts used in the following experiments have been
set up by using data from a database recorded in a different
acoustic environment. Since they all rely on a prior learning step
exploiting these data, there will be a mismatch between their
learning and testing phase. The main consequence is mainly a
lower frame recognition rate, evaluated to about 37% for the
four classifiers used here, and that have been chosen amongst the
most performing ones (Two!Ears, 2016a). The same applies to
the localization algorithm, with less consequences: experiments
still show a good ability to localize sounds with a precision of
about 7.7◦ (including front-back confusion). Finally, the visual
recognition of QR codes works almost perfectly, while being quite
sensitive to changes in illuminations. Of course, both phenomena
are dealt with the HTM system, which has been entirely designed
to cope with recognition errors and lack of data, as show in the
next subsections.

4.3. Evaluation 4: Global Behavior
This first evaluation aims at demonstrating how the two modules
constituting the HTM system cooperate together in order the
exploratory robot an additional understanding of the world. The
evaluation consists in presenting to the system three successive
environments made of three to four objects, as summarized in
Table 3. The audiovisual sources of the environments are placed
around the robot and emit sound intermittently, according
to the time scenario shown in Figure 10 (bottom). Exactly
like in simulations, the real robot is compared to its naive
counterpartRn, turning its head toward every audiovisual events
regardless of their meaning. To begin with, the HTM builds a
first representation e(1). As shown in Figure 10, the robot starts

TABLE 3 | Experimental setup for Evaluations 4 & 5.

e(i) nS nmax
sim

c(9j ) θ (9j ) Kq

EVALUATION 4

1 3 1

dog barking n◦1 320◦

0.6dog barking n◦2 35◦

female speech 70◦

2 3 1

baby crying n◦1 70◦

0.6baby crying n◦2 35◦

female piano 320◦

3 4 1

baby crying n◦1 70◦

0.6
baby crying n◦2 35◦

dog barking 320◦

male speech 280◦

EVALUATION 5

1 5 1 female speech 320◦ 0.6

female piano 30◦

male speech 60◦

dog barking 90◦

baby screaming 280◦

by turning its head toward the first two audiovisual sources
(BARKING, dog and SPEECH, female), driven by the MFI

module since these audiovisual classes are brand new to it. As
already outlined in the previous subsection, the HTM tries to
learn the audiovisual association between these two classes. This
learning is done very quickly: one can observe at time index
t = 28 (corresponding to the “real” time 14 s) that the robot
turns its head to its resting state (blue line going at the top of the
figure), meaning that neither the DWmodule nor the MFImodule
requires a head movement toward the sources BARKING, dog:
these sources are not of interest anymore, and hearing the sound
BARKING is sufficient to infer the visual class dog. Nevertheless,
one can remark a glitch in the headmovement decision at t = 30,
as the last attempt of the MFI module to learn the BARKING,
dog audiovisual association. At t = 41 (20.5 s), the robot turns
its head again toward the source (SPEECH, female): with two
BARKING, dog for one SPEECH, female in e(1), the probability
for this last audiovisual category p(C(1)(SPEECH,female)) =
1/3 falls below K(1) = 1/2, thus making any object of this
audiovisual category incongruent. Then, the robot explores a
second environment. It is similar in terms of frequencies of
apparition of each audiovisual categories, even if their meaning
(at least, to us) is different: the two BARKING, dog are trade
for two CRYING, baby, while the category SPEECH, female is
replaced by PIANO, female. Logically, the obtained behavior
is similar: a quick learning of the audiovisual association allows
then the head to be controlled by the DW module on the basis
on congruency computations. Interestingly, the understanding
of this second environment by the DW module could appear as
counterintuitive in comparison with how humans might have
reacted by favoring the two objects CRYING, baby. This more
social reaction could nevertheless be handled by some additional
KS from the TWO!EARS architecture which could modulate the
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FIGURE 10 | (Top) Number of head movements triggered during the exploration of each environment by (blue) the HTMKS, (red) the virtual naive robot. Each arrow

