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Abstract

We consider excursions for a class of stochastic processes describing a population
of discrete individuals experiencing density-limited growth, such that the popula-
tion has a finite carrying capacity and behaves qualitatively like the classical logistic
model [20] when the carrying capacity is large. Being discrete and stochastic, how-
ever, our population nonetheless goes extinct in finite time. We present results
concerning the maximum of the population prior to extinction in the large popula-
tion limit, from which we obtain establishment probabilities and upper bounds for
the process, as well as estimates for the waiting time to establishment and extinction.
As a consequence, we show that conditional upon establishment, the stochastic logis-
tic process will with high probability greatly exceed carrying capacity an arbitrary
number of times prior to extinction.

1 Introduction

1.1 Population Variability Analysis, a Cautionary Tale

Consider the time series in Figure 1, which gives the number of individuals in a hypo-
thetical population. Time is measured such that the expected age of first reproduction is
one time unit, so the figure seems to show a population experiencing several generations
(which might be years, or even decades, for large mammals e.g., [19]) fluctuating about
a carrying capacity of about seventy individuals, followed by a rapid decline. If this were
a population of interest, how should we respond to such census data? Is this cause for
alarm?

In this particular case, the answer is no. The above time series is actually showing a
population returning to carrying capacity after an excursion caused only by demographic
stochasticity. The prognosis for the population is actually quite good (Figure 2): it
persists for hundreds of generations (the duration of the simulation), making even larger
fluctuations above carrying capacity.
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Figure 1: Census of a (simulated) population; one time unit is the expected first age of
reproduction

This sort of behaviour is actually typical of trajectories of the simulated process, a
birth and death process with density dependent mortality, and Markov transition rates

q
(n)
k,k+1 = bk and q

(n)
k,k−1 = d

(
1 + k

n

)
k, (1)

which will either rapidly go extinct, or make many excursions well above carrying ca-
pacity prior to extinction. As such, to assess the viability of a population, we need
to understand more than the mean behaviour of the population dynamics (and, as we
discuss below, even the standard deviation can lead to misleading conclusions): we need
to understand the stochastic fluctuations in long term.

1.2 Stochastic Logistic Processes

The process (1) is an example of the density-dependent population processes introduced
in [15]. In what follows, we will investigate a class of density-dependent population
processes that are “logistic-like”, in the sense that in the large population limit, the
process evolves in time according to Verhulst’s logistic equation [20] or Kolmogorov’s
generalization thereof [14]. We’ll call these stochastic logistic processes.

To be precise, we consider families of continuous time Markov chains, indexed by a
“system-size” parameter n ∈ N0 = {0, 1, 2, . . .}, which is proportional to the carrying
capacity – one can think of it as measuring the size of the habitat. These processes,
X(n), have transition rates

q
(n)
k,k+1 = λ

(n)
k = λ( kn)k and q

(n)
k,k−1 = µ

(n)
k = µ( kn)k (2)
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Figure 2: Census population size, simulated via the Markov Chain with rates (1), b = 2,
d = 1, n = 50.

for non-negative, continuous functions λ(x) and µ(x), which we assume to be continu-
ously differentiable and bounded on compact sets. For ease of notation, we will suppress

the exponents and write λ
(n)
k = λk and µ

(n)
k = µk in what follows.

In [15], it is shown that if 1
nX

(n)(0)→ x0 and x(t, x0) is the solution to

ẋ = (λ(x)− µ(x))x (3)

with initial condition x(0, x0) = x0, then the rescaled process x(n)(t) = 1
nX

(n)(t) con-
verges to x(t, x0). To be precise, for any fixed T > 0,

lim
n→∞

sup
t≤T
|x(n)(t)− x(t, x0)| = 0 a.s.

This implies that the process with rates (1) approaches – over finite time horizons – a
deterministic limit satisfying the logistic equation,

ẋ = r
(

1− x

κ

)
x

where r = b− d and κ = b
d − 1. Moreover, provided b > d, the carrying capacity κ is a

stable fixed point for the dynamics.
We want the deterministic process (3) to be competitive in the sense of [14], so the

individual birth rate λ(x) and death rate µ(x) will be required to be decreasing and
increasing functions of the population density x, respectively1. Further, we want (3) to

1In [14], Kolmogorov actually makes the weaker assumption that the net per-capita growth rate

3



have bounded trajectories and a unique stable fixed point, and that x = 0 be a repeller
for the dynamics. We thus assume there is a value κ > 0 such that λ(x)− µ(x) > 0 for
0 < x < κ, λ(κ) = µ(κ), and λ(x) − µ(x) < 0 for x > κ. We will allow the possibility
that λ(ω) = 0 for some ω > 0; by the above, we must have ω > κ; e.g., for a birth and
death process with density dependent fecundity,

q
(n)
k,k+1 = b

(
1− k

n

)
k and q

(n)
k,k−1 = dk,

we would have ω = 1, whereas for the process with density dependent mortality, (1),
ω =∞.

1.3 Fluctuations in Stochastic Logistic Processes

Based on Kurtz’s theorem, we might thus reasonably assume that the paths of stochastic
processes remain close to the corresponding unscaled carrying capacity, κn. Indeed,
one can show [16, 3] that in the large n limit, the fluctuations |x(n)(t) − x(t, x0)| may
be described by a diffusion process which, as t → ∞, relaxes to a quasi-stationary
distribution that is approximately Gaussian with mean 0 and variance 1√

n
σ(κ)
2b′(κ) . The

latter is asymptotically much smaller than the carrying capacity. Nonetheless, since 0 is
the only absorbing state of the Markov chain, over a sufficiently long time horizon the
stochastic logistic process will necessarily have at least one large fluctuation: it must
eventually hit zero. We thus have our first indication that the first and second moments
are insufficient to understand the long-term dynamics of a stochastic logistic process.

In what follows, we will develop an alternate approach, which allows us to give
a more complete description (an approach to fixation probabilities in the same spirit
as ours has recently appeared in [5], but their “continuous view” implicitly assumes an
initial number of individuals that tends to infinity as n→∞). We shall demonstrate the
perhaps counterintuitive result that, even starting from a single individual, in the limit
as n → ∞, a stochastic logistic process has a non-zero probability of greatly exceeding
carrying capacity (e.g., to more than double the carrying capacity for the model (1)).
To be precise, there is a “potential barrier”, η > κ, defined in the next section, such
that as n→∞, the probability x(n)(t) reaches any ι < η tends to a non-zero limit that
is independent of ι.

Moreover, once the population is established (which for present purposes, means
reaching a population size of mn individuals for any fixed sequence {mn} such that
mn →∞) then with high probability (i.e., with probability approaching one as n→∞)
it must have at least one fluctuation far above carrying capacity prior to extinction.
Furthermore, having attained such a high value, it will, as n → ∞, return there an
arbitrary number of times. On the other hand, we shall also see that there is a sharp
bound on such fluctuations: for any ι > η, the probability that x(n)(t) reaches ι is
exponentially small in n.

