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Infinitesimal deformations of Levi flat hypersurfaces

Andrei Iordan1

In 2009, at the Conference of Complex Analysis and Geometry—Levico Terme, Paolo de Bartolomeis
proposed me to study the deformations of Levi flat hypersurfaces. From 2010, we met several months a year
and wrote several papers on this subject. In the first semester of 2016, I visited the Laboratory Fibonacci in
Pisa and we had a lot of interesting discussions about the connection between the classical paper of Kodaira
and Spencer, where they studied the foliations by means of the DGLA of graded derivations, and our papers.
The present paper has its roots in these discussions.
We planned to continue our work in Paris during the spring 2017, but unfortunately, Paolo passed away on
29th of November 2016. The mathematical research of Paolo holds a major position in the great tradition of
Italian geometers. I am honoured to have been Paolo’s collaborator and friend.

Abstract
In order to study the deformations of foliations of codimension 1 of a smooth manifold L , de
Bartolomeis and Iordan defined the DGLA Z∗ (L), where Z∗ (L) is a subset of differential
forms on L . In another paper, deBartolomeis and Iordan studied the deformations of foliations
of a smooth manifold L by defining the canonical solutions of Maurer–Cartan equation in the
DGLAof graded derivationsD∗ (L). Let L be a Levi flat hypersurface in a complexmanifold.
Then the deformation theories in Z∗ (L) and D∗ (L) lead to the moduli space for the Levi
flat deformations of L . In this paper we discuss the relationship between the infinitesimal
deformations of L defined by the solutions of Maurer–Cartan equation in Z∗ (L) and the
infinitesimal deformations of L obtained by means of the canonical solutions of Maurer–
Cartan equation in the DGLA of graded derivations D∗ (L).

Keywords Levi flat hypersurface · Differential graded Lie Algebras · Maurer–Cartan
equation · Foliations · Graded derivations
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1 Introduction

In [7] Kodaira and Spencer’s studied the deformations of multifoliate structures by means of
the DGLA of graded derivations whose underlying graded algebra was defined by Frölicher
and Nijenhuis in [4]. They defined as in [6,9] the infinitesimal deformations and proved that
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the infinitesimal deformations are represented by the tangent vectors at origin of the solutions
of Maurer Cartan equation in the DGLA of graded derivations.

In the paper [1], de Bartolomeis and the author studied deformations of Levi flat hyper-
surfaces in complex manifolds. For this purpose, we elaborated a theory of deformations of
integrable distributions of codimension 1 in smooth manifolds. Our approach was different
from [7] (see remark 14 of [1] for a discussion).

In [1], the DGLA algebra (Z∗ (L) , δ, {·, ·}) associated to a codimension 1 co-orientable
foliation on a manifold L is a subalgebra of the the algebra (�∗ (L) , δ, {·, ·}) of differential
forms on L . Its definition depends on the choice of a DGLA defining couple (γ, X), where
γ is a 1-differential form on L and X is a vector field on L such that γ (X) = 1, but
the cohomology classes of the underlying differential vector space structure do not depend
on its choice. The deformations are given by forms α ∈ Z1 (L) verifying the Maurer–
Cartan equation δα + 1

2 {α, α} = 0 and the moduli space takes in account the diffeomorphic
deformations.

The infinitesimal deformations along curves are subsets of of the first cohomology group
of the DGLA (Z∗ (L) , δ, {·, ·}), which are represented by tangent vectors at the origin of
curves with values in MCδ (L) = {

α ∈ Z1 (L) : δα + 1
2 {α, α} = 0

}
.

If L is a Levi flat hypersurface in a complex manifold, we defined the canonical DGLA
defining couple for the Levi foliation of L . Then we parametrized the Levi flat hypersurfaces
near L by means of the set of smooth functions on L and we obtained a partial differential
equation for the infinitesimal Levi flat deformations.

In [2] we defined canonical solutions of the Maurer–Cartan equation in the DGLA of
graded derivations by means of deformations of the d-operator depending on a vector valued
differential 1-form � and we gave a classification of these solutions depending on their type.
A canonical solution e� of the Maurer–Cartan equation associated to an endomorphism � is
of finite type r if there exists r ∈ N such that �r [�,�]FN = 0 and r is minimal with this
property, where [·, ·]FN is the Frölicher-Nijenhuis bracket. We proved that a distribution ξ

of codimension k on a smooth manifold is integrable if and only if the canonical solution of
the Maurer–Cartan equation associated to the endomorphism of the tangent space which is
the trivial extension of the k -identity on a complement of ξ in T M is of finite type� 1. In [3]
we proved that the deformation theory in the DGLA of graded derivation is not obstructed,
but it is level-wise obstructed.

Let L be a smooth Levi flat hypersurface in a complex manifold and consider a Levi flat
deformation

(
Lat

)
of L given by a family (at ) of smooth functions on L . Let

(
ωa(t), Ya(t)

)

be the canonical DGLA defining couple of Lat and eωa(t)⊗Ya(t) the canonical solution of the
Maurer–Cartan equation in the DGLA of graded derivations associated to ωa(t) ⊗ Ya(t). The
family of 1 -forms

(
ωa(t)

)
are the inverse images of a family of 1-forms on 1-forms

(
γa(t)

)

on L . In this paper we show that the infinitesimal deformation represented by the tangent
at the origin to the curve t �→ αat , where (αat ) are solutions of Maurer–Cartan equation in
the DGLA (Z∗ (L) , δ, {·, ·}), is also represented by the tangent at the origin to the curve
t �→ γa(t).

2 Preliminaries

2.1 The DGLA of graded derivations

In this subsectionwe recall somedefinitions and properties of theDGLAof graded derivations
from [4,7] (see, also [8]).



Definition 1 A differential graded Lie agebra (DGLA) is a triple (V ∗, d, [·, ·]) such that:

1. V ∗ = ⊕i∈NV i , where
(
V i

)
i∈N is a family of C-vector spaces and d : V ∗ → V ∗ is a

graded homomorphism such that d2 = 0. An element a ∈ V k is said to be homogeneous
of degree k = deg a.

2. [·, ·] : V ∗ × V ∗ → V ∗ defines a structure of graded Lie algebra i.e., for homogeneous
elements we have

[a, b] = − (−1)deg a deg b [b, a]

and
[a, [b, c]] = [[a, b] , c] + (−1)deg a deg b [b, [a, c]]

3. d is compatible with the graded Lie algebra structure i.e.,

d [a, b] = [da, b] + (−1)deg a [a, db] .

Definition 2 Let (V ∗, d, [·, ·]) be a DGLA and a ∈ V 1. We say that a verifies the Maurer–
Cartan equation in (V ∗, d, [·, ·]) if

da + 1

2
[a, a] = 0.

Definition 3 Let A = ⊕k∈ZAk be a graded algebra. A linear mapping D : A → A is
called a graded derivation of degree p = |D| if D : Ak → Ak+p and D (ab) = D (a) b +
(−1)p deg a aD (b).

Notation 1 Let M be a smooth manifold. We denote by �∗M the algebra of differential forms
on M, by X (M) the Lie algebra of vector fields on M and by �∗M ⊗ T M the algebra of
T M-valued differential form on M, where T M is the tangent bundle to M. In the sequel, we
will identify �1M ⊗ T M with the algebra End (T M) of endomorphisms of T M by their
canonical isomorphism: for σ ∈ �1M, X , Y ∈ X (M), (σ ⊗ X) (Y ) = σ (Y ) X.

Definition 4 Let M be a smoothmanifold.We denote byD∗ (M) the graded algebra of graded
derivations of �∗M .

Definition 5 Let P, Q be homogeneous elements of degree |P| , |Q| of D∗ (M). We define

[P, Q] = P Q − (−1)|P||Q| Q P,

�P = [d, P] .

Lemma 1 Let M be a smooth manifold. Then (D∗ (M) , [·, ·] , �) is a DGLA.