points at a source and their length represent the number of movements. The light blue numbers correspond to the position of the sources. (Purple bars:) total number

of movements triggered by (dark) the MFI module, (light) the DW module (black numbers are their sum). (Red bars:) number of movements triggered by the virtual naive

robot. (Bottom) Movements triggered by (blue line) the HTMKS, and (dotted red line) the naive robot. (Gray boxes:) temporal course of the scenarios. The

semi-transparent red box at t = 116 highlights the significant wrongful discrepancy that occurred between the actual audiovisual class of the object and the

perception of the HTM (error that is corrected soon after, see text for more details). Additionally, the subfigure present in the delineated box at the bottom of e(2)

represents the evolution of K(2) together with the posterior probabilities of the two audiovisual classes observed in e(2) (in light blue for o1 and o3, in purple for o2). The

comparison of the all the p(oj ) and K(l) justifies the potential triggering of head movements by the DW module, as observed at t = 74 and t = 90.

overall reaction of the robot w.r.t. the current task (Ferreira
and Dias, 2014). Finally, a third environment is explored. It will
allow to demonstrate the benefits of reusing information between
the representation of environments, see section3.2.1. Indeed, the
scene begins with a CRYING, baby which does not trigger any
head movement: while being in a new environment, the HTM
system considers at this point that this third environment is
very likely to be the same as e(2) where this audiovisual class
was considered as congruent. Consequently, the congruence
computations of each audiovisual categories in the previous
environment can still be used, and no head movements toward
this now object is performed. However, as soon as a new object
eliminates the possibility to be in an environment similar to e(2)

pops up, a new representation e(3) is created. Thus, when the
source BARKING, dog appears in the scene, a head movement
is immediately triggered toward it, since it is incongruent in e(3).
Once again, a small glitch in the motor decision appears in t =
116, caused by the experts outputs and the signal non-stationarity

(a BARKING sound includes indeed some silence). Themovement
triggered at t = 118 is an error from the system since the
object CRYING, baby should have been considered as congruent.
The audio data perceived at this time is MALESPEECH, data
from a never encountered audio class, thus enjoining the MFI

module to trigger a head movement. From t = 119 and t =
122, the experts’ data changed and became of class CRYING,
dog, an audiovisual pair the MFI module never encountered
before, consequently still promoting the focus on the object.
However, at time t = 123, the correction of the MFI module
has been applied and the “correct” audiovisual class CRYING,
baby is now output by themodule. The DWmodule, in response,
analyses it and consider it as congruent in this environment, thus
inhibiting the head movement. Finally, the new source SPEECH,
male appears in the environment at t = 150 and the robot
is focused on it. Two (apparently) erroneous movements to the
resting position can be observed, at t = 153 and t = 157,
due to the discontinuity of the sound signal: the audio experts
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FIGURE 11 | Results of the audiovisual classification (including the inference by the MFI module) obtained by (blue) the HTM system, (red) the naive robot. The two

numbers on the right correspond to the value at the end of the exploration.

did not detect any sound for these two frames (to give an idea:
argmax(Pa[t = 157]) = 0.176, whereas for the frame right
before, at t = 156, five components out of thirteen are lying
between pa = 0.403 and pa = 1.00). Going back to the
resting position when an object stops emitting sound is part
of the attempt of the overall HTM system to also inhibit the
head movements in order to free the head for other potential
purposes.