λ(x)− µ(x) is decreasing; we make this stronger assumption to ensure that f(x) = ln µ(x)
λ(x)

is increasing,
which is crucial to our results. One can easily construct examples where the former holds, but not the
latter, e.g.,λ(x) = b+ ex−κ, µ(x) = d(1 + x) + ex−κ, for b > d > 0 and κ = b

d
− 1.
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Having established that the process will greatly exceed carrying capacity many times,
we address the natural question of how long this will take, how long the process will
remain at or above some high level, and the time between returns to a high level. To
understand these in context, we will also derive the expected time to first reach carrying
capacity, and the time to extinction, conditioned on whether or not the process reaches
carrying capacity first. The time to extinction has been addressed previously in varying
degrees of rigour, but with conflicting conclusions [2, 10, 17]; the other results, are, to
our knowledge, novel.

Our results also provide an elementary proof for the observation that the probability
that a density-limited population successfully invades an unoccupied territory, in the
limit as carrying capacity tends to infinity, is essentially the survival probability of a
suitably chosen branching process. This has previously been asserted without proof
and defended heuristically, e.g., [11, 7, 21] or rigorously proven rigorously via coupling
arguments, e.g., [2, 6, 18].

While our approach lacks the intuition for the path-wise behaviour obtained via
coupling with a branching process, in addition to its simplicity, it has the advantage of
allowing us to make assertions about the behaviour of the logistic process for population
sizes considerably larger than those for which the coupling remains exact (with high
probability, the stochastic logistic process and the branching process will diverge once
the population size has exceeded O(

√
n) individuals, see [2]). As such, we can make

observations about the maximum of the logistic process without having to resort to
more technical large deviations arguments, can consider results over the lifetime of the
population, rather than being limited to a compact time interval, and can avoid the
“stitching-together” of various limits that coupling approaches demand.

2 Results

With the exception of our first result on invasion probabilities, where will introduce our
mathematical framework and the definitions necessary to state subsequent results, all
proofs are deferred to the appendix. We start by introducing the notation by which we
express our results.

2.1 Notation

Let X(n) be a stochastic logistic process, as defined in the previous section. For any
non-negative integer m, let

T (n)
m = inf

{
t ≥ 0 : X(n)(t) = m

}
and

h
(n)
a,b (m) = Pm

{
T (n)
a < T

(n)
b

}
,

where Pm indicates the probability conditional on X(n)(0) = m (similarly, we will write

Em for the expectation conditional on X(n)(0) = m). Thus, h
(n)
a,b (m) is the probability
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that, starting from m, the process hits a prior to hitting b. A priori, if λm = 0, then

T
(n)
m+1 =∞ and h

(n)
a,b (m) = 1 for b > m > a.

More generally, for any set of nonnegative integers A, let

T
(n)
A = inf

{
t ≥ 0 : X(n)(t) ∈ A

}
,

be the first hitting time of A, and for any nonnegative m, let

T
(n)
m+ = inf

{
t ≥ T (n)

N0−{m} : X(n)(t) = m
}

be the first return time to m (note that for X(n)(0) 6= m, T
(n)
m+ = T

(n)
m ). Let N

(n)
m (t) be

the number of visits of X(n) to m prior to time t, and let S
(n)
m (t) be the total time spent

in state m prior to time t.
Our results will be asymptotic in n, for which we will use Hardy-Vinogradov notation,

so f(n) ∼ g(n) if

lim
n→∞

f(n)

g(n)
= 1,

and f(n) . g(n) if

lim sup
n→∞

f(n)

g(n)
≤ 1,

whereas f(n)� g(n) if there exists a constant C such that

|f(n)| ≤ C|g(n)|

for all n.

2.2 Invasion Probabilities

Given that any population is doomed to eventual extinction, we will define a successful
invasion to be one in which starting from (a small number) m individuals, the population
achieves some positive fraction of carrying capacity. As we will see below, this implies
that it will with high probability also reach (and exceed) carrying capacity, and will have
a species lifetime exponential in n (whereas species that fail to reach carrying capacity
will on average go extinct in finite time � 1). The probability of invasion starting from

m individuals is thus 1−h(n)0,bιnc(m), for any ι ∈ [0, κ], and our first task is to understand

the function h
(n)
a,b (m).

By looking at the process X(n)(t) only at its jump times (i.e., at the embedded

Markov chain), it is clear that for a < m < b, the probabilities h
(n)
a,b (m) satisfy a recur-

rence relation

h
(n)
a,b (m) =

λm
λm + µm

h
(n)
a,b (m+ 1) +

µm
λm + µm

h
(n)
a,b (m− 1)
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with boundary conditions h
(n)
a,b (a) = 1 and h

(n)
a,b (b) = 0 ( λm

λm+µm
and µm

λm+µm
are the

probability that, given there are m individuals prior to a given jump, that jump is a
birth or death, respectively). This recurrence may be solved to yield

h
(n)
a,b (m) =

∑b−1
k=m

∏k
j=1

µj
λj∑b−1

k=a

∏k
j=1

µj
λj

, (4)

(we set
∑b−1

k=b

∏k
j=1

µj
λj

= 0 and
∏0
j=1

µj
λj

= 1). A standard reference for such results is

[12].
Now,

k∏
j=1

µj
λj

=
k∏
j=1

µ( jn)

λ( jn)
= e

∑k
j=1 ln

µ(
j
n )

λ(
j
n ) ,

so setting

V (n)(m) :=

 1
n

∑m
k=1 ln

µ( kn)
λ( kn)

if m > 0, and

0 if m = 0,

we may write

h
(n)
a,b (m) =

∑b−1
k=m e

nV (n)(k)∑b−1
k=a e

nV (n)(k)
. (5)

Let f(x) = ln µ(x)
λ(x) , so f is an increasing function and f(x) ≤ 0 for x ≤ κ. For our choice

of f we then have

V (n)(k) =
1

n

k∑
j=1

f

(
j

n

)
,

and (see Lemma A.1),∫ k
n

0
f(x) dx ≤ V (n)(k) ≤

∫ k
n

0
f(x) dx+

1

n

(
f

(
k

n

)
− f(0)

)
.

In particular, for ι < ω, as n→∞,

V (n)(ιn)→ V (ι) :=

∫ ι

0
f(x) dx,

and the latter has a unique minimum at κ.
Since f is increasing and f(x) ≥ 0 for all x ≥ κ, either ω < ∞, or there exists

κ < ζ <∞ such that ∫ ζ

0
f(x) dx = 0,

whereas
∫ ι
0 f(x) dx is positive for ι > ζ and negative if ι < ζ. Let

η = min{ω, ζ},
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i.e., η is either the largest population density at which the birth rate is positive, or the
least density at the same height in the potential well as zero, whichever is least. η will
be a key quantity in our analysis.