Definition 6 Let α ∈ �∗M and X ∈ X (M). We define Lα⊗X , Iα⊗X by

Lα⊗Xσ = α ∧ LXσ + (−1)|α| dα ∧ ιXσ, σ ∈ �∗ (M) (2.1)

Iα⊗Xσ = α ∧ ιXσ, σ ∈ �∗ (M) , (2.2)

where LX is the Lie derivative and ιX the contraction by X .
For � ∈ �∗M ⊗ T M we define L�, I� as the extensions by linearity of (2.1), (2.2).

Lemma 2 For every D ∈ Dk (M) there exist unique forms � ∈ �k M ⊗T M, � ∈ �k+1M ⊗
T M such that

D = L� + I�.

Denote L(D) = L� and I(D) = Iψ.



It is proved in [7], Theorem 5.3, that the solutions of Maurer–Cartan equation in the
DGLA of graded derivations define a deformation of a foliated manifold and an infinitesimal
foliation is a class in the cohomology group H1 (M,
), where 
 is the sheaf associated
to the multifoliate structure; moreover, the infinitesimal deformation is represented by the
tangent vector at the origin to a curve with values in the set of solutions of Maurer–Cartan
equation in the DGLA of graded derivations.

2.2 Canonical solutions of Maurer–Cartan equation in the algebra of graded
derivations

This subsection gives some definitions and results from [2].

Definition 7 Let � ∈ �1M ⊗ T M .

(a) Let σ ∈ �p M . We define �σ ∈ �p M by �σ = σ if p = 0 and

(�σ)
(
V1, . . . , Vp

) = σ
(
�V1, . . . , �Vp

)
i f p � 1, V1, . . . , Vp ∈ X (M) .

(b) Let � ∈ �p M ⊗ T M . We define �� ∈ �p M ⊗ T M by �� = � if p = 0 and

��
(
V1, . . . , Vp

) = �
(
�

(
V1, . . . , Vp

))
, V1, . . . , Vp ∈ X (M) i f p � 1.

Theorem 1 Let � ∈ �1M ⊗ T M such that R� = I dT M + � is invertible. Set

e� = R�d R−1
� − d

Then:

(i) e� is a solution of the Maurer–Cartan equation in (D∗ (M) , �, [·, ·]).
(ii) Let D be a solution of the Maurer–Cartan equation in (D∗ (M) , �, [·, ·]). Let � ∈

�1M ⊗ T M such that L (D) = L�. Suppose that R� = I dT (M) + � is invertible. Then
D = e�.

Definition 8 Let � ∈ �1M ⊗ T M such that I dT (M) + � is invertible. e� is called the
canonical solution of Maurer–Cartan equation associated to �.

2.3 Canonical DGLA defining couple for a Levi flat hypersurface

In this subsection we will use the following setting and notations from [1]:
Let L be a C∞ manifold and ξ ⊂ T (L) an integrable distribution of codimension 1.

We denote by �k (L) the k-forms on L and �∗ (L) = ⊕k∈N�k (L). For α, β ∈ �∗ (L),
X ∈ X(L), set

{α, β} = LXα ∧ β − α ∧ LXβ

where LX is the Lie derivative.
Let γ ∈ ∧1 (L) such that ker γ = ξ and X a vector field on L such that γ (X) = 1. Set

δ = dγ = d + {γ, ·}
and

Z∗ (L) = {
α ∈ �∗ (L) : ιXα = 0

}

Then (Z∗ (L) , δ, {·, ·}) is a DGLA.



Remark 1 Let L be a C∞ manifold and ξ ⊂ T (L) an integrable distribution of codimension
1. Then there exists a 1-form γ on L such that ξ = ker γ if and only if ξ is co-orientable,
i.e., the normal space to the foliation defined by ξ is orientable (see, for ex. [5]).

Definition 9 Let L be a C∞ manifold and ξ ⊂ T (L) an integrable co-orientable distribution
of codimension 1. A couple (γ, X) where γ ∈ ∧1 (L) and X is a vector field on L such that
ker γ = ξ and γ (X) = 1 will be called a DGLA defining couple.

We denote

MCδ (L) =
{
α ∈ Z1 (L) : δa + 1

2
{α, α} = 0

}

the set of solutions of Maurer–Cartan equation in (Z∗ (L) , δ, {·, ·}).
It is proved in [1] that the moduli space of deformations of integrable distributions of

codimension 1 is represented in H1 (Z∗ (L) , δ) by the tangent vectors at 0 to MCδ (L)

valued curves.

Definition 10 The infinitesimal deformations of L in (Z∗ (L) , δ, {·, ·}) are the collection of
cohomology classes in H1 (Z∗ (L) , δ) of the tangent vectors at 0 toMCδ (L) valued curves.

In the sequel we will use the following setting and notations:
Let M be a complex manifold and L a Levi flat hypersurface of class Ck in M , k � 2;

then there exists r ∈ Ck (M) , dr �= 0 on L such that L = {z ∈ M : r (z) = 0} and set
j : L → M the natural inclusion. As dr �= 0 on a neighborhood of L in M we will suppose
in the sequel that dr �= 0 on M .

We denote by J the complex structure on M and let γ = j∗
(
dc

J r
)
, dc

J r = −Jdr . The
Levi distribution T (L) ∩ J T (L) = ker γ is integrable.

Let g be a fixed Hermitian metric on M and Z = gradgr/
∥∥gradgr

∥∥2
g . Then the vector

field X = J Z is tangent to L and verifies

γ (X) = dc
J r (J Z) = 1.

Definition 11 For a given defining function r and a Hermitian metric on M , we will fix γ and
X defined before and we will call (γ, X) the canonical DGLA defining couple associated to
the Levi foliation on L .

2.4 Deformations of Levi flat hypersurfaces

As in [1], we will give a parametrization of real hypersurfaces near a given hypersurface L
and diffeomorphic to L as graphs over L:

Let U be a tubular neighborhood of L in M and π : U → L the projection on L along the
integral curves of Z . As we are interested in infinitesimal deformations we suppose U = M .

Let a ∈ C∞ (L; R). Denote

La = {z ∈ M : r (z) = a (π (z))} .

Since Z is transverse to L , La is a hypersurface in M . Consider the map �a : M → M
defined by �a (p) = q, where

π (q) = π (p) , r (q) = r (p) + a (π (p)) . (2.3)

In particular, for every x ∈ L we have

r (�a (x)) = a (x) . (2.4)



�a is a diffeomorphism of M such that �a (L) = La and �−1
a = π

∣∣La .
Conversely, let � ∈ U ⊂ Di f f (M), where U is a suitable neighborhood of the identity

in Di f f (M). Then there exists a ∈ C∞ (L) such that � (L) = La . Indeed, for x ∈ L , let
q (x) ∈ � (L) such thatπ (q (x)) = x . By defining a (x) = r (q (x)), we obtain� (L) = La .

So we have the following:

Lemma 3 Let � ∈ U . There exists a unique a ∈ C∞ (L) such that � (L) = La.

It follows that a neighborhoodV of 0 inC∞ (L) is a set of parametrization of hypersurfaces
close to L .

For a ∈ V , consider the almost complex structure Ja = (
�−1

a

)
∗ ◦ J ◦ (�a)∗ on M and

denote
αa = (

dc
Ja

r (X)
)−1

j∗
(
dc

Ja
r
) − γ. (2.5)

Then αa ∈ Z1 (L) and we have the following

Proposition 1 For every a ∈ V , the following assertions are equivalent:

(i) La is Levi flat.
(ii) αa satisfies the Maurer–Cartan equation in (Z∗ (L) , δ, {·, ·}) i.e.,

δαa + 1

2
{αa, αa} = 0. (2.6)

Definition 12 A1-dimensional Levi flat deformation of L is a smoothmapping� : I ×M →
M such that�t = � (t, ·) ∈ Di f f (M), Lt = �t L is a Levi flat hypersurface in M for every
t ∈ I and L0 = L .