4.4. Evaluation 5: Fusion and Classification
After having performed numerous evaluation in simulated
conditions (see Table 2), this experiment is focused on the
evolution of the good audiovisual classification rate along
the exploration of a real environment. For that purpose, an
environment is set up with five different sources, as presented in
Table 3. The three audio classes populating the environment have
been selected because of their better experimental recognition
rate in the architecture. At each time step, the estimated
audiovisual classes provided by the overall HTM system is
compared to the ground truth, and for each object. The resulting
mean good estimation rate Ŵ̄MFI[t], computed over all objects,
is plotted against time in Figure 11 (blue line). The same
is done for the naive robot, with a mean good estimation
rate Ŵ̄′

Rn
[t] (red line in the same figure). As expected, the

proposed HTM system shows the best audiovisual classification
rate. Indeed, one can see in Figure 11 that the red line tends
to the rate Ŵ̄′

Rn
= 37.9% which is exactly the mean good

classification rate of the involved KS. In the same conditions,
the MFI module converges to Ŵ̄MFI = 69.6%. In the very
beginning of the experiment, both systems exhibit the same
performances: the different smoothing involved in the various
computations (of the KS outputs, in the motor decisions, etc.)

together with silences in the sounds presented to the robot can
explain this. But while the naive robot exhibits a constantly
decreasing good estimation rate of the audiovisual classes, the
MFI module remains relatively robust to the KS classification
errors.

A direct consequence of these good performances of the
HTM system can be observed in Figure 12 which plots an
histogram of all the audiovisual classes created by both systems
(expressed in terms of number of frames). The HTM system
is able to considerably narrow the possible audiovisual classes
existing in the environment: from 22 by the naive robot, the
HTM system narrows it down to only 5. However, one of the
class created is erroneous: PIANO, female has been mistaken
with PIANO, male, but only for a short period of time (two
frames, i.e., 1 s). This point has already been discussed in
section 3.3.4.

5. CONCLUSION

In this paper, a new system for the modulation of the exploratory
behavior of a robot has been proposed. Based on the new
notion of Congruence, it takes control of the head movements
of a platform to put the robot attention toward audiovisual
sources of interest. Additionally, it provides a robust description
of the unknown environments explored all along the robot’s
life and following an unsupervised paradigm. This enriched
representation consists, first, in the analysis of audiovisual
objects through their relationship to the environments they are
perceived in, and secondly, in how much the knowledge the
system has about their actual audiovisual class is reliable and
robust. Even in the case of classification errors by the audio
or visual classifiers in the overall architecture, the system is
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FIGURE 12 | Number and labels of the audiovisual classes created by (blue) the MFI module, and (red) the naive robot. (Left) Number of temporal frames (height of

bars) during which the audiovisual classes have been categorized. (Light blue rectangles:) Audiovisual classes the two systems have in common. (Right) Total number

of different audiovisual classes created.

then able to correctly infer the events’ audiovisual classes by
actively learning the interlink between the two modalities. All of
this is achieved by the two constitutive modules of the HTM,
namely the Dynamic Weighting module, and the Multimodal
Fusion & Inference module. Each of them is able to trigger
head movements that are used as an attentional reaction and as
an active reaction to the need for additional data, respectively.
Importantly, the extensive use of head movements is not limited
to the sole benefit of the HTM system: audio localization
algorithms such as (Nakashima andMukai, 2005; Hornstein et al.,
2006; Ma et al., 2017) relying also on head movements could be
connected to the HTM as a top-down feedback unit, thus taking
advantage from its motor commands to improve in parallel audio
localization performances. The active self-supervised and online
learning paradigm the MFI module relies upon, through the
use of the Multimodal Self- Organizing Map, quickly provides
the DW module with robust data while also offering inference
abilities whenever a modality is missing (occlusion of the object,
for instance). Whereas existing models provide audio-visual
inference (Alameda-Pineda andHoraud, 2015) aiming at binding
low-level cues of the audio and visual data streams, the MFI

module relies only on a higher level of representation of data,
a representation that could be used as a top-down feedback
to potentially enhance low-level audiovisual fusion algorithm.
Additionally, the choice of learning the cross-modal relationship
between auditory and visual data in an exclusively unsupervised
way can be debated as not being powerful enough (Senocak
et al., 2018). However, the results obtained here show significant
improvements in the quality of the audiovisual data provided

to the DW module without any inclusion of human knowledge.
The system performances have been evaluated in realistic
simulated conditions, but also on a real robot endowed with
binaural audition and vision capabilities. Importantly, the overall
architecture of the system, i.e., the TWO!EARS software, is made
available online as an open source software2. The same applies
for the proposed HTM system, entirely included inside this
architecture3.