We are now in a position to use the following discrete analogue to Laplace’s method2

to obtain asymptotic estimates of the infinite sums in in terms of the maximum of V (x).
Since V (x) is concave, its maximum over any interval [α, β] (0 ≤ α < β < η) occurs at
one of the endpoints α or β, whereas the minimum at κ is the unique local (and thus
global) minimum.

Proposition 1. Let an and bn be sequences of non-negative integers such that an
n → α

and bn
n → β, and suppose that ψ(x) and g(x) are, respectively, a continuously differ-

entiable function and a continuous function on an open interval containing [α, β], and
that εn is a sequence of functions on the set of integers {an, an + 1, . . . , bn}, uniformly
converging to 0. Suppose further that that there exists γ such that ψ(γ) > ψ(x) for all
x 6= γ ∈ [α, β].

(i) If either γ = α and ψ′(α) < 0, or γ = β and ψ′(β) > 0, then setting cn = an or
bn, respectively, one has

bn−1∑
k=an

(1 + εn(k))g

(
k

n

)
enψ( kn) ∼

g
(
cn
n

)
enψ( cnn )

1− e−ψ′(
cn
n )

(ii) If ψ is twice continuously differentiable and ψ′(γ) = 0, and either γ ∈ (α, β) and
ψ′′(γ) < 0, or γ ∈ {α, β}, ψ′′(γ) > 0, and

∣∣ cn
n − γ

∣∣� 1√
n

(cn as previously), then

bn−1∑
k=an

(1 + εn(k))g

(
k

n

)
enψ( kn)

∼


g(γ)enψ(γ)

√
2nπ
|ψ′′(γ)| if γ ∈ (α, β), and

g(γ)enψ(γ)
(

1
2 +

√
nπ

2|ψ′′(γ)|

)
otherwise.

Applying this with ψ(x) = V (x), g(x) =
√

µ(x)
λ(x)

λ(0)
µ(0) , and

εn(i) = enV
(n)(i)−nV ( in)− 1

2(f( in)−f(0)) − 1

2While it is appealing to observe that

1

n

bn−1∑
k=an

(1 + εn(k))g

(
k

n

)
enψ(

k
n )

is essentially the Riemann sum for ∫ β

α

g(x)enψ(x) dx,

and then invoke the continuous form of Laplace’s method, Proposition 1 shows that whilst the discrete
and continuous results are identical for an interior maximum, they do not agree when ψ has its maximum
at one of the endpoints, thus invalidating this “proof”.
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yields

Corollary 1. Let an and bn be as above. Then,

(i) If V (β) < V (α), then

bn−1∑
k=an

enV
(n)(k) ∼

√
µ
(
an
n

)
λ
(
an
n

) λ(0)

µ(0)

enV (ann )

1− µ(ann )
λ(ann )

(ii) If V (α) < V (β), then

bn−1∑
k=an

enV
(n)(k) ∼

√
µ
(
bn
n

)
λ
(
bn
n

) λ(0)

µ(0)

enV ( bnn )

1− λ( bnn )
µ( bnn )

.

(iii) In particular, if an = o(n), then α = 0 and, if β < η, then

bn−1∑
k=an

enV
(n)(k) ∼

(
µ(0)
λ(0)

)an
1− µ(0)

λ(0)

.

Applying Corollary 1 to the numerator and denominator of (2.2) gives us our first
result on invasion probabilities, namely that the large excursions of §1.1 are the rule,
and not the exception, for density limited populations:

Proposition 2 (Invasion Probabilities). Let {mn} be a sequence of positive integers
such that mn � n (we allow mn ≡ m),

h
(n)
0,bιnc(mn)

∼


(
µ(0)
λ(0)

)mn
if 0 < ι < η, and

1−
√

λ(ι)
µ(ι)

µ(0)
λ(0)

1−λ(ι)
µ(ι)

1−µ(0)
λ(0)

(
1−

(
µ(0)
λ(0)

)mn)
e
−nV

(
bιnc
n

)
if ι > η.

(6)

Remark 1. Unfortunately, while bιncn → ι as n → ∞, unless ι is integral, it is not

generally the case that e
nV
(
bιnc
n

)
→ enV (ι). If V is continuously differentiable, then

n

(
V (ι)− V

(
bιnc
n

))
∼ −V ′(ι)(ι− bιnc),

so e
n
(
V (ι)−V

(
bιnc
n

))
is bounded. However, one can easily show that if ι is rational, say

ι = p
q for p and q relatively prime, then ι−bιnc takes all values

{
0, 1q , . . . ,

q−1
q

}
, whereas

if ι is irrational, the set of points {ι− bιnc : n ∈ N0} is dense in [0, 1].
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Thus, for any 0 < ι < η, the hitting probability is independent of ι, and equal to
the probability of extinction for the pure birth and death process with rates λk = λ(0)k
and µk = µ(0)k. Moreover, if mn → ∞ as n → ∞, the process hits ι with probability
approaching 1, whereas at ι = η, this probability is reduced by a constant factor, while
X(n) exceeds η with an exponentially small probability.

Example 1. In our example with density dependent mortality, (1), η > 2κ: for x ≥ 0,
ln(x) ≤ x− 1, so

f(x) ≤ µ(x)

λ(x)
− 1 =

µ(x)− λ(x)

λ(x)
=
µ

λ
(x− κ),

with the inequality strict except at x = κ. Then, if 0 < ι < 2κ∫ ι

0
f(x) dx <

µ

λ

∫ ι

0
x− κ dx =

µ

λ

(
1

2
ι− κ

)
ι.

Thus, the right hand side is less than zero and η > 2κ. Thus, depending on the model,
fluctuations to twice carrying capacity are possible, though not generically: one can
easily construct examples where η < 2κ, e.g., take a process with density dependent
fecundity, with birth and death rates λ

(
1− k

n

)
k and µk respectively.

