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Reinforcement learning (RL) aims at building a policy that maximizes a task-related reward

within a given domain. When the domain is known, i.e., when its states, actions and

reward are defined, Markov Decision Processes (MDPs) provide a convenient theoretical

framework to formalize RL. But in an open-ended learning process, an agent or

robot must solve an unbounded sequence of tasks that are not known in advance

and the corresponding MDPs cannot be built at design time. This defines the main

challenges of open-ended learning: how can the agent learn how to behave appropriately

when the adequate states, actions and rewards representations are not given? In this

paper, we propose a conceptual framework to address this question. We assume an

agent endowed with low-level perception and action capabilities. This agent receives an

external reward when it faces a task. It must discover the state and action representations

that will let it cast the tasks as MDPs in order to solve them by RL. The relevance of

the action or state representation is critical for the agent to learn efficiently. Considering

that the agent starts with a low level, task-agnostic state and action spaces based

on its low-level perception and action capabilities, we describe open-ended learning

as the challenge of building the adequate representation of states and actions, i.e., of

redescribing available representations. We suggest an iterative approach to this problem

based on several successive Representational Redescription processes, and highlight

the corresponding challenges in which intrinsic motivations play a key role.

Keywords: developmental robotics, reinforcement learning, state representation learning, representational

redescription, actions and goals, skills

1. INTRODUCTION

Robots need world representations in terms of objects, actions, plans, etc. Currently such
representations are carefully designed and adapted to the robot’s task (Kober et al., 2013). But
a general purpose robot capable of solving an unbounded number of tasks cannot rely on
representations hardwired at design time, because each may require a different representation.
To achieve the vision of a robot that can solve an open-ended series of tasks in an increasingly
efficient way, we consider an alternative paradigm: that the robot should discover the appropriate
representations required to autonomously learn each task.
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Representational redescription is the ability to discover new
representations based on existing ones. It is a key ability
of human intelligence (Karmiloff-Smith, 1995) that remains
a challenge in robotics (Oudeyer, 2015). In this paper, we
propose a unifying conceptual framework for addressing it.
We assume an agent endowed with low-level perception and
action capabilities which receives external rewards when it
faces a task. We also assume the agent is endowed with
reinforcement learning (RL) capabilities efficient enough to
let it learn to solve a task when cast as a Markov Decision
Process (MDP). From these assumptions, the main challenge
in our framework is determining how an agent can discover
the state and action representations that let it cast tasks as
MDPs, before solving them by RL (Zimmer and Doncieux,
2018).

In MDPs, states and actions are primitive components
considered given, and they are generally defined by the
human designer having a particular task and domain
in mind (see Figure 1). To make a step toward open-
ended learning, we propose a conceptual framework
for representational redescription processes based on a
formal definition of states and actions. Then we highlight
the challenges it raises, notably in terms of intrinsic
motivations.

2. THE REPRESENTATIONAL
REDESCRIPTION APPROACH

Our Representational Redescription approach is depicted in
Figure 2. We consider an agent endowed with low-level
perception and action capabilities, and which faces an open-
ended sequence of tasks. The agent receives some external
rewards from these tasks. The problem for this agent is to
determine how to use this reward to learn the corresponding task.
In an MDP, an RL algorithm explores the possible outcomes of
an action when executed in a particular state. As pointed out
by Kober et al. (2013), there is a need to appropriately define
the state and action spaces for an efficient learning process. To
do so, the possible alternatives are either to rely on a single
generic state and action space or to build them on-the-fly when
required. In this work, we do the latter and make the following
assumptions:

ASSUMPTION 1. A single state and action space cannot
efficiently represent all the decision processes required to solve the
tasks an open-ended learning system will be confronted to. To solve
the task k defined through a reward value rk(t), the agent needs to
build an MDP Mk.

ASSUMPTION 2. An open-ended learning process needs to build
these MDPs on-the-fly.

ASSUMPTION 3. The agent is endowed with some RL algorithms
to allow it to learn to solve the task, once the underlying MDP has
been fully defined.