One of the main limitation of the current implementation
is related to its high dependency to the localization experts.
Indeed, the overall motor reactions are currently guided by
each object azimuth localization, which have been shown
precise enough to provide relevant results. Hopefully, binaural
sound localization is a research topic by itself, and recent
developments in the field show very robust algorithms, even in
challenging acoustical conditions. Nevertheless, the robustness
to localization errors could be enhanced by using tracking
experts able to consolidate the sources position along time.
For now, the HTM system is still being developed with the
following improvements in mind. First, the definition of an
object is currently limited to its audio and visual labels, while
it could be enriched with additional information possibly
coming from other modalities (emotions, audio pitch, forms
and textures, etc.). Importantly, the proposed M-SOM has been
designed to easily incorporate such additional parameters in
the object definition: a subnetwork can be added for each of

2https://github.com/TWOEARS
3https://github.com/TWOEARS/audio-visual-integration
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them together with their respective weights vectors. Concerning
the Dynamic Weighting module, a significant improvement
can be made by including the computation of a temporal
habituation in order for the robot to not to be stuck in
a deadlock kind of situation, as in Figure 8 where, if the
scenario goes on forever, the robot would be keeping turning
its head toward the CRYING, male. Finally, the coupling of
the HTM system with other cognitive experts in the current
framework is still under investigation. So far, the current version
of the TWO!EARS software does not include others high- level
cognitive experts. Nevertheless, the entire HTM system has
been conceived with the idea that the motor exploration can
also be guided by cognitive elements other than the ones
implemented in the system. For instance, a model as the
one recently proposed by Lanillos et al. (2015) on attention

driven by social interaction, could easily be linked to the
HTM, both benefiting from each other: one congruent source
could still be focused because of its social interest, whereas a
socially non-interesting object could still be focused for its high
incongruence.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

This work is supported by the European FP7 TWO!EARS project,
ICT-618075, www.twoears.eu.

REFERENCES

Alameda-Pineda, X., and Horaud, R. (2015). Vision-guided robot hearing. Int. J.

Robot. Res. 34, 437–456. doi: 10.1177/0278364914548050

Baranes, A., and Oudeyer, P.-Y. (2009). R-IAC: robust intrinsically

motivated active learning. IEEE Trans. Auton. Ment. Dev. 1, 155–169.

doi: 10.1109/TAMD.2009.2037513

Baranes, A., and Oudeyer, P.-Y. (2010). “Intrinsically motivated goal exploration

for active motor learning in robots: a case study,” in Intelligent Robots and

Systems (IROS), 2010 IEEE/RSJ International Conference on (Taipei), 1766–

1773. doi: 10.1109/IROS.2010.5651385

Bauer, J., and Wermter, S. (2013). “Self-organized neural learning of statistical

inference from high-dimensional data,” in IJCAI (Beijing), 1226–1232.

Berlyne, D. E. (1950). Novelty and curiosity as determinants of exploratory

behavior. Brit. J. Psychol. 41, 68–80.

Berlyne, D. E. (1965). Structure and Direction in Thinking. New York, NY: John

Wiley & Sons, Inc.

Braitenberg, V. (1986). Vehicles: Experiments in Synthetic Psychology. MIT Press.

Bustamante, G., Danès, P., Forgue, T., and Podlubne, A. (2016). “Towards

information-based feedback control for binaural active localization,” in 2016

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP) (Shanghai), 6325–6329.

Capdepuy, P., Polani, D., and Nehaniv, C. L. (2007). “Maximization of potential

information flow as a universal utility for collective behaviour,” in IEEE

Symposium on Artificial Life (Honolulu, HI: IEEE), 207–213.

Carrillo, H., Dames, P., Kumar, V., and Castellanos, J. A. (2015). “Autonomous

robotic exploration using occupancy grid maps and graph SLAM based on

Shannon and Rényi entropy,” in Robotics and Automation (ICRA), 2015 IEEE

International Conference on (Seattle, WA: IEEE), 487–494.