An intuitive understanding of these results can be obtained by observing that the
stochastic logistic process is essentially equivalent to a random walk on N0 with the
potential nV (n), absorbed at 0. Recall that when in state k, the random walk in nV (n)

increases by 1 with probability

pk :=
e−nV

(n)(k)

e−nV
(n)(k−1) + e−nV

(n)(k)

(
=

λk
λk + µk

)
,

and decreases by 1 with probability qk := 1 − pk; this is exactly the embedded Markov

chain we used to compute h
(n)
a,b (m). Because the potential is scaled by n, its walls become

arbitrarily steeper as n → ∞, and it becomes exponentially harder for the process to
reach points of higher potential:

Proposition 3. Suppose that mn
n → ν, 0 ≤ ξ < ν < ι, and ξ, ν, ι 6= κ. Then,

Pmn
{
Tbξnc < Tbιnc

}

∼



√
µ(ν)
λ(ν)

λ(ξ)
µ(ξ)

1−λ(ξ)
µ(ξ)

1−µ(ν)
λ(ν)

e
n
(
V
(
bνnc
n

)
−V
(
bξnc
n

))
if V (ξ)>V (ν)>V (ι),√

µ(ι)
λ(ι)

λ(ξ)
µ(ξ)

1−λ(ξ)
µ(ξ)

1−µ(ι)
λ(ι)

e
n
(
V
(
bιnc
n

)
−V
(
bξnc
n

))
if V (ξ)>V (ι)>V (ν),

1−
√

λ(ι)
µ(ι)

µ(ξ)
λ(ξ)

1−µ(ι)
λ(ι)

1−λ(ξ)
µ(ξ)

e
n
(
V
(
bξnc
n

)
−V
(
bιnc
n

))
if V (ι)>V (ξ)>V (ν), and

1−
√

λ(ι)
µ(ι)

µ(ν)
λ(ν)

1−µ(ι)
λ(ι)

1−λ(ν)
µ(ν)

e
n
(
V
(
bνnc
n

)
−V
(
bιnc
n

))
if V (ι)>V (ν)>V (ξ).

(7)

Remark 2. The ordering requires V (ν) < max{V (ξ), V (ι)}.
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(a) n = 10 (b) n = 20 (c) n = 50

Figure 3: The probability of hitting twice carrying capacity as a function of the initial
number of individuals, m, for the stochastic logistic process with rates (1), b = 2, and
d = 1 (so κ = 1 and carrying capacity is n). Diamonds are numerical evaluations of (4),
the solid line is given by (6), and the dashed line is given by (7) with ξ = 0 and ι = 2κ.

Remark 3. The cases when one of ξ, ν, ι is equal to κ may be obtained from Proposition
1, (ii), but we omit these for brevity.

Thus, despite our use of quotes in introducing it, η is truly a potential barrier for the
process. Of necessity, the process will eventually make a large fluctuation down to zero,
and numerous “failed attempts” en route. The fact that carrying capacity is the bottom
of the well essentially ensures that it is equally likely to make large upward fluctuations
as well.

We conclude this section with Figures 3 and 4, which illustrate the speed of conver-
gence of (6) and (7). The former, which assumes small initial numbers, does well initially,
but eventually overestimates the probability of reaching twice carrying capacity. The
latter already shows good agreement for n = 10, whereas for the former, smaller order
terms cause a substantial error for n = 10, whereas for n = 20, our asymptotic approxi-
mations are already qualitatively correct, and at n = 50, we have excellent agreement.

2.3 Some Fluctuation Theory

Having established that the process will greatly exceed carrying capacity, it is natural to
ask what happens next. As the next result shows, it will almost certainly return towards
carrying capacity before returning to the same or higher points in the potential:
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(a) n = 10 (b) n = 20 (c) n = 50

Figure 4: The probability of attaining i > ηn individuals, starting from carrying capacity,
for the stochastic logistic process with rates (1), b = 2, and d = 1 (so κ = 1 and carrying
capacity is n). Diamonds are numerical evaluations of (4) and the dashed line is given
by (7) with ξ = 0 and ι = η.

Proposition 4. Let max{ν, ξ} < η. Then,

Pbνnc
{
T
(n)
bξnc < T

(n)
bνnc+

}

∼


µ(ν)

λ(ν)+µ(ν)

(
1− µ(ξ)

λ(ξ)

)√
λ(ξ)
µ(ξ)

µ(ν)
λ(ν)e

n
(
V
(
bνnc
n

)
−V
(
bξnc
n

))
if V (ξ)>V (ν) and ξ<ν,

|λ(ν)−µ(ν)|
λ(ν)+µ(ν) if V (ξ)<V (ν), and,

λ(ν)
λ(ν)+µ(ν)

(
1− λ(ξ)

µ(ξ)

)√
µ(ξ)
λ(ξ)

λ(ν)
µ(ν)e

n
(
V
(
bνnc
n

)
−V
(
bξnc
n

))
if V (ξ)>V (ν) and ξ>ν.

As an immediate consequence, we have the number of returns to bιnc. Since ι < η,
V (ι) < 0, and this proposition tells us that the number of times the stochastic logistic
process revisits a neighbourhood of bιnc increases exponentially with n:

Proposition 5. Fix ι < η. Then,

Emn
[
N

(n)
bιnc(T

(n)
0 )

∣∣∣T (n)
bιnc < T

(n)
0

]
∼ λ(ι) + µ(ι)

µ(ι)

√
µ(0)

λ(0)

λ(ι)

µ(ι)

e
−nV

(
bιnc
n

)
1− µ(0)

λ(0)

.

In particular, the ambiguous scenario of Figure 1 is not an anomalous event, but one
that will happen many times over the lifetime of a population. In the next section, we
will look at how long one has to wait for one of these events.

2.4 Hitting Times

In this section, we will look at the expected times to extinction, to carrying capacity,
and to values far above. Unless stated otherwise, we assume that λ(x) and µ(x) are
twice continuously differentiable. We start with the expected time to carrying capacity,
which is rapid:

12



Proposition 6. Fix a positive integer m. Then,

Em
[
T
(n)
bκnc

∣∣∣T (n)
bκnc < T

(n)
0

]
∼
(

1

λ(0)− µ(0)
− 1

(λ′(κ)− µ′(κ))κ

)
lnn.

Even more rapid is the extinction time conditioned on never reaching carrying ca-
pacity, which is of order one, so most populations that fail to reach carrying capacity
will not persist long enough to be observed:

Proposition 7. Let λ(x) and µ(x) be continuous and fix m < bκnc. Then,

lim
n→∞

Em
[
T
(n)
0

∣∣∣T (n)
0 < T

(n)
bκnc

]
=

1

µ(0)

∫ µ(0)
λ(0)

0

1− xm

(1− x)2
dx

In particular,

lim
n→∞

E1

[
T
(n)
0

∣∣∣T (n)
0 < T

(n)
bκnc

]
= − 1

µ(0)
ln

(
1− µ(0)

λ(0)

)
.

whereas

lim
m→∞

lim
n→∞

Em
[
T
(n)
0

∣∣∣T (n)
0 < T

(n)
bκnc

]
=

1

λ(0)− µ(0)
.