3. CONCEPTUAL FRAMEWORK AND
BASIC DEFINITIONS

3.1. Markov Decision Processes
Decisions in robotics can be modeled with MDPs using
< Sk,Ak, pk,Rk >, where k is a task identifier1, Sk is the state
space, Ak is the action space, pk : Sk × Ak × Sk → R is a
transition function, where pk(st , at , st+1) gives the probability to
reach st+1 from st after having applied action at and Rk : Sk → R

is the reward function. A policy πk : Sk → Ak is a process that
determines which action to apply in any state.

In the proposed framework, the observed reward rk(t) is
distinguished from the reward function of the MDP Rk(t). The
agent may not know to what state the observed reward rk(t)
can be associated. It is actually part of the proposed open-
ended learning framework to interpret observed rewards and
associate them to states in order to build the reward function
Rk(t) required to learn how to maximize them.

The notations used here have been intentionally kept as simple
as possible. This framework can be easily extended to more
complex cases, including semi-MDPs, stochastic policies or other
definitions of the reward function.

3.2. States
DEFINITION 1. A state is a description of a robot context that
respects the constraints of its decision process.

Following (Lesort et al., 2018), a good state representation
should be (1) Markovian (i.e., the current state summarizes
all the necessary information to choose an action), (2) able to
represent the robot context well enough for policy improvement,
(3) able to generalize the learned value-function to unseen states
with similar features, and (4), low dimensional for efficient
estimation (Böhmer et al., 2015). State representation learning
approaches learn low dimensional representations without direct
supervision, i.e., exploiting sequences of observations, actions,
rewards and generic learning objectives (Lesort et al., 2018).

To bootstrap the open-ended learning process, we define S0 as
the state space containing the set of possible sensorimotor values.
This first state space may not be low dimensional, Markovian, or
structured enough for efficient exploration, thus motivating the
search for better adapted state spaces.

3.3. Reward Functions and Goals
A reward function may contain different kinds of information:
an indication of success in fulfilling a Human user defined task,
or in reaching an autonomously defined action goal (see next
section). It may also contain guidance to help reach the goal
(reward shaping).

Besides reward functions defined in R, the proposed
framework requires, for the description of actions, the definition
of boolean reward functions that will be called goal functions:

1A single state and action space can be used for several tasks and a single task could

be associated to multiple representations, but we use this notation to highlight the

dependency between tasks and MDPs that is central to this framework.
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FIGURE 1 | A typical MDP. The agent designer having a task in mind designs the MDP accordingly.

DEFINITION 2. A goal function, denoted R̂, does not contain
any shaping term and tells whether the goal associated to this
reward function is achieved or not.

A goal function is a specific reward function aimed at defining
the notion of success or failure required for action definition. The
task to solve does not need to be described with such a boolean
function.

DEFINITION 3. Goal states are states s for which R̂(s) = True.

3.4. Actions
In the proposed framework, actions are not systematically
predefined, but can be built on-the-fly. The design of the
corresponding algorithms requires to define what an action
actually is. The proposed definition relies on the notion of goal
function to add a purpose to a policy. Actions are framed within
different abstraction levels depending on the granularity of the
policy, as in the options framework (Sutton et al., 1999). Actions
are one of the main components of an MDP. An MDPMk needs
an action space Ak. Ak is an action space defined at an abstraction
level k. It relies on policies of level k−1, defined in anMDP k−1.
They can be used to build policies at the level k that can, in turn,
be used to build new actions for another MDP at the level k+ 1.

DEFINITION 4. Actions a ∈ Ak are the primitives of MDP Mk.
An action a is a policyπ relying on actions available at a lower level

and built to reach a goal state associated to a goal function R̂. The
action succeeds if the trajectory of the robot controlled by this policy
converges to a goal state of R̂; otherwise, it fails. An action is then
fully defined by the triplet: {π , R̂, tmax} where tmax is the maximum
amount of time after which the action is considered failed if no goal
state is reached.

If the level on top of which an MDP Mk is built is, itself, an
MDP, actions a ∈ Ak can be considered as macro-actions or
options.