Chapelle, O., Weston, J., and Schölkopf, B. (2002). Cluster kernels for semi-

supervised learning. Adv. Neural Inform. Process. Syst. 15 7:1.

Cohen-Lhyver, B. (2017). Modulation de Mouvements de Tête pour l’Analyse

Multimodale d’un Environnement Inconnu. Ph.D. thesis, Université Pierre and

Marie Curie.

Cohen-Lhyver, B., Argentieri, S., and Gas, B. (2015). “Modulating the auditory

turn-to reflex on the basis of multimodal feedback loops: the dynamic

weighting model,” in IEEE International Conference on Robotics and

Biomimetics (ROBIO) (Buenos Aires).

Cohen-Lhyver, B., Argentieri, S., and Gas, B. (2016). “Multimodal fusion and

inference using binaural audition and vision,” in International Congress on

Acoustics.

Corbetta, M., Patel, G., and Shulman, G. L. (2008). Review the reorienting system

of the human brain: from environment to theory of mind. Neuron 58, 306–324.

doi: 10.1016/j.neuron.2008.04.017

Corbetta, M., and Shulman, G. L. (2002). Control of goal-directed and

stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215.

doi: 10.1038/nrn755

Corneil, B. D., Munoz, D. P., Chapman, B. B., Admans, T., and Cushing, S. L.

(2008). Neuromuscular consequences of reflexive covert orienting. Nat.

Neurosci. 11:13. doi: 10.1038/nn2023

Cuperlier, N., Quoy, M., and Gaussier, P. (2007). Neurobiologically

inspired mobile robot navigation and planning. Front. Neurorobot. 1:3.

doi: 10.3389/neuro.12.003.2007

Downar, J., Crawley, A. P., Mikulis, D. J., and Davis, K. D. (2000). A multimodal

cortical network for the detection of changes in the sensory environment. Nat.

Neurosci. 3, 277–283. doi: 10.1038/72991

Driver, J., and Spence, C. (1998). Attention and crossmodal construction

of space. Trends Cogn. Sci. 2, 254–262. doi: 10.1016/S1364-6613(98)0

1188-7

Droniou, A., Ivaldi, S., and Sigaud, O. (2015). Deep unsupervised network for

multimodal perception, representation and classification. Robot. Auton. Syst.

71, 83–98. doi: 10.1016/j.robot.2014.11.005

Duangudom, V., and Anderson, D. V. (2007). “Using auditory saliency

to understand complex auditory scenes,” in European Signal Processing

Conference, 2017 (EUSIPCO) (Poznan), number 15th.

Ferreira, J. F., and Dias, J. (2014). Attentional mechanisms for socially

interactive robots–a survey. IEEE Trans. Auton. Ment. Dev. 6, 110–125.

doi: 10.1109/TAMD.2014.2303072

Girard, B., Cuzin, V., Guillot, A., Gurney, K. N., and Prescott, T. J.

(2002). “Comparing a brain-inspired robot action selection mechanism with

‘Winner- Takes-All’,” in From Animals to Animats 7: Proceedings of the

Seventh International Conference on Simulation of Adaptive Behavior, Vol. 7

(Cambridge, MA: MIT Press), 75.

Gurney, K., Prescott, T. J., and Redgrave, P. (2001a). A computational model of

action selection in the basal ganglia. I. A new functional anatomy. Biol. Cybern.

84, 401–410. doi: 10.1007/PL00007984

Gurney, K., Prescott, T. J., and Redgrave, P. (2001b). A computational model of

action selection in the Basal Ganglia. II. analysis and simulation of behaviour.

Biol. Cybern. 84, 411–423. doi: 10.1007/PL00007985

Henneberger, G., Brunsbach, B. J., and Klepsch, T. (1991). “Field oriented control

of synchronous and asynchronous drives without mechanical sensors using a

Kalman-Filter,” in European Conference on Power Electronics and Applications,

1991 (ECPEA) (Firenze), Vol. 3, 664.

Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P., Navab, N., Fua, P., et al.

(2012). Gradient response maps for real-time detection of textureless objects.

IEEE Trans. Patt. Anal. Mach. Intell. 34, 876–888. doi: 10.1109/TPAMI.2011.

206

Hopfinger, J. B., Buonocore, M. H., and Mangun, G. R. (2000). The neural

mechanisms of top-down attentional control. Nat. Neurosci. 3, 284–291.

doi: 10.1038/72999

Hornstein, J., Lopes, M., Santos-Victor, J., and Lacerda, F. (2006). “Sound

localization for humanoid robots-building audio-motor maps based on the

hrtf,” in Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference

on (Beijing: IEEE) , 1170–1176.

Frontiers in Neurorobotics | www.frontiersin.org 21 September 2018 | Volume 12 | Article 60

www.twoears.eu
https://doi.org/10.1177/0278364914548050
https://doi.org/10.1109/TAMD.2009.2037513
https://doi.org/10.1109/IROS.2010.5651385
https://doi.org/10.1016/j.neuron.2008.04.017
https://doi.org/10.1038/nrn755
https://doi.org/10.1038/nn2023
https://doi.org/10.3389/neuro.12.003.2007
https://doi.org/10.1038/72991
https://doi.org/10.1016/S1364-6613(98)01188-7
https://doi.org/10.1016/j.robot.2014.11.005
https://doi.org/10.1109/TAMD.2014.2303072
https://doi.org/10.1007/PL00007984
https://doi.org/10.1007/PL00007985
https://doi.org/10.1109/TPAMI.2011.206
https://doi.org/10.1038/72999
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Cohen-Lhyver et al. The Head Turning Modulation System

Huang, G. B., Member, S., Zhu, Q. Y., and Siew, C. K. (2006). Real-time

learning capability of neural networks. IEEE Trans. Neural Netw. 17, 863–878.

doi: 10.1109/TNN.2006.875974

Huang, X., and Weng, J. (2002). “Novelty and reinforcement learning in the value

system of developmental robots,” in Proceedings of the Second International

Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic

Systems (Edinburgh: Lund University Cognitive Studies), 47–55.

Huang, X., and Weng, J. (2004). “Motivational system for human-robot

interaction,” in International Workshop on Computer Vision in Human-

Computer Interaction (Prague: Springer), 17–27.

Hunt, J. (1965). “Intrinsic motivation and its role in psychological development,”

in Nebraska Symposium on Motivation, Vol. 13 (University of Nebraska Press),

189–282.

Indovina, I., and Macaluso, E. (2007). Dissociation of stimulus relevance and

saliency factors during shifts of visuospatial attention. Cereb. Cortex 17,

1701–1711. doi: 10.1093/cercor/bhl081

Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based visual attention

for rapid scene analysis. IEEE Trans. Patt. Anal. Mach. Intell. 20, 1254–1259.

doi: 10.1109/34.730558

James, W. (1890). The Principles of Psychology. Read Books Ltd.

Kayser, C., Petkov, C. I., Lippert, M., and Logothetis, N. K. (2005). Mechanisms

for allocating auditory attention: an auditory saliency map. Curr. Biol. 15,

1943–1947. doi: 10.1016/j.cub.2005.09.040

Kohonen, T. (1982). Self-organized formation of topologically correct feature

maps. Biol. Cybern. 43, 59–69. doi: 10.1007/BF00337288

Kohonen, T. (1990). The self-organizing map. Proc. IEEE 78, 1464–1480.

doi: 10.1109/5.58325

Kohonen, T. (2013). Essentials of the self-organizing map. Neural Netw. 37, 52–65.

doi: 10.1016/j.neunet.2012.09.018

Lanillos, P., Ferreira, J. F., and Dias, J. (2015). “Designing an artificial attention

system for social robots,” in Institute of Electrical and Electronics Engineers

(IEEE)/RSJ International Conference on Intelligent Robots and Systems (IROS)

(Hamburg). doi: 10.1109/IROS.2015.7353967

Le Meur, O., Le Callet, P., Barba, D., and Thoreau, D. (2006). A coherent

computational approach to model bottom-up visual attention. Trans. Patt.