By contrast, a population that does reach carrying capacity will persist exponentially
long:

Proposition 8. Fix a positive integer m. Then,

Em
[
T
(n)
0

]
∼

√√√√ 2π

n
(
µ′(κ)
µ(κ) −

λ′(κ)
λ(κ)

) µ(0)

λ(0)

1−
(
µ(0)
λ(0)

)m
1−

(
µ(0)
λ(0)

) e−nV (κ)

µ(κ)κ
(

1− λ(0)
µ(0)

)
The fact that Em[T

(n)
0 ] is bounded in m also allows us to apply a result in Section

4.3 of [1] to conclude that the distribution of T
(n)
0 has exponential tails:

Corollary 2. Independent of the initial state, m,

Pm
{
T
(n)
0 > t

}
. e
− t
e

√
n

(
µ′(κ)
µ(κ)

−λ
′(κ)
λ(κ)

)
2π

λ(0)
µ(0)

µ(κ)κ
(
1−λ(0)

µ(0)

)
enV (κ)

.

Using elements of the proof, we can also compute the expected time spent above any

level above carrying capacity. Let L
(n)
k (t) denote the total time spent in state k prior to

time t (the local time at k). Then, applying Proposition 1 to the sum of the expected
holding time in all states above bιnc, we have

Corollary 3. Let κ < ι < η. Then,

Em

 ∞∑
k=bιnc+1

L
(n)
k (T

(n)
0 )

 ∼ 1−
(
µ(0)
λ(0)

)m
1− µ(0)

λ(0)

e
−nV

(
bιnc
n

)
nµ(ι)ι

√
µ(ι)
λ(ι)

λ(0)
µ(0)

,
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We can also completely characterize the amount of time in any given state prior to
extinction:

Corollary 4. Let m be a positive integer.

Pm
{
L
(n)
k (T

(n)
0 ) ≤ t

∣∣∣T (n)
k < T

(n)
0

}
∼ e
−(λk+µk)

(
1−
(
1−µ(0)

λ(0)

)√µ( k−1
n )

µ(0)
λ(0)

λ( k−1
n )

e
nV ( k−1

n )
)
t

i.e., conditioned upon hitting k prior to 0, the total time spent in k is exponentially
distributed.

Together, these two corollaries tell us that the that the total of time spent in any
state above carrying capacity is either exponentially long (below the barrier η), or ex-
ponentially short (above η), so from an absolute point of view, populations can be well
above carrying capacity for long periods of time. From a relative point of view, however,
Proposition 8 and Corollary 3, tell us the fraction of time spent above bιnc, for any
ι > κ, is of order en(V (κ)−V (ι)), which for large populations is vanishingly small, so as
the population grows large, it might be highly unlikely to observe such a fluctuation.
Indeed, as the next two results show, one must also wait exponentially long to see a large
fluctuation, whereas a typical excursion has a very short duration:

Proposition 9. Let ν < η. Then, for fixed m ∈ N,

Em
[
T
(n)
bνnc

∣∣∣T (n)
bνnc < T

(n)
0

]
∼

√√√√ 2π

n
(
µ′(κ)
µ(κ) −

λ′(κ)
λ(κ)

) µ(ν)

λ(ν)

e
n
(
V
(
bνnc
n

)
−V (κ)

)
λ(κ)κ

(
1− λ(ν)

µ(ν)

)
(as in Corollary 2, the tails of the distribution are exponential).

As one sees in the proof, the time spent in states k with V
(
k
n

)
> V (ν) is extremely

short (� lnn) compared to the time in states with V
(
k
n

)
< V (ν) this is because the

process rapidly approaches the carrying capacity, but, prior to hitting bνnc, it makes
many returns to each point such that V

(
k
n

)
< V (ν). These returns are quite rapid:

Proposition 10. Let κ < ν < η. Then,

lim
n→∞

Ebνnc
[
T
(n)
bκnc

]
∼ − 1

(λ′(κ)− µ′(κ))κ
lnn

Finally, having established in Proposition 5 that the process will nonetheless reattain
νn, it is natural to ask how long this will take. This leads us to:

Proposition 11. Let κ < ν < η. Then,

Ebνnc
[
T
(n)
bνnc+

∣∣∣T (n)
bνnc+ < T

(n)
0

]
∼ µ(ν)

µ(ν) + λ(ν)

√√√√ 2π

n
(
µ′(κ)
µ(κ) −

λ′(κ)
λ(κ)

) µ(ν)

λ(ν)

e
n
(
V
(
bνnc
n

)
−V (κ)

)
λ(κ)κ

.
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3 Discussion

The results above provide a fairly complete picture of the long-term behaviour of the
stochastic logistic process: an invading population either fails and disappears almost
immediately, or rapidly attains carrying capacity. In the latter case, it persists exponen-
tially long, eventually achieving every state of potential less than zero, returning to each
such state an arbitrary number of times, but taking exponentially long to do so, and
typically returning close to carrying capacity in time � lnn. Together, the net effect is
a standard deviation of order O(

√
n), but the latter is deceptive, as it masks the rare

but recurrent excursions.
To conclude, in addition to mathematical and theoretical interest, our results have

practically important biological implications: depending on when we observe a popula-
tion, it may in fact be far in excess of equilibrium, so that estimates of the population
viability or Malthusian growth rate may be grossly inaccurate. Moreover, large increases
or sudden decreases in population size, that might be interpreted as recovery or collapse,
may be little more than demographic stochasticity. Some caveats are, of course, in order.
First, as we observe in proposition 1, whilst significant fluctuations above carrying capac-
ity (i.e., of magnitude proportional to the population size) are highly likely to occur, the
size of those fluctuations is nonetheless model-dependent, and in a more realistic model,
many factors will limit population growth at high frequencies (e.g., resource limitation,
mate competition, disease, and predation, to name a few) so that the potential barrier
will likely be closer to carrying capacity than in toy mathematical models. Similarly,
including e.g., Allee effects at small numbers would qualitatively change the shape of
the potential, adding a second well at small numbers and a potential barrier to traverse
to reach the carrying capacity, which would demand a more detailed analysis than is
presented here, although one likely amenable to an analysis similar to that for diffusions
with metastable states (e.g., [4]).

More importantly, the expected waiting time for an excursion far above carrying
capacity, despite being asymptotically smaller than the extinction time, is still expo-
nentially large in n, so that one may have to wait an extremely long time to see such
an excursion, even if arbitrarily many will occur prior to extinction. Moreover, the re-
turn time to equilibrium is considerably shorter than the time between excursions – so
for large populations, we are extremely unlikely to observe the population far from its
equilibrium size.

Nonetheless, when modelling populations e.g., in performing viability analysis, we
are often most interested in the smaller populations of uncommon species, which are
at risk of extinction. In this case, large fluctuations may occur on the timescale at
which we observe the population and confound our efforts to estimate that risk. In
such cases, the existence of large magnitude stochastic fluctuations that we have demon-
strated should serve as an important caution to the use of deterministic modelling in
conservation biology, and leave us with the important question of how to distinguish
collapsing populations from those reverting to the mean.

15



Acknowledgements

I thank François Bienvenu, Amaury Lambert, Peter Ralph, Tim Rogers, Sebastian
Schreiber, and two anonymous reviewers for comments that led to substantial improve-
ments in the manuscript.