By Proposition 1 a Levi flat deformation of L is given by a family (at )t∈I in V such
that the associated family

(
αat

)
t∈I of 1-forms satisfies the Maurer–Cartan equation (2.6) in

(Z∗ (L) , δ, {·, ·}) for every t .
Set jat : Lat → M the natural embedding, rat = r − at ◦ π and ηat = j∗at

(
dcrat

) ∈
�1

(
Lat

)
. Let

(
ηat , Yat

)
be the canonical defining couple for the Levi flat hypersurface Lat

associated to rat and set σ (t) = ηat ⊗ Yat . Then eσ(t) is the canonical solution of Maurer–
Cartan equation in the algebra of graded derivations and the tangent vector to the curve
t �→ σ (t) represents the infinitesimal deformation. By setting γat = �∗

at

(
ηat

) ∈ �1 (L) and
Xat = (

�−1
at

)
∗
(
Yat

) ∈ H (L), we have γat

(
Xat

) = 1. Since ker ηat is integrable if and only
if ker γat is integrable,

(
γat , Xat

)
is a DGLA defining couple for the integrable distribution

ker γat ⊂ T L .

3 Infinitesimal deformations

Recall that in the sequel we use the setting and the notations of the previous section:
for a given Levi flat hypersurface L in a complex manifold M , we will fix a defining
function r , a Hermitian metric g on M , the canonical DGLA defining couple (γ, X) for
the Levi foliation associated to r ; also, for a ∈ C∞ (L), we will use the meaning of
La, �a, ja, ra, ηa, γa, αa, defined before.

An equivalent form of Proposition 5 of [1] is the following:

Proposition 2 Let L be a Levi flat hypersurface in a complex manifold M, (at )t∈I a family
in C∞ (L) defining a Levi flat deformation of L and p = dat

dt |t=0 . Then for every vector field



V in a neighborhood of L such that the restriction of V to L is a section of T L ∩ J T L we
have

dαat

dt |t=0
(V ) = pιX Jddcr (V ) − dc p (V ) = −δc p. (3.1)

where δc : Z∗ (L) → Z∗ (L) is defined for α ∈ Z p (L) and V1, . . . , Vp+1 ∈ T (L)∩ J T (L)

by
δcα

(
V1, . . . , Vp+1

) = J−1δ Jα
(
V1, . . . , Vp+1

)
.

We will give firstly a different proof of Proposition 2 by using the following Lemma:

Lemma 4 Let L be a Levi flat hypersurface in a complex manifold M and (at )t∈I a family of
smooth functions on L defining a Levi flat deformation of L. Then for every vector field V in
a neighborhood of L such that the restriction of V to L is a section of T L ∩ J T L we have

(
�at

)−1
∗,�at (η)

J
(
�at

)
∗,η

(V ) = J V (η) + t (p ◦ π) (η) ([Z , J V ] (η) − J [Z , V ] (η))

− t
(
(p∗)π(�at (η)) (J V )

)
Z (η)

+ t
(
(p∗)π(�at (η)) (V )

)
(J Z) η + o (t) .

Proof Step 1. First order development of �at and
(
�at

)
∗ by means of coordinates η such

that Z = ∂
∂η1

.
Let x ∈ L and consider holomorphic coordinates z = (z1, . . . , zn) in a neighborhood U

of x in M , z j = x j + iy j , j = 1, . . . , n. Denote by ξ = (ξ1, . . . , ξ2n) the corresponding real
coordinates, ξ2 j−1 = x j , ξ2 j = y j , j = 1, . . . , n.

We may suppose that Z1 (x) �= 0 and consider a smooth change of coordinates ξ = ξ (η)

in a neighborhood of x such that Z = ∂
∂η1

defined by:

Z =
2n∑

j=1

Z ξ
j

∂

∂ξ j
=

2n∑

j=1

Zη
j

∂

∂η j
=

2n∑

j=1

Z ξ
j

2n∑

i=1

∂ηi

∂ξ j

∂

∂ηi

=
2n∑

i=1

⎛

⎝
2n∑

j=1

Z ξ
j
∂ηi

∂ξ j

⎞

⎠ ∂

∂ηi
= ∂

∂η1
, (3.2)

so
2n∑

j=1

Z ξ
j
∂η1

∂ξ j
= 1,

2n∑

j=1

Z ξ
j
∂ηi

∂ξ j
= 0, i � 2.

which means
∂ (η)

∂ (ξ)
Z ξ = (1, 0, . . . , 0) ⇐⇒ Z ξ =

(
∂ (η)

∂ (ξ)

)−1

e1,

where e1 = (1, 0, . . . , 0).

Denote
(

∂(η)
∂(ξ)

)−1 = (
ai j

)
1�i, j�2n and we choose

ai1 = Z ξ
i , i = 1, . . . , n, ai j = δ

j
i , i = 1, . . . , n, j = 2, . . . , n (3.3)

where δ
j
i = 1 if i = j , δ j

i = 0 otherwise.



Let V be a vector field on M in a neighborhood of x , V (η) =
2n∑

j=1
a j (η)

(
∂

∂η j

)

η
. Since

for every j = 1, . . . , 2n we have

(
∂

∂η j

)

η

=
2n∑

j=1

∂ξ j

∂ηi
(η)

(
∂

∂ξ j

)

ξ(η)

=
n∑

i=1

∂xi

∂η j
(η)

(
∂

∂xi

)

ξ(η)

+
n∑

i=1

∂ yi

∂η j
(η)

(
∂

∂ yi

)

ξ(η)

and

J

(
∂

∂η j

)

η

=
n∑

i=1

− ∂ yi

∂η j
(η)

(
∂

∂xi

)

ξ(η)

+
n∑

i=1

∂xi

∂η j
(η)

(
∂

∂ yi

)

ξ(η)

(3.4)

it follows that

J V (η) =
2n∑

j=1

a j (η) J

(
∂

∂η j

)

η

=
2n∑

k=1

⎛

⎝
2n∑

j=1

a j (η)

n∑

i=1

− ∂ yi

∂η j
(η)

∂ηk

∂xi
(ξ (η))

+ ∂xi

∂η j
(η)

∂ηk

∂ yi
(ξ (η))

⎞

⎠
(

∂

∂ηk

)

η

. (3.5)

We will consider t small enough in order that �at (U ) ⊂ U .
Suppose that in a neighborhood of x the hypersuface L is given by

L = {
η1 = ϕ

(
η′)} (3.6)

where
η′ = (η2, . . . , ηn) .

Since the flow of Z is F (η, t) = (
η1 + t, η′), π is given by

π (η) = (
ϕ

(
η′) , η′) (3.7)

and
�at (η) = �at

(
η1, η

′) = (
η1 + λt (η) , η′) ,

where λt is a smooth real function on a neighborhood of x verifying

r
(
η1 + λt (η) , η′) = r (η) + at

(
ϕ

(
η′) , η′) , (3.8)

and λ0 = 0.
From (3.8) it follows that

d

dt

(
r
(
η1 + λt (η) , η′)) = ∂r

∂η1

(
η1 + λt (η) , η′) dλt

dt
(η) = d

dt

(
at

(
ϕ

(
η′) , η′)) ,

which can be written as

∂r

∂η1

(
η1 + λt (η) , η′) dλt

dt
(η) = d

dt
at (π (η)) .

For t = 0 we obtain
∂r

∂η1
(η)

dλt

dt
(η)|t=0 = p (π (η)) .



So

dλt

dt |t=0
= 1

∂r
∂η1

(p ◦ π) = 1

Z (r)
(p ◦ π) = 1

dr (Z)
(p ◦ π)

= 1

dr

(
gradgr

‖gradgr‖2

) (p ◦ π) = p ◦ π

and
λt (η) = tp (π (η)) + o (t) .

It follows that

�at (η) = η + (λt (η) , 0, . . . , 0) = η + tp (π (η) , 0, . . . , 0) + o (t) , (3.9)

so

∂�1
at

∂η1
= 1 + t

∂ (p ◦ π)

∂η1
+ o (t) ,

∂�1
at

∂ηk
= t

∂ (p ◦ π)

∂ηk
+ o (t) , k � 2,

∂�
j
at

∂ηk
= δ

j
k + o (t) , j � 2, k � 1, (3.10)

where δ
j
k = 0 if j �= k and δ

j
k = 1 if j = k.