The goal state of an action is frequently defined relative to a
particular initial state sinit , where sinit is the state of the agent
when the action is triggered, e.g., “Turning 90deg” or “moving
forward 1m.”

The definition of an action is hierarchically recurrent: an
action ak relies on a policy π that also relies on a set of lower level
actions {al, l < k}. To stop the recurrence, a specific set of actions
A0 is defined, that corresponds to the lowest level accessible by
the robot, i.e., motor commands. They are also actions, as motor
commands always have a goal (reaching a particular velocity or
position, for instance) that a low-level control process aims at
reaching and eventually staying at. As suggested by Harutyunyan
(2018, Chapter 5), we assert that it may not be necessary, or even
desirable, to have the same time-scale and discounting for lower
and higher level actions.
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FIGURE 2 | Overview of an open-ended learning process. The agent designer does not know the different tasks the agent will be facing, but designs the agent to let it

build the MDP to interpret a reward in its environment and find out how to maximize it.

3.5. Representational Redescription
In the proposed framework, open-ended learning needs to
build MDPs on-the-fly, including the state and action spaces.
Considering that the process starts from initial state and action
spaces (S0,A0), this particular feature is captured by the concept
of representational redescription.

DEFINITION 5. A representational redescription process is a
process that builds the state and action spaces enabling the
definition of an MDP able to (1) solve a given task defined by
observed reward values (2) in a particular domain and (3) with
a particular decision or learning process. To this end, it relies on
the representations of states and actions that have been previously
acquired and can thus be described as a process transforming

existing representations into new ones that are more fitted to the
context.

3.6. Motor Skills: Controlling Transitions
Between States
In an MDP, the set of provided actions is built to allow the robot
to move in the state space. If a state space is built on-the-fly, the
agent should be able to control it and move from one state to
another. With the proposed definitions, the open-ended learning
process needs to build actions to reach each part of the state space.
The notion of motor skill is defined to capture this process.

DEFINITION 6. A motor skill is an action generator: ξk : S
(i) ×

S(g) → Ak, where S
(i), S(g) ⊂ S2

k
. It is an inverse model defined in
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a particular action space Ak to reach a target state from an initial
state.

ξ (si, sg) is an action that, starting from si ∈ S(i), reaches

sg ∈ S(g) with the highest possible probability. The state sg is
the goal state of the corresponding action, and the corresponding
reward function is intrinsic (see section 3.8).

3.7. Open-Ended Learning
On the basis of the proposed definitions, we can define an
open-ended learning process as follows:

DEFINITION 7. An open-ended learning process builds the
MDPs required to solve the tasks that the agent faces. Task k is
defined through an observed reward value rk(t). Starting from an
initial state space S0, an initial action space A0 and a decision
or learning process P , the open-ended learning process aims at
building (1) state spaces, (2) action spaces and (3) motor skills to
control the state with appropriate actions. State and action spaces
need to fulfil the following features:

1. The state space should help interpret the reward occurences, i.e.,
learn Rk to model the observed rk;

2. The action space should allow control of the state space through
dedicated motor skills;

3. The state and action spaces should make the agent’s state
trajectory as predictable as possible;

4. From the state and action spaces, P should be able to converge
to a policy maximizing rk.

3.8. Intrinsic Motivations
Task-based rewards are not enough to drive a representational
redescription process. There is a need for other drives that
push the agent to explore and create new knowledge. This is
the role of intrinsic motivations (Oudeyer and Kaplan, 2009;
Baldassarre and Mirolli, 2013). In the context of open-ended
learning through representational redescription, we propose the
following definition:

DEFINITION 8. An intrinsic motivation is a drive that
complements drives associated with external task-based rewards to
build appropriate state and actions spaces as well as motor skills.

Intrinsic motivations play a critical role at different stages
of the proposed representational redescription process, for
instance:

• To organize learning and select in what order to learn skills
and build state spaces;

• To acquire relevant data for state representation learning
(before building an appropriate MDP);

• To build the skills required to control the state space (focusing
learning on areas that are within reach and ignoring the rest).

4. CHALLENGES

This section recasts the challenges of open-ended learning with
the proposed conceptual framework.