Appendices

A Some Useful Lemmas

For the sake of completeness, we include some simple and well-known lemmas that we
have used in the main text. The proofs are elementary and are thus omitted.

Lemma A.1. (i) Let f be an non-decreasing function. Then,

0 ≤ 1

n

b∑
j=a+1

f

(
j

n

)
−
∫ b

n

a
n

f(x) dx ≤ 1

n

(
f

(
b

n

)
− f

(a
n

))
and

0 ≤
∫ b

n

a
n

f(x) dx− 1

n

b−1∑
j=a

f

(
j

n

)
≤ 1

n

(
f

(
b

n

)
− f

(a
n

))
.

(ii) If f is differentiable and |f ′(x)| is bounded by M on
[
a
n ,

b
n

]
, then∣∣∣∣∣∣

∫ b
n

a
n

f(x) dx− 1

n

b−1∑
j=a

f

(
j

n

)∣∣∣∣∣∣ < M(b− a)

2n2
.

(iii) Further, if f is twice differentiable and |f ′′(x)| is bounded by M on
[
a
n ,

b
n

]
, then∣∣∣∣∣∣

∫ b
n

a
n

f(x) dx− 1

n

b−1∑
j=a

f

(
j

n

)
− 1

2n

(
f

(
b

n

)
− f

(a
n

))∣∣∣∣∣∣ < M(b− a)

4n3
.

Lemma A.2 (Dominated convergence theorem for series). Suppose that am,n and bm
are sequences such that

(i) am,n → am as n→∞,

(ii) |am,n| ≤ bm for all n, and

(iii)
∑∞

m=0 bm <∞.

Then,

lim
n→∞

∞∑
m=0

am,n =
∞∑
m=0

am,

i.e., the sums on the left and right are convergent and one can interchange sum and limit.
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Lemma A.3. Suppose we have sequences an,k, bn,k ≥ 0 for all n, k, such that

lim
k→∞

sup
n

an,k
bn,k

= 1,

and that
∞∑
k=1

bn,k =∞.

Then,

lim
N→∞

∑N
k=1 an,k∑N
k=1 bn,k

= 1.

B Proofs

B.1 Proofs for §2.2

Proposition 1. We will prove the result for γ = α and γ ∈ (α, β). The other cases follow
similarly.

Fix ε > 0 such that ψ′(α) + ε < 0. Using Taylor’s theorem, we may write

ψ(x) = ψ(y) + ψ′(y)(x− y) +R(x, y)(x− y),

where R(x, y)→ 0 as |x− y| → 0. Fix δ > 0 such that

|ψ′(x)− ψ′(α)| < ε

2

for all x such that |x− α| < δ and

|R(x, α)| < ε

2
and |g(x)− g(α)| < ε

2

for all x such that x − α < 3δ, and choose η > 0 such that ψ(x) < ψ(α) − η for all
x such that x − α ≥ δ. Fix M and m such that |g(x)| < M and |h(x)| < m for all
x ∈ [α − δ, β + δ] and all n. Since an

n → α and bn
n → β, without loss of generality, we

may assume that |ann − α| < δ, | bnn − β| < δ and |εn| < ε for all n.
Then,

bn−1∑
k=an

(1 + εn(k))g

(
k

n

)
enψ( kn)

= enψ(ann )
bn−1∑
k=an

(1 + εn(k))g

(
k

n

)
en(ψ( kn)−ψ(ann ))

= enψ(ann )

an+d2nδe−1∑
k=an

(1 + εn(k))g

(
k

n

)
en(ψ( kn)−ψ(ann ))

+

bn−1∑
k=an+d2nδe

(1 + εn(k))g

(
k

n

)
en(ψ( kn)−ψ(ann ))

 ,
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and, provided k ≥ an + d2nδe, then k
n ≥ α+ δ, and∣∣∣∣∣∣

bn−1∑
k=an+d2nδe

(1 + εn(k))g

(
k

n

)
en(ψ( kn)−ψ(ann ))

∣∣∣∣∣∣ ≤ (bn − an)M(1 + ε)e−nη → 0

as n→∞, whereas if k < an + d2nδe, then k
n < α+ 3δ, and

(1−ε)
(
g
(an
n

)
− ε
) an+d2nδe−1∑

k=an

en(ψ
′(ann )− ε2 )(

k
n
−an

n ) ≤
an+d2nδe−1∑

k=an

(1+εn(k))g

(
k

n

)
en(ψ( kn)−ψ(ann ))

≤ (1 + ε)
(
g
(an
n

)
+ ε
) an+d2nδe−1∑

k=an

en(ψ
′(ann )+ ε

2
)( kn−

an
n ),

and

an+d2nδe−1∑
k=an

en(ψ
′(ann )−ε)( kn−

an
n ) =

d2nδe−1∑
k=0

e(ψ
′(ann )−ε)k =

e(ψ
′(ann )−ε)d2nδe − 1

e(ψ
′(ann )−ε) − 1

.

We now observe that |ψ′
(
an
n

)
− ψ′(α)| < ε

2 , so ψ′
(
an
n

)
+ ε

2 < ψ′(α) + ε < 0 and

e(ψ
′(ann )+ ε

2
)d2nδe−1 → 0

as n → ∞. Proceeding similarly we obtain a lower bound. Since ε > 0 can be chosen
arbitrarily small, the result follows.

To prove the case when ψ′(γ) = 0, we proceed as previously and write

ψ(x) = ψ(y) + ψ′(y) (x− y) +

(
1

2
ψ′′(y) +R(x, y)

)
(x− y)2

where R(x, y) → 0 as |x − y| → 0. Fix ε > 0 sufficiently small that ψ′′(γ) + ε < 0,
and choose δ > 0 sufficiently small that |R(x, y)| < ε and |g(x) − g(y)| < ε for all
|x− y| < 2δ. As before, suppose that |g(x)| < M and |h(x)| < m for x ∈ [α− δ, β + δ],
that ψ(γ) > ψ(x)+η for |γ−x| > δ and that εn <

ε
2m for all n. Then, setting cn = bγnc
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if γ ∈ (α, β), cn = an if γ = α, and cn = bn if γ = β,

bn−1∑
k=an

(1 + εn(k))g

(
k

n

)
enψ( kn)

= enψ( cnn )
bn−1∑
k=an

(1 + εn(k))g

(
k

n

)
en(ψ( kn)−ψ( cnn ))

= enψ( cnn )

cn−dnδe−1∑
k=an

(1 + εn(k))g

(
k

n

)
en(ψ( kn)−ψ( cnn ))

+

cn+dnδe∑
k=cn−dnδe

(1 + εn(k))g

(
k

n

)
en(ψ( kn)−ψ( cnn ))

+

bn−1∑
k=cn+dnδe+1

(1 + εn(k))g

(
k

n

)
en(ψ( kn)−ψ( cnn ))