Analoguously we obtain

�−1
at

(η) = (
η1 − λt (η) , η′) = η − tp (π (η)) e1 + o (t) ,

∂
(
�−1

at

)1

∂η1
= 1 − t

∂ (p ◦ π)

∂η1
+ o (t) ,

∂
(
�−1

at

)1

∂ηk
= −t

∂ (p ◦ π)

∂ηk
+ o (t) , k � 2,

∂
(
�−1

at

) j

∂ηk
= δ

j
k + o (t) , j, k � 2. (3.11)

Step 2. First order development of
(
�at

)−1
∗,�at (η)

J
(
�at

)
∗,η

(V ).

Let V be a vector field on M in a neighborhood of x , V (η) =
(

2n∑

i=1
ai (η)

(
∂

∂ηi

)

η

)
.

By (3.10) we have

(
�at

)
∗,η

(V ) =
2n∑

j=1

(
2n∑

k=1

∂�
j
at

∂ηk
(η) ak (η)

) (
∂

∂η j

)

�at (η)

=
((

1 + t
∂ (p ◦ π)

∂η1
(η)

)
a1 (η) + t

2n∑

k=2

∂ (p ◦ π)

∂ηk
(η) ak (η)

) (
∂

∂η1

)

�at (η)

+
2n∑

j=2

2n∑

k=1

δk
j ak (η)

(
∂

∂η j

)

�at (η)

+ o (t)

=
2n∑

j=1

a j (η)

(
∂

∂η j

)

�at (η)

+ t
2n∑

k=1

∂ (p ◦ π)

∂ηk
ak (η)

(
∂

∂η1

)

�at (η)

+ o (t)



and by using (3.4) we obtain

J
(
�at

)
∗,η

(V ) =
2n∑

j=1

a j (η) J

(
∂

∂η j

)

�at (η)

+t (p ◦ π)∗η

⎛

⎝
2n∑

j=1

a j (η)

(
∂

∂η j

)⎞

⎠ J

(
∂

∂η1

)

�at (η)

+ o (t)

=
2n∑

j=1

a j (η)

2n∑

k=1

n∑

i=1

− ∂ yi

∂η j

(
�at (η)

) ∂ηk

∂xi

(
ξ

(
�at (η)

)) (
∂

∂ηk

)

�at (η)

+
2n∑

j=1

a j (η)

2n∑

k=1

n∑

i=1

∂xi

∂η j

((
�at (η)

)) ∂ηk

∂ yi

(
ξ

(
�at (η)

)) (
∂

∂ηk

)

�at (η)

+t (p ◦ π)∗η

⎛

⎝
2n∑

j=1

a j (η)

(
∂

∂η j

)⎞

⎠ J

(
∂

∂η1

)

�at (η)

+ o (t) . (3.12)

Analoguosly, for a vector field
2n∑

k=1
bk

∂
∂ηk

on U by (3.11) we have

((
�at

)−1
∗

)

�at (η)

(
2n∑

k=1

bk
(
�at (η)

) (
∂

∂ηk

)

�at (η)

)

=
2n∑

k=1

bk
(
�at (η)

) (
∂

∂ηk

)

η

−t (p ◦ π)∗�at (η)

(
2n∑

k=1

bk
(
�at (η)

) (
∂

∂ηk

)

�at (η)

) (
∂

∂η1

)

η

+ o (t) (3.13)

and by (3.12) it follows that

(
�at

)−1
∗�at (η)

⎛

⎝J
(
�at

)
∗η

⎛

⎝
2n∑

j=1

a j (η)

(
∂

∂η j

)⎞

⎠

⎞

⎠

= (
�at

)−1
∗�at (η)

⎛

⎝
2n∑

k=1

⎛

⎝
2n∑

j=1

a j (η)

(
n∑

i=1

− ∂ yi

∂η j

(
�at (η)

) ∂ηk

∂xi

(
ξ

(
�at (η)

)) (
∂

∂ηk

)

�at (η)

)⎞

⎠

⎞

⎠

+ (
�at

)−1
∗�at (η)

⎛

⎝
2n∑

k=1

⎛

⎝
2n∑

j=1

a j (η)

(
∂xi

∂η j

(
�at (η)

) ∂ηk

∂ yi

(
ξ

(
�at (η)

))) (
∂

∂ηk

)

�at (η)

⎞

⎠

⎞

⎠

+t (p ◦ π)∗η

⎛

⎝
2n∑

j=1

a j (η)

(
∂

∂η j

)⎞

⎠(
�at

)−1
∗�at (η)

(

J

(
∂

∂η1

)

�at (η)

)



=
2n∑

k=1

⎛

⎝
2n∑

j=1

a j (η)

n∑

i=1

− ∂ yi

∂η j

(
�at (η)

) ∂ηk

∂xi

(
ξ

(
�at (η)

)

+ ∂xi

∂η j

(
�at (η)

) ∂ηk

∂ yi

(
ξ

(
�at (η)

)))
⎞

⎠
(

∂

∂ηk

)

η

−t (p ◦ π)∗�at (η)

⎛

⎝J
(
�at

)
∗η

⎛

⎝
2n∑

j=1

a j (η)

(
∂

∂η j

)⎞

⎠

⎞

⎠
(

∂

∂η1

)

η

+t (p ◦ π)∗η

⎛

⎝
2n∑

j=1

a j (η)

(
∂

∂η j

)⎞

⎠(
�at

)−1
∗�at (η)

(

J

(
∂

∂η1

)

�at (η)

)

= A + B + C + o (t) , (3.14)

where

A =
2n∑

k=1

2n∑

j=1

a j (η)

(
n∑

i=1

(
− ∂ yi

∂η j

(
�at (η)

) ∂ηk

∂xi

(
ξ

(
�at (η)

))

+ ∂xi

∂η j

(
�at (η)

) ∂ηk

∂ yi

(
ξ

(
�at (η)

)))) (
∂

∂ηk

)

η

, (3.15)

B = −t (p ◦ π)∗�at (η)

⎛

⎝J
(
�at

)
∗η

⎛

⎝
2n∑

j=1

a j (η)

(
∂

∂η j

)⎞

⎠

⎞

⎠
(

∂

∂η1

)

η

(3.16)

C = t (p ◦ π)∗η

⎛

⎝
2n∑

j=1

a j (η)

(
∂

∂η j

)⎞

⎠ (
�at

)−1
∗�at (η)

(

J

(
∂

∂η1

)

�at (η)

)

. (3.17)

Step 3. First order development of ξ
(
�at (η)

)
.

By (3.9) it follows that

ξ
(
�at (η)

) = ξ (η) + t (p ◦ π) (η)

(
∂ξ1

∂η1
, . . . ,

∂ξn

∂η1

)
+ o (t) . (3.18)

By (3.3) we have (
∂ξ1

∂η1
, . . . ,

∂ξn

∂η1

)
= e1,

so (3.18) gives
ξ

(
�at (η)

) = ξ (η) + t (p ◦ π) (η) e1 + o (t) (3.19)

and it follows that

∂ηk

∂xi

(
ξ

(
�at (η)

)) = ∂ηk

∂xi
(ξ (η) + t (p ◦ π) (η) e1 + o (t))

= ∂ηk

∂xi
(ξ (η)) + t (p ◦ π) (η)

∂

∂η1

(
∂ηk

∂xi
ξ (η)

)
+ o (t) (3.20)



and

∂ηk

∂ yi

(
ξ

(
�at (η)

)) = ∂ηk

∂ yi
(ξ (η) + t (p ◦ π) (η) e1 + o (t))

= ∂ηk

∂ yi
(ξ (η)) + t (p ◦ π) (η)

∂

∂η1

(
∂ηk

∂ yi
ξ (η)

)
+ o (t) . (3.21)

In the next steps we will find the first order development of A, B and C .
Step 4. First order development of A.
By (3.15), (3.9), (3.20) and (3.21) we have

A =
2n∑

k=1

2n∑

j=1

a j (η)

(
n∑

i=1

(
− ∂ yi

∂η j

(
�at (η)

) ∂ηk

∂xi

(
ξ

(
�at (η)

))

+ ∂xi

∂η j

(
�at (η)

) ∂ηk

∂ yi

(
ξ

(
�at (η)

)))) (
∂

∂ηk

)

=
2n∑

k=1

2n∑

j=1

a j (η)

(
n∑

i=1

− ∂ yi

∂η j
(η + t (p ◦ π) (η) e1)

) (
∂ηk

∂xi
(ξ (η))

+t (p ◦ π) (η)
∂

∂η1

(
∂ηk

∂xi
ξ (η)

)) (
∂

∂ηk

)

+
2n∑

k=1

2n∑

j=1

a j (η)

(
n∑

i=1

∂xi

∂η j
(η + t (p ◦ π) (η) e1)

(
∂ηk

∂ yi
(ξ (η))

+t (p ◦ π) (η)
∂

∂η1

(
∂ηk

∂ yi
ξ (η)

))) (
∂

∂ηk

)
+ o (t) .