Anal. Mach. Intell. 28, 802–817. doi: 10.1109/TPAMI.2006.86

Le Meur, O., and Liu, Z. (2015). Saccadic model of eye movements for

free-viewing condition. Vis. Res. 116, 152–164. doi: 10.1016/j.visres.2014.

12.026

Ma, N., Brown, G. J., and May, T. (2015). “Exploiting deep neural networks and

head movements for binaural localisation of multiple speakers in reverberant

conditions,” in Interspeech (Dresden).

Ma, N., May, T., and Brown, G. J. (2017). Exploiting deep neural networks

and head movements for robust binaural localization of multiple sources in

reverberant environments. IEEE/ACM Trans. Audio Speech Lang. Process.

TASLP) 25, 2444–2453. doi: 10.1109/TASLP.2017.2750760

Makarenko, A. A., Williams, S. B., Bourgault, F., and Durrant-Whyte, H. F.

(2002). “An experiment in integrated exploration,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2002 (Lausanne), 534–539.

doi: 10.1109/IRDS.2002.1041445

May, T., van de Par, S., and Kohlrausch, A. (2011). A probabilistic model

for robust localization based on a binaural auditory front-end. IEEE

Trans. Audio Speech Lang. Process. 19, 1–13. doi: 10.1109/TASL.2010.20

42128

Meyer, J.-A., Guillot, A., Girard, B., Khamassi, M., Pirim, P., and Berthoz, A.

(2005). The psikharpax project: towards building an artificial rat. Robot. Auton.

Syst. 50, 211–223. doi: 10.1016/j.robot.2004.09.018

Montemerlo, M., Thrun, S., Koller, D., and Wegbreit, B. (2002). “FastSLAM: a

factored solution to the simultaneous localization and mapping problem,” in

Proceedings of 8th National Conference on Artificial Intelligence/14th Conference

on Innovative Applications of Artificial Intelligence, Vol. 68 (Edmonton, AB),

593–598.

Näätänen, R., Gaillard, A. W., and Mäntysalo, S. (1978). Early selective-

attention effect on evoked potential reinterpreted. Acta Psychol. 42, 313–329.

doi: 10.1016/0001-6918(78)90006-9

Nakashima, H., and Mukai, T. (2005). “3d sound source localization system based

on learning of binaural hearing,” in Systems, Man and Cybernetics, 2005 IEEE

International Conference on, Vol. 4 (London, UK: IEEE), 3534–3539.

Nothdurft, H.-C. (2006). Salience and target selection in visual search. Vis. Cogn.

14, 514–542. doi: 10.1080/13506280500194162

O’Keefe, J., and Nadel, L. (1978). The Hippocampus as a Cognitive Map. Number 9.

Oxford: Clarendon Press.

Oliva, A., Torralba, A., Castelhano, M. S., and Henderson, J. M. (2003). “Top-

down control of visual attention in object detection,” in 2003 International

Conference on Image Processing, 2003, Vol. 1 (ICIP 2003) (Barcelona),

1–253.

Oudeyer, P.-Y., and Kaplan, F. (2008). “How can we define intrinsic motivation?”

in Proceedings of the 8th International Conference on Epigenetic Robotics:

Modeling Cognitive Development in Robotic Systems, Lund University Cognitive

Studies, Lund: LUCS, Brighton. Brighton; Lund: Lund University Cognitive

Studies.

Oudeyer, P. Y., Kaplan, F., and Hafner, V. V. (2007). Intrinsic motivation

systems for autonomous mental development. IEEE Trans. Evolut. Comput.

11, 265–286. doi: 10.1109/TEVC.2006.890271
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