 ,

where, as before, the first and last sums are bounded above by (bn − an)(1 + ε)Me−nη

and

(1− ε)
(
g
(cn
n

)
− ε
) cn+dnδe∑
k=cn−dnδe

e
n
(
ψ′( cnn )( kn−

cn
n )+( 1

2
ψ′′( cnn )− ε2)( kn−

cn
n )

2
)

≤
cn+dnδe∑

k=cn−dnδe

(1 + εn(k))g

(
k

n

)
en(ψ( kn)−ψ( cnn ))

≤ (1 + ε)
(
g
(cn
n

)
+ ε
) cn+dnδe∑
k=cn−dnδe

e
n
(
ψ′( cnn )( kn−

cn
n )+( 1

2
ψ′′( cnn )+ ε

2)( kn−
cn
n )

2
)
,

As previously, we will show that for n sufficiently large, the upper sum has an upper

bound arbitrarily close to g(γ)enψ(γ)
√

2nπ
|ψ′′(γ)| . The lower sum is treated identically.

Proceeding, we have

cn+d2nδe∑
k=cn−d2nδe

e
n
(
ψ′( cnn )( kn−

cn
n )+( 1

2
ψ′′( cnn )+ ε

2)( kn−
cn
n )

2
)

=

d2nδe∑
k=−d2nδe

eψ
′( cnn )k+

ψ′′( cnn )+ ε2
2n

k2 = eznu
2
n

d2nδe∑
k=−d2nδe

e−zn(k−un)
2

,

where zn =

∣∣∣∣ψ′′( cnn )+ ε
2

2n

∣∣∣∣ and un =
ψ′( cnn )
2zn

.
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We analyze the latter sum via Poisson’s summation formula [13], which tells us that
for an integrable function f with Fourier transform f̂ ,

∞∑
k=−∞

f(k) =
∞∑

k=−∞
f̂(k).

Applying this with f(x) = e−zn(x−un)
2

gives

∞∑
k=−∞

e−zn(k−un)
2

=

∞∑
k=−∞

√
π

zn
e−iunk+

k2

4zn .

Now, for k 6= 0,

lim
n→∞

∣∣∣∣√ π

zn
e−iunk+

k2

4zn

∣∣∣∣ = 0,

whereas, since ψ is twice continuously differentiable (and thus ψ′ is Lipschitz), there
exists a constant L such that

|znu2n| =
4n|ψ′

(
cn
n

)
− ψ′(γ)|∣∣ψ′′ ( cnn )+ ε

2

∣∣ ≤ 4Ln
∣∣∣cn
n
− γ
∣∣∣2 ,

which thus vanishes as n→∞, provided
∣∣ cn
n − γ

∣∣� 1√
n

.

Since ε and δ may be chosen arbitrarily small, the result follows provided

bδnc∑
k=−bδnc

e−zn(k−un)
2 ∼

∞∑
k=−∞

e−zn(k−un)
2
.

To see this, we first observe that

0 ≤
∞∑

k=bδnc+1

e−zn(k−un)
2

=

∞∑
k=1

e−zn(bδnc2+(k−un)2+2bδnc(k−un))

< e−znbδnc
2+2znunbδnc

∞∑
k=1

e−zn(k−un)
2

and, similarly,

0 ≤
−bδnc−1∑
k=−∞

e−zn(k−un)
2
< e−znbδnc

2−2znunbδnc
−1∑

k=−∞
e−zn(k−un)

2

Thus,

0 ≤
−bδnc−1∑
k=−∞

e−zn(k−un)
2

+

∞∑
k=bδnc+1

e−zn(k−un)
2

< e−znbδnc
2+2zn|un|bδnc

( ∞∑
k=−∞

e−zn(k−un)
2 − 1

)
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so that

0 ≤ 1−
∑bδnc

k=−bδnc e
−zn(k−un)2∑∞

k=−∞ e
−zn(k−un)2

< e−znbδnc
2+2zn|un|bδnc

(
1− 1∑∞

k=−∞ e
−zn(k−un)2

)
,

and, since znn
2 � n, whereas zn|un|n =� n

∣∣ cn
n − γ

∣∣ = o(
√
n), the right hand side tends

to 0 as n→∞.

Remark 4. We note that provided α < β (resp. α < γ < β) and the function g is bounded
on some fixed interval containing [α, β], then the error in (i) and (ii) is independent of
bn and β or an and α respectively. Similarly, the bound in (iii) is independent of either
endpoint.

Corollary 1. Let ψ(x) = V (x), g(x) =
√

µ(x)
λ(x)

λ(0)
µ(0) and

εn(k) = enV
(n)(k)−nV ( kn)− 1

2(f( kn)−f(0)) − 1.

Then g(x) is continuous,

enV
(n)(k) = (1 + εn(k))g

(
k

n

)
enψ( kn),

and, from Lemma A.1, for any positive integers a < b,

|εn(k)| <
supx∈[ an ,

b
n ] |f

′′(x)|(b− a)

n3
, (8)

which we note is uniform in k. The first two assertions then follow from the corresponding
parts of the Proposition.

The third statement follows immediately upon observing that

enV
′(ann ) ∼ eV ′(0)an =

(
µ(0)

λ(0)

)an
.

B.2 Proofs for §2.3

Proposition 4. Since the process can only change by increments of ±1, for any m and j,
we have

Pm
{
T
(n)
j < T

(n)
m+

}
=


µm

λm+µm
Pm−1

{
T
(n)
j < T

(n)
m

}
if j < m, and

λm
λm+µm

Pm+1

{
T
(n)
j < T

(n)
m

}
if j > m.

=


µm

λm+µm
enV

(n)(m−1)∑m−1
k=j enV

(n)(k)
if j < m, and

λm
λm+µm

enV
(n)(m)∑m−1

k=m enV
(n)(k)

if j > m.
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Taking m = bνnc and j = bξnc, we are thus left with the task of estimating the sums

bνnc−1∑
k=bξnc

en(V
(n)(k)−V (n)(bνnc−1)) and

bξnc−1∑
k=bνnc

en(V
(n)(k)−V (n)(bνnc−1)),

using Corollary 1, where V (x) − V (ν) finds its maximum at either ξ or ν , and this
maximum occurs at either the right or left side of the interval of interest, [ξ, ν] or [ν, ξ],
depending on where ξ lies.