But

− ∂ yi

∂η j
(η + t (p ◦ π) (η) e1) =

(
− ∂ yi

∂η j
(η) − t (p ◦ π) (η)

∂

∂η1

(
∂ yi

∂η j

)
(η)

)
+ o (t) ,

and
∂xi

∂η j
(η + t (p ◦ π) (η) e1) = ∂xi

∂η j
(η) + t (p ◦ π)

∂

∂η1

(
∂xi

∂η j

)
(η) + o (t) ,

and it follows that

A = A1 + t (p ◦ π) (η) A2 + t (p ◦ π) (η) A3 + o (t) , (3.22)

where

A1 =
2n∑

k=1

2n∑

j=1

a j (η)

n∑

i=1

(
− ∂ yi

∂η j
(η)

∂ηk

∂ yi
(ξ (η)) + ∂ηk

∂ yi
(ξ (η))

∂xi

∂η j
(η)

)

A2 =
2n∑

k=1

⎛

⎝
2n∑

j=1

a j (η)

n∑

i=1

(
− ∂ yi

∂η j
(η)

)
∂

∂η1

(
∂ηk

∂xi
ξ (η)

)
+ ∂xi

∂η j
(η)

∂

∂η1

(
∂ηk

∂ yi
ξ (η)

)⎞

⎠
(

∂

∂ηk

)

η

,

and

A3 =
2n∑

k=1

2n∑

j=1

a j (η)

(
n∑

i=1

− ∂

∂η1

(
∂ yi

∂η j

)
(η)

∂ηk

∂xi
(ξ (η)) + ∂

∂η1

(
∂xi

∂η j

)
(η)

∂ηk

∂ yi
(ξ (η))

) (
∂

∂ηk

)
.



From (3.5) we obtain
A1 = J V (η) . (3.23)

Since

(
− ∂ yi

∂η j
(η)

)
∂

∂η1

(
∂ηk

∂xi
ξ (η)

)
= − ∂

∂η1

(
∂ yi

∂η j
(η)

∂ηk

∂xi
ξ (η)

)
+

(
∂

∂η1

(
∂ yi

∂η j
(η)

)) (
∂ηk

∂xi
ξ (η)

)

and

∂xi

∂η j
(η)

∂

∂η1

(
∂ηk

∂ yi
ξ (η)

)
= ∂

∂η1

(
∂xi

∂η j
(η)

∂ηk

∂ yi
ξ (η)

)
− ∂

∂η1

(
∂xi

∂η j
(η)

) (
∂ηk

∂ yi
ξ (η)

)
,

it follows that

A2 =
2n∑

k=1

⎛

⎝
2n∑

j=1

a j (η)

n∑

i=1

(
− ∂

∂η1

(
∂ yi

∂η j
(η)

∂ηk

∂xi
ξ (η) + ∂

∂η1

(
∂xi

∂η j
(η)

∂ηk

∂ yi
ξ (η)

)))⎞

⎠
(

∂

∂ηk

)

+
2n∑

k=1

⎛

⎝
2n∑

j=1

a j (η)

n∑

i=1

∂

∂η1

(
∂xi

∂η j
(η)

∂ηk

∂ yi
ξ (η)

)
− ∂

∂η1

(
∂xi

∂η j
(η)

) (
∂ηk

∂ yi
ξ (η)

)⎞

⎠
(

∂

∂ηk

)

=
2n∑

k=1

⎛

⎝
2n∑

j=1

a j (η)

n∑

i=1

∂

∂η1

(
− ∂ yi

∂η j
(η)

∂ηk

∂xi
ξ (η) + ∂xi

∂η j
(η)

∂ηk

∂ yi
ξ (η)

)⎞

⎠
(

∂

∂ηk

)
− A3,

so

A2 + A3 =
2n∑

k=1

⎛

⎝
2n∑

j=1

a j (η)

n∑

i=1

∂

∂η1

(
− ∂ yi

∂η j
(η)

∂ηk

∂xi
ξ (η) + ∂xi

∂η j
(η)

∂ηk

∂ yi
ξ (η)

)⎞

⎠
(

∂

∂ηk

)

=
2n∑

k=1

∂

∂η1

⎛

⎝
2n∑

j=1

a j (η)

n∑

i=1

(

− ∂ yi

∂η j
(η)

∂ηk

∂xi
ξ (η) +

n∑

i=1

∂xi

∂η j
(η)

∂ηk

∂ yi
ξ (η)

)⎞

⎠
(

∂

∂ηk

)

−
2n∑

k=1

⎛

⎝
2n∑

j=1

∂a j (η)

∂η1

n∑

i=1

(

− ∂ yi

∂η j
(η)

∂ηk

∂xi
ξ (η) +

n∑

i=1

∂xi

∂η j
(η)

∂ηk

∂ yi
ξ (η)

)⎞

⎠
(

∂

∂ηk

)
.

(3.24)

By (3.2) and (3.5) we obtain

A2 + A3 = [Z , J V ] (η) − J [Z , V ] (η) , (3.25)

and by (3.22), (3.23) and (3.25) it follows that

A = J V (η) t (p ◦ π) (η) ([Z , J V ] (η) − J [Z , V ] (η)) + o (t) . (3.26)

We will suppose in the sequel of the proof that the restriction of V on L ∩ U is a section
of T L ∩ J T L on L ∩ U .

Step 5. First order development of B defined in (3.16).



By (3.6), (3.7) and (3.9) we have

π∗�at (η)

(
∂

∂ηk

)

�at (η)

= ∂ϕ

∂ηk

(
�at (η)

) (
∂

∂η1

)

π(�at (η))
+

(
∂

∂ηk

)

�at (η)

= −
∂r
∂ηk

(
�at (η)

)

∂r
∂η1

(
�at (η)

)
(

∂

∂η1

)

π(�at (η))
+

(
∂

∂ηk

)

π(�at (η))

= −
∂r
∂ηk

(η)

∂r
∂η1

(η)

(
∂

∂η1

)

π(�at (η))
+

(
∂

∂ηk

)

π(�at (η))
+ o (t) ,

(3.27)

so by (3.12)

(π∗)�at (η)

⎛

⎝J
(
�at

)
∗η

⎛

⎝
2n∑

j=1

a j (η)

(
∂

∂η j

)⎞

⎠

⎞

⎠

=
⎛

⎝
2n∑

j=1

a j (η)

2n∑

k=1

n∑

i=1

− ∂ yi

∂η j

(
�at (η)

) ∂ηk

∂xi

(
ξ

(
�at (η)

))

+
2n∑

k=1

n∑

i=1

∂xi

∂η j

((
�at (η)

)) ∂ηk

∂ yi

(
ξ

(
�at (η)

))
)

× (π∗)�at (η)

((
∂

∂ηk

)

�at (η)

)

+ t (p ◦ π)∗η

⎛

⎝
2n∑

j=1

a j (η)

(
∂

∂η j

)⎞

⎠ (π∗)�at (η)

(

J

(
∂

∂η1

)

�at (η)

)

+ o (t) .