CHALLENGE 1. Interpreting observed reward: Building an
appropriate state space to interpret an externally provided reward,
i.e., build a state space Sk that allows easy modeling of the observed
reward value rk.

CHALLENGE 2. Skill acquisition: Controlling the displacements
in an acquired state space Sk by building the appropriate action
space Ak and skill ξk : S

(i) × S(g) → Ak, where S(i), S(g) ⊂ S2
k
,

to give the agent the ability to move from one state to another as
accurately as possible.

To address Challenge 1, state representations can be learned
from known actions (Jonschkowski and Brock, 2015) and,
likewise, to address Challenge 2, actions can be learned when the
state space is known (Rolf et al., 2010; Forestier et al., 2017).

CHALLENGE 3. Simultaneously learning state space, action space,
and policy: The state and action spaces are interdependent with
each other and with the policy. For open-ended learning, all need
to be learned jointly to solve a task, and doing so tractably is a
challenge.

CHALLENGE 4. Dealing with sparse reward: available state and
action spaces may not allow to easily obtain reward rk(t) associated
to Task k. This is particularly true at the beginning of the process,
when starting from (S0,A0): this is the bootstrap problem. The
challenge is to design an exploration process that converges toward
reward observations in a limited time.

A possibility to address the bootstrap problem is to rely
on a motor babbling approach (Baranes and Oudeyer, 2010;
Rolf et al., 2010). Another possibility would be to rely on a
direct policy search including an intrinsic motivation toward
behavior diversity and followed by a process to extract adapted
representations from it (Zimmer and Doncieux, 2018).

The next challenges are related to the unsupervised acquisition
of a hierarchy of adapted representations.

CHALLENGE 5. Detecting task change: In the case where tasks are
not explicitly indicated to the robot, detecting task change from k
to k+ 1 on the basis of observed rewards r.

The efficiency of a learning system is influenced by the order
of the tasks it is facing (Bengio et al., 2009).

CHALLENGE 6. Ordering knowledge acquisition and task
resolution: An open-ended learning system needs to be able to select
what to focus on and when. Does it keep learning representations
for task k (even if rk has momentarily disappeared), or does it focus
on a new task k+ 1 ?

CHALLENGE 7. Identifying the available knowledge relevant to
build the new representations MDPk: as the set of available MDPs
grows, it becomes a challenge to figure out what knowledge can help
to build a new and adapted representation, i.e., {MDPl,πl}l≤k =

{< Sl,Al, pl,Rl >,πl}l≤k.

CHALLENGE 8. Using transfer learning for speeding up state and
action spaces learning along time: as the number of tasks and
domains the agent can deal with grows, it becomes interesting
when facing a task k+ 1 to reuse the knowledge available to avoid
learning MDPk+1 and πk+1 from scratch.
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5. DISCUSSION

In contrast to many works in multitask learning (Zhao et al.,
2017; Riedmiller et al., 2018), we assume here that each task
should be solved with its own state and action representation, and
learning these representations is a central challenge. We adopt a
hierarchical perspective based on representational redescription
which differs from the hierarchical RL perspective (Barto and
Mahadevan, 2003) from the fact that we do not assume that
the lowest level is necessarily described as an MDP and we
assume that each intermediate level may come with its own
representation.

The proposed framework is related to end-to-end approaches
to reinforcement learning (Lillicrap et al., 2015; Levine et al.,
2016), but instead of black box approaches, it emphasizes
knowledge reuse through the explicit extraction of relevant
representations.

Open-ended learning is expected to occur in a lifelong
learning scenario in which the agent will be confronted
with multiple challenges to build the knowledge required
to solve the tasks it will face. It will not be systematically
engaged in a task resolution problem and will thus have to
perform choices that cannot be guided by a reward. Intrinsic

motivations are thus a critical component of the proposed
open-ended learning system. They will fill in multiple needs
of such a system: (1) a drive for action and state space
acquisition (Péré et al., 2018), (2) a selection of what to
focus on (Oudeyer et al., 2007) and (3) a bootstrap of the
process in the case of sparse reward (Mouret and Doncieux,
2012).
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