By (3.9) and (3.19)

(π∗)�at (η)

⎛

⎝J
(
�at

)
∗η

⎛

⎝
2n∑

j=1

a j (η)

(
∂

∂η j

)⎞

⎠

⎞

⎠

=
⎛

⎝
2n∑

k=1

⎛

⎝
2n∑

j=1

a j (η)

(
n∑

i=1

(
− ∂ yi

∂η j

∂ηk

∂xi
+ ∂xi

∂η j

∂ηk

∂ yi

)
(η)

)⎞

⎠

⎞

⎠

×π∗�at (η)

((
∂

∂ηk

)

�at (η)

)

+ o (t)

=
2n∑

k=1

2n∑

j=1

a j (η)

(
n∑

i=1

(
− ∂ yi

∂η j

∂ηk

∂xi
+ ∂xi

∂η j

∂ηk

∂ yi

)
(η)

)

×
(

−
∂r
∂ηk

(η)

∂r
∂η1

(
�at (η)

)
(

∂

∂η1

)

�at (η)

+
(

∂

∂ηk

)

�at (η)

)

+ o (t)



= − 1
∂r
∂η1

(
�at (η)

)

(
2n∑

k=1

(J V )k (η)
∂r

∂ηk
(η)

) (
∂

∂η1

)

π(�at (η))

+
2n∑

k=1

(J V )k (η)

(
∂

∂ηk

)

π(�at (η))
+ o (t)

and by using (3.27) we obtain

(π∗)�at (η)

⎛

⎝J
(
�at

)
∗η

⎛

⎝
2n∑

j=1

a j (η)

(
∂

∂η j

)⎞

⎠

⎞

⎠

=
2n∑

k=1

2n∑

j=1

a j (η)

(
n∑

i=1

(
− ∂ yi

∂η j

∂ηk

∂xi
+ ∂xi

∂η j

∂ηk

∂ yi

)
(η)

)

×
(

−
∂r
∂ηk

(η)

∂r
∂η1

(
�at (η)

)
(

∂

∂η1

)

�at (η)

+
(

∂

∂ηk

)

�at (η)

)

+o (t)

= − 1
∂r
∂η1

(
�at (η)

)

(
2n∑

k=1

(J V )k (η)
∂r

∂ηk
(η)

) (
∂

∂η1

)

π(�at (η))

+
2n∑

k=1

(J V )k (η)

(
∂

∂ηk

)

π(�at (η))
+ o (t) .

Since V is a section of T L ∩ J T L on L ∩ U , the first term above vanishes and

(π∗)�at (η)

⎛

⎝
2n∑

k=1

⎛

⎝
2n∑

j=1

a j (η)

(
n∑

i=1

(
− ∂ yi

∂η j

(
�at (η)

) ∂ηk

∂xi

(
ξ

(
�at (η)

)))
)⎞

⎠
(

∂

∂ηk

)

�at (η)

⎞

⎠

= J V + o (t) .

It follows that

B = −t (p ◦ π)∗�at (η)

⎛

⎝J
(
�at

)
∗η

⎛

⎝
2n∑

j=1

a j (η)

(
∂

∂η j

)⎞

⎠

⎞

⎠
(

∂

∂η1

)

η

= −t (p∗)π(�at (η)) (J V )

(
∂

∂η1

)

η

+ o (t .) (3.28)

Step 6. First order development of C defined in (3.17).
By (3.5) and (3.13)

(
�at

)−1
∗,�at (η)

(

J

(
∂

∂η1

)

�at (η)

)

=
2n∑

k=1

(
n∑

i=1

− ∂ yi

∂η1

(
�at (η)

) ∂ηk

∂xi

(
ξ

(
�at (η)

)) + ∂xi

∂η1

(
�at (η)

) ∂ηk

∂ yi

(
ξ

(
�at (η)

))
)

×
(

∂

∂ηk

)
+ o (t)



and by (3.9), (3.5) and (3.19) it follows that

(
�at

)−1
∗,�at (η)

(

J

(
∂

∂η1

)

�at (η)

)

=
2n∑

k=1

(
n∑

i=1

− ∂ yi

∂η1
(η)

∂ηk

∂xi
(ξ (η))

+ ∂xi

∂η1
(η)

∂ηk

∂ yi
(ξ (η))

)(
∂

∂ηk

)
+ o (t)

= J

(
∂

∂η1

)

η

+ o (t) .

which implies that

C = t (p ◦ π)∗η

⎛

⎝
2n∑

j=1

a j (η)

(
∂

∂η j

)⎞

⎠ J

(
∂

∂η1

)

η

+ o (t) . (3.29)

Step 7 End of the proof.
Finally, from (3.14), (3.26), (3.28) and (3.29) we obtain

(
�at

)−1
∗,�at (η)

J
(
�at

)
∗,η

(V )

= J V (η) + t (p ◦ π) (η) ([Z , J V ] (η) − J [Z , V ] (η)) − t
(
(p∗)π(�at (η)) (J V )

)
Z (η)

+t
(
(p∗)π(�at (η)) (V )

)
(J Z) (η) + o (t) .

��

We will prove now Proposition 2:

Proof Since α0 = 0, from (2.5) we have

dαat

dt |t=0
(V ) = d

dt |t=0

((
dc

Jat
r (X)

)−1
j∗

(
dc

Jat
r
)

− γ

)
(V )

= d

dt |t=0

((
dc

Jat
r (X)

)−1
)

j∗
(
dcr

)
(V )

+ (
j∗dcr (J Z)

)−1 d

dt |t=0
j∗

(
dc

Jat
r
)

(V ) .

Since j∗ (dcr) (V ) = γ (V ) = 0 and j∗dcr (J Z) = γ (X) = 1 we obtain

dαat

dt |t=0
(V ) = d

dt |t=0
j∗

(
dc

Jat
r
)

(V ) .

But

d

dt |t=0
j∗

(
dc

Jat
r
)

(V ) = d

dt |t=0

(−Jat dr
)
(V )

= − (dr)
d

dt |t=0

(
Jat V

)

= − (dr)
d

dt |t=0

(((
�−1

at

)
∗ ◦ J ◦ (

�at

)
∗
)

(V )
)

,



and by Lemma 4 it follows that

dαat

dt |t=0
(V ) = − (dr) (p ([Z , J V ] − J [Z , V ]) − (p∗ (J V )) Z + (p∗ (V )) J Z) .

(3.30)
Since

0 = ddr (Z , J V ) = Z (dr (J V )) − J V (dr (Z)) − dr [Z , J V ]

and dr (Z) = 1, we have
dr [Z , J V ] = Z (dr (J V )) . (3.31)

Similarly, since

ddcr (Z , V ) = Z
(
dcr (V )

) − V
(
dcr (Z)

) − dcr ([Z , V ])

= −Z (dr (J V )) + V (J (dr (Z))) + dr (J [Z , V ])

= −Z (dr (J V )) + dr (J [Z , V ]) , (3.32)

we have
dr (J [Z , V ]) = ddcr (Z , V ) + Z (dr (J V )) . (3.33)

By replacing dr [Z , J V ] and dr (J [Z , V ]) from (3.31) and (3.33) in (3.30 ), since
dr (J Z) = dr (X) = 0, it follows that

dαat

dt |t=0
(V ) = −pZ (dr (J V )) + p

(
ddcr (Z , V ) + Z (Jdr (V ))

) + J V (p)

= pddcr (Z , V ) + J V (p) = pddcr (J Z , J V ) − dc p (V ) .

Since
ddcr (J Z , J V ) = ιJ Z ddcr (J V ) = ιX Jddcr (V ) ,

we obtain
dαat

dt |t=0
(V ) = pιX Jddcr (V ) − dc p (V ) .

��
Proposition 3 Let L be a Levi flat hypersurface in M and (at )t∈]−ε,ε[ a differentiable family

in C∞ (L) which defines a Levi flat deformation of L. Set p = dat
dt |t=0 . Then, for each vector

field V on M such that the restriction of V to L is a section of T L ∩ J T L, we have

dγat

dt |t=0
(V ) = −pJ ιX ddcr (V ) + dc p (V ) . (3.34)

Proof For every x ∈ L and V ∈ Tx L we have

γat (x) (V ) = �∗
at

(
ηat

)
(x) (V )

= ηat

(
�at (x)

) ((
�at

)
∗,x (V )

)
= j∗at

(
dcrat

) (
�at (x)

) ((
�at

)
∗,x (V )

)

= (
dcrat

) (
jat

(
�at (x)

)) (
jat

)
∗
((

�at

)
∗,x (V )

)

= (
dcrat

) (
�at (x)

) ((
�at

)
∗,x (V )

)

= (−Jdr + Jd (at ◦ π))
(
�at (x)

) ((
�at

)
∗,x (V )

)

= −Jdr
(
�at (x)

) ((
�at

)
∗,x (V )

)
+ Jd (at ◦ π)

(
�at (x)

) (
�at

)
∗,x (V )



= −dr
(
�at (x)

) (
J

(
�at

)
∗,x (V )

)
+ d (at ◦ π)

(
�at (x)

) (
J

(
�at

)
∗,x (V )

)
.

(3.35)

We will consider the coordinates η in a neighborhood of x defined in the first step of the
proof of Lemma 4 such that Z = ∂

∂η1
on U .

Step 1. First order development of dr
(
�at (x)

) (
J

(
�at

)
∗,x (V )

)
.

Set V =
2n∑

j=1
a j (η)

(
∂

∂η j

)
. Since dr

(
�at (η)

) · (J Z)
(
�at (η)

) = 0, by (3.12) we have

dr
(
�at (η)

) (
J

(
�at

)
∗,η

(V )
)

=
2n∑

k=1

2n∑

j=1

a j (η)

×
(

n∑

i=1

(
− ∂ yi

∂η j

(
�at (η)

) ∂ηk

∂xi

(
ξ

(
�at (η)

)) + ∂xi

∂η j

(
�at (η)

) ∂ηk

∂ yi

(
ξ

(
�at (η)

)))
)

× ∂r

∂ηk

(
�at (η)

) + o (t) . (3.36)

But by using (3.9), (3.20) and (3.21) we obtain

− ∂ yi

∂η j

(
�at (η)

) ∂ηk

∂xi

(
ξ

(
�at (η)

))

=
(

n∑

i=1

− ∂ yi

∂η j
(η + t (p ◦ π) (η) e1)

)

×
(

∂ηk

∂xi
(ξ (η)) + t (p ◦ π) (η)

∂

∂η1

(
∂ηk

∂xi
ξ (η)

))
+ o (t)

=
(

n∑

i=1

(
− ∂ yi

∂η j
(η) − t (p ◦ π)

∂

∂η1

(
∂ yi

∂η j

)
(η)

))

×
(

∂ηk

∂xi
(ξ (η)) + t (p ◦ π) (η)

∂

∂η1

(
∂ηk

∂xi
ξ (η)

))
+ o (t) ,

(3.37)

and
∂xi

∂η j

(
�at (η)

) ∂ηk

∂ yi

(
ξ

(
�at (η)

))

= ∂xi

∂η j
(η + t (p ◦ π) e1)

(
∂ηk

∂ yi
(ξ (η)) + t (p ◦ π) (η)

∂

∂η1

(
∂ηk

∂ yi
ξ (η)

))
+ o (t)

=
(

∂xi

∂η j
(η) + t (p ◦ π)

∂

∂η1

(
∂xi

∂η j

)
(η)

)

×
(

∂ηk

∂ yi
(ξ (η)) + t (p ◦ π) (η)

∂

∂η1

(
∂ηk

∂ yi
ξ (η)

))
+ o (t) , (3.38)

so by replacing (3.37) and (3.38) in (3.36) it follows that

dr
(
�at (η)

) (
J

(
�at

)
∗,η

(V )
)

=
2n∑

k=1

2n∑

j=1

a j (η)

(
n∑

i=1

− ∂ yi

∂η j
(η)

∂ηk

∂xi
(ξ (η)) + ∂xi

∂η j
(η)

∂ηk

∂ yi
(ξ (η))

)
∂r

∂ηk

(
�at (η)

)



+t (p ◦ π) (η)

2n∑

k=1

⎛

⎝
2n∑

j=1

a j (η)

n∑

i=1

(
− ∂ yi

∂η j
(η)

)
∂

∂η1

(
∂ηk

∂xi
ξ (η)

)
+ ∂xi

∂η j
(η)

∂

∂η1

(
∂ηk

∂ yi
ξ (η)

)⎞

⎠

× ∂r

∂ηk

(
�at (η)

)

+t (p ◦ π) (η)

2n∑

k=1

2n∑

j=1

a j (η)

(
n∑

i=1

− ∂

∂η1

(
∂ yi

∂η j

)
(η)

∂ηk

∂xi
(ξ (η)) + ∂

∂η1

(
∂xi

∂η j

)
(η)

∂ηk

∂ yi
(ξ (η))

)

× ∂r

∂ηk

(
�at (η)

) + o (t) .

By (3.5)

2n∑

k=1

2n∑

j=1

a j (η)

(
n∑

i=1

− ∂ yi

∂η j
(η)

∂ηk

∂xi
(ξ (η)) + ∂xi

∂η j
(η)

∂ηk

∂ yi
(ξ (η))

)
∂r

∂ηk

(
�at (η)

)

= dr
(
�at (η)

) · J V (η) ,

so

dr
(
�at (η)

) (
J

(
�at

)
∗,η

(V )
)

= dr
(
�at (η)

) · J V (η)

+t (p ◦ π) (η)

2n∑

k=1

⎛

⎝
2n∑

j=1

a j (η)

n∑

i=1

(
− ∂ yi

∂η j
(η)

)
∂

∂η1

(
∂ηk

∂xi
ξ (η)

)
+ ∂xi

∂η j
(η)

∂

∂η1

(
∂ηk

∂ yi
ξ (η)

)⎞

⎠

× ∂r

∂ηk

(
�at (η)

)

+t (p ◦ π) (η)

2n∑

k=1

2n∑

j=1

a j (η)

(
n∑

i=1

− ∂

∂η1

(
∂ yi

∂η j

)
(η)

∂ηk

∂xi
(ξ (η)) + ∂

∂η1

(
∂xi

∂η j

)
(η)

∂ηk

∂ yi
(ξ (η))

)

× ∂r

∂ηk

(
�at (η)

) + o (t) . (3.39)

We will now compute the first order development of dr
(
�at (η)

) · J V (η).
By (3.9) we have

∂r

∂ηk

(
�at (η)

) = ∂r

∂ηk
(η + tp (π (η)) e1 + o (t))

= ∂r

∂ηk
(η) + tp (π (η))

∂

∂η1

(
∂r

∂ηk

)
(η) + o (t) ,

and it follows that

dr
(
�at (η)

) · J V (η)

=
2n∑

k=1

∂r

∂ηk

(
�at (η)

) 2n∑

j=1

a j (η)

(
n∑

i=1

− ∂ yi

∂η j
(η)

∂ηk

∂xi
(ξ (η)) + ∂xi

∂η j
(η)

∂ηk

∂ yi
(ξ (η))

)

=
2n∑

k=1

(
∂r

∂ηk
(η) + tp (π (η))

∂

∂η1

(
∂r

∂ηk

)
(η)

)

×
2n∑

j=1

a j (η)

(
n∑

i=1

− ∂ yi

∂η j
(η)

∂ηk

∂xi
(ξ (η)) + ∂xi

∂η j
(η)

∂ηk

∂ yi
(ξ (η))

)

+ o (t)



=
2n∑

k=1

2n∑

j=1

a j (η)

(
n∑

i=1

− ∂ yi

∂η j
(η)

∂ηk

∂xi
(ξ (η)) + ∂xi

∂η j
(η)

∂ηk

∂ yi
(ξ (η))

)
∂r

∂ηk
(η)

+tp (π (η))

2n∑

k=1

⎛

⎝
2n∑

j=1

a j (η)

(
n∑

i=1

− ∂ yi

∂η j
(η)

∂ηk

∂xi
(ξ (η))

+ ∂xi

∂η j
(η)

∂ηk

∂ yi
(ξ (η))

))
∂

∂η1

(
∂r

∂ηk

)
(η) + o (t) .

Since J V is tangent to L , (3.5) implies that

2n∑

k=1

2n∑

j=1

a j (η)

(
n∑

i=1

− ∂ yi

∂η j
(η)

∂ηk

∂xi
(ξ (η)) + ∂xi

∂η j
(η)

∂ηk

∂ yi
(ξ (η))

)
∂r

∂ηk
(η)

= dr (η) · J V (η) = 0,

and therefore

dr
(
�at (η)

) · J V (η)

= tp (π (η))

2n∑

k=1

⎛

⎝
2n∑

j=1

a j (η)

(
n∑

i=1

− ∂ yi

∂η j
(η)

∂ηk

∂xi
(ξ (η))

+ ∂xi

∂η j
(η)

∂ηk

∂ yi
(ξ (η))

))
· ∂

∂η1

(
∂r

∂ηk

)
(η) + o (t) . (3.40)

To end the Step 1, we replace now (3.40) in (3.39) and we obtain

dr
(
�at (η)

) (
J

(
�at

)
∗,η

(V )
)

= t (p ◦ π) (η)

2n∑

k=1

⎛

⎝
2n∑

j=1

a j (η)

(
n∑

i=1

− ∂ yi

∂η j
(η)

∂ηk

∂xi
(ξ (η))

+ ∂xi

∂η j
(η)

∂ηk

∂ yi
(ξ (η))

))
∂

∂η1

(
∂r

∂ηk

)
(η)

+t (p ◦ π) (η)

2n∑

k=1

⎛

⎝
2n∑

j=1

a j (η)

n∑

i=1

(
− ∂ yi

∂η j
(η)

)
∂

∂η1

(
∂ηk

∂xi
ξ (η)

)

+ ∂xi

∂η j
(η)

∂

∂η1

(
∂ηk

∂ yi
ξ (η)

))
∂r

∂ηk
(η)

+t (p ◦ π) (η)

2n∑

k=1

2n∑

j=1

a j (η)

(
n∑

i=1

− ∂

∂η1

(
∂ yi

∂η j

)
(η)

∂ηk

∂xi
(ξ (η))

+ ∂

∂η1

(
∂xi

∂η j

)
(η)

∂ηk

∂ yi
(ξ (η))

)
∂r

∂ηk
(η) + o (t)

= tp (π (η))

2n∑

k=1

⎛

⎝
2n∑

j=1

a j (η)

(
n∑

i=1

− ∂ yi

∂η j
(η)

∂ηk

∂xi
(ξ (η))



+ ∂xi

∂η j
(η)

∂ηk

∂ yi
(ξ (η))

))
∂

∂η1

(
∂r

∂ηk

)
(η)

+t (p ◦ π) (η) ([Z , J V ] − J [Z , V ]) (r) (η) .

But

2n∑

k=1

∂

∂η1

(
∂r

∂ηk

)
(η)

⎛

⎝
2n∑

j=1

a j (η)

(
n∑

i=1

− ∂ yi

∂η j
(η)

∂ηk

∂xi
(ξ (η)) + ∂xi

∂η j
(η)

∂ηk

∂ yi
(ξ (η))

)⎞

⎠

=
2n∑

k=1

∂

∂η1

⎡

⎣
(

∂r

∂ηk

)
(η)

⎛

⎝
2n∑

j=1

a j (η)

(
n∑

i=1

− ∂ yi

∂η j
(η)

∂ηk

∂xi
(ξ (η)) + ∂xi

∂η j
(η)

∂ηk

∂ yi
(ξ (η))

)⎞

⎠

⎤

⎦

−
2n∑

k=1

∂

∂η1

⎛

⎝
2n∑

j=1

a j (η)

(
n∑

i=1

− ∂ yi

∂η j
(η)

∂ηk

∂xi
(ξ (η)) + ∂xi

∂η j
(η)

∂ηk

∂ yi
(ξ (η))

)⎞

⎠
(

∂r

∂ηk

)
(η)

= Z (dr · J V ) (η) − [Z , J V ] (r) (η) ,

and it follows that

dr
(
�at (η)

) (
J

(
�at

)
∗,η

(V )
)

= t (p ◦ π) (Z (dr · J V ) − [Z , J V ] (r) (η)

+ ([Z , J V ] − J [Z , V ]) (r)) (η)

= t (p ◦ π) (Z (dr · J V ) − J [Z , V ] (r)) (η) . (3.41)

Step 2. First order development of d (at ◦ π)
(
�at (η)

) (
J

(
�at

)
∗,η

(V )
)
.

We have

d (at ◦ π)
(
�at (η)

) (
J

(
�at

)
∗,η

(V )
)

=
2n∑

k=1

∂ (at ◦ π)

∂ηk

(
�at (η)

) (
J

(
�at

)
∗,η

(V )
)

k
.

Since (3.9) implies

∂ (at ◦ π)

∂ηk

(
�at (η)

) = ∂ (t (p ◦ π) + o (t))

∂ηk
(η + tp (π (η)) e1 + o (t))

= t
∂ (p ◦ π)

∂ηk
(η) + o (t) , (3.42)

by (3.12) it follows that

d (at ◦ π)
(
�at (η)

) (
J

(
�at

)
∗,η

(V )
)

= t
2n∑

k=1

2n∑

j=1

a j (η)

n∑

i=1

(
− ∂ yi

∂η j

(
�at (η)

) ∂ηk

∂xi

(
ξ

(
�at (η)

))

+ ∂xi

∂η j

(
�at (η)

) ∂ηk

∂ yi

(
ξ

(
�at (η)

))) ∂ (p ◦ π)

∂ηk
(η) + o (t)

and by using (3.9) and (3.19) we obtain

d (at ◦ π)
(
�at (η)

) (
J

(
�at

)
∗,η

(V )
)

= t
2n∑

k=1

2n∑

j=1

a j (η)

(
n∑

i=1

− ∂ yi

∂η j
(η + t (p ◦ π) e1)

)



×
(

∂ηk

∂xi
(ξ (η)) + t (p ◦ π) (η)

∂

∂η1

(
∂ηk

∂xi
ξ (η)

))
∂ (p ◦ π)

∂ηk
(η) + t

2n∑

k=1

2n∑

j=1

a j (η)

×
(

n∑

i=1

∂xi

∂η j
(η + t (p ◦ π) e1)

(
∂ηk

∂ yi
(ξ (η)) + t (p ◦ π) (η)

∂

∂η1

(
∂ηk

∂ yi
ξ (η)

)))

×∂ (p ◦ π)

∂ηk
(η) + o (t)

= t
2n∑

k=1

2n∑

j=1

a j (η)

(
− ∂ yi

∂η j
(η)

∂ηk

∂xi
(ξ (η)) + ∂xi

∂η j
(η)

∂ηk

∂ yi
(ξ (η))

)
∂ (p ◦ π)

∂ηk
(η) + o (t)

= tdp (η) · J V (η) + o (t) . (3.43)

Step 3. End of the proof.
From (3.35), (3.41) and (3.43) we have

dγat

dt |t=0
(V ) = p (Z (dr · J V ) − J [Z , V ] (r)) + J V (p)

= −pZ
(
dcr (V )

) − pJ [Z , V ] (r) + J V (p) . (3.44)

By (3.32)

ddcr (Z , V ) = −Z (dr (J V )) + dr (J [Z , V ]) = Z
(
dcr (V )

) − dcr ([Z , V ]) ,

and by replacing in( 3.44) we obtain

dγat

dt |t=0
(V ) = −p

(
ddcr (Z , V ) + dcr ([Z , V ])

) − pJ [Z , V ] (r) + J V (p)

= −pddcr (J Z , J V ) + pdr (J [Z , V ]) − pdr (J [Z , V ]) + dp (J V )

−pιJ Z ddcr (J V ) − Jdp (V )

= −pJ ιX ddcr (V ) + dc p (V ) ,

and the Proposition 3 is proved. ��

Corollary 1 Under the notations and hypothesis of the previous propositions,

dγat

dt |t=0
= −dαat

dt |t=0
.

Remark 2 By using Proposition 2, it was proved in [1] that

δ
dat

dt |t=0
= −δδc p = 0, (3.45)

or equivalently

dbdc
b p − db p ∧ Jb − dc

b p ∧ b =p
(
Jdc

bb + b ∧ Jb
)
, (3.46)

where b = ιX dγ . From Corollary 1 it follows that the same equations are also obtained by
means of γa(t).
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