Now, given that V (x) is convex with a minimum at κ, and V (0) = 0, there exists a
unique ν ′ 6= ν such that V (ν ′) = V (ν). If ξ < ν < κ < ν ′ or ξ < ν′ < κ < ν, the interval
is [ξ, ν], the maximum occurs at x = ξ and

bνnc−1∑
k=bξnc

en(V
(n)(k)−V (n)(bνnc−1)) ∼

√
µ(ξ)
λ(ξ)

λ(ν)
µ(ν)e

n
(
V
(
bξc
n

)
−V
(
bνc
n

))
1− µ(ξ)

λ(ξ)

,

whereas if ν < κ < ν ′ < ξ or ν ′ < κ < ν < ξ, the interval is [ν, ξ], the maximum occurs
at x = ξ and

bξnc−1∑
k=bνnc

en(V
(n)(k)−V (n)(bνnc−1)) ∼

√
µ(ξ)
λ(ξ)

λ(ν)
µ(ν)e

n
(
V
(
bξc
n

)
−V
(
bνc
n

))
1− λ(ξ)

µ(ξ)

.

If if ν < ξ < ν ′ or ν ′ < ξ < ν, the maximum is at x = ν whereas the interval is [ν, ξ] or
[ξ, ν] respectively, and one has

bνnc−1∑
k=bξnc

en(V
(n)(k)−V (n)(bνnc−1)) ∼ 1

1− µ(ν)
λ(ν)

,

and
bξnc−1∑
k=bνnc

en(V
(n)(k)−V (n)(bνnc−1)) ∼ 1

1− λ(ν)
µ(ν)

,

respectively.

Proposition 5. Since the process X(n)(t) is Markov, for any integer k, each excursion
from k is an independent renewal, and thus the number of returns prior to hitting zero

has a geometric distribution with success parameter Pk
{
T
(n)
0 < T

(n)
k+

}
:

Pm
{
N

(n)
k (T

(n)
0 ) = l

∣∣∣T (n)
bνnc < T

(n)
0

}
= Pk

{
T
(n)
0 < T

(n)
k+

}(
1− Pk

{
T
(n)
0 < T

(n)
k+

})l−1
with mean

Em
[
N

(n)
k (T

(n)
0 )

∣∣∣T (n)
bνnc < T

(n)
0

]
=

1

Pk
{
T
(n)
0 < T

(n)
k+

} .
The result follows taking k = bνnc, and using the asymptotic for Pbνnc

{
T
(n)
0 < T

(n)
k+

}
from the previous proposition with ξ = 0, recalling that V (0) = 0.
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B.3 Proofs for §2.4

Proposition 6. The proof presented here is based upon the treatment given for the Moran
model in [9]. We first observe that the hitting time of 0 or bκnc is the sum of the time

spent in all in-between states prior to T
(n)
bκnc, so that

Em
[
T
(n)
bκnc

∣∣∣T (n)
bκnc < T

(n)
0

]
=

bκnc−1∑
k=1

Em
[
S
(n)
k (T

(n)
bκnc)

∣∣∣T (n)
bκnc < T

(n)
0

]
=

1

λk + µk
Em
[
N

(n)
k (T

(n)
bκnc)

∣∣∣T (n)
bκnc < T

(n)
0

]
,

as 1
λk+µk

is the expected time spent in state k, which is exponentially distributed with
parameter λk + µk.

Now, N
(n)
m (T

(n)
bκnc) has a modified geometric distribution:

Pm
{
N

(n)
k (T

(n)
bκnc) = l

∣∣∣T (n)
bκnc < T

(n)
0

}

=



Pm
{
T
(n)
bκnc < T

(n)
k

∣∣∣T (n)
bκnc < T

(n)
0

}
if l = 0, and

Pm
{
T
(n)
k < T

(n)
bκnc

∣∣∣T (n)
bκnc < T

(n)
0

}
× Pk

{
T
(n)
bκnc < T

(n)
k+

∣∣∣T (n)
bκnc < T

(n)
0

}
×
(

1− Pk
{
T
(n)
bκnc < T

(n)
k+

∣∣∣T (n)
bκnc < T

(n)
0

})l−1 if l ≥ 1,

which has mean
Pm
{
T
(n)
k < T

(n)
bκnc

∣∣∣T (n)
bκnc < T

(n)
0

}
Pk
{
T
(n)
bκnc < T

(n)
k+

∣∣∣T (n)
bκnc < T

(n)
0

} .
Now, if we specialize to the case when m = 1, then the process must pass through k en
route to bκnc, so

P1

{
T
(n)
k < T

(n)
bκnc

∣∣∣T (n)
bκnc < T

(n)
0

}
= 1

Moreover, conditional on T
(n)
bκnc < T

(n)
0 , starting from k, T

(n)
bκnc < T

(n)
k+ if and only if a

birth occurs and the process hits bκnc prior to k:

Pk
{
T
(n)
bκnc < T

(n)
k+

∣∣∣T (n)
bκnc < T

(n)
0

}
=

λk
λk + µk

Pk+1

{
T
(n)
bκnc < T

(n)
k

∣∣∣T (n)
bκnc < T

(n)
0

}
so that

E1

[
T
(n)
bκnc

∣∣∣T (n)
bκnc < T

(n)
0

]
=

bκnc−1∑
k=1

1

λkPk+1

{
T
(n)
bκnc < T

(n)
k

∣∣∣T (n)
bκnc < T

(n)
0

}
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whereas

Pk+1

{
T
(n)
bκnc < T

(n)
k

∣∣∣T (n)
bκnc < T

(n)
0

}
=

Pk+1

{
T
(n)
bκnc < T

(n)
k

}
Pk+1

{
T
(n)
bκnc < T

(n)
0

} ,
since

{
T
(n)
bκnc < T

(n)
k

}
⊆
{
T
(n)
bκnc < T

(n)
0

}
, as to reach 0 from k+ 1, the process must pass

via k.
Now, Proposition 2 and its proof tell us that Pk+1

{
T
(n)
bκnc < T

(n)
0

}
tends to 1 as

k → ∞, and, moreover, that this convergence is uniform in n. We may thus apply
Lemma A.3, to conclude that

E1

[
T
(n)
bκnc

∣∣∣T (n)
bκnc < T

(n)
0

]
∼
bκnc−1∑
k=1

1

λkPk+1

{
T
(n)
bκnc < T

(n)
k

}
We now observe that

Pk+1

{
T
(n)
bκnc < T

(n)
k

}
= h

(n)
bκnc,k(k + 1) =

enV
(n)(k)∑bκnc−1

j=k enV
(n)(j)

,

which, by Corollary 1 is asymptotically equivalent to 1 − µ( kn)
λ( kn)

, so recalling that λk =

λ
(
k
n

)
k,

bκnc−1∑
k=1

1

λkPk+1

{
T
(n)
bκnc < T

(n)
k

} ∼ bκnc−1∑
k=1

1(
λ
(
k
n

)
− µ

(
k
n

))
k
.

The latter is the Riemann sum for the integral of 1
(λ(x)−µ(x))x over [0, κ], but this integral

diverges at both endpoints. To deal with this, first observe that, using Taylor’s theorem,
we may write

λ(x)− µ(x) = λ(0)− µ(0) + (λ′(0)− µ′(0) + r(x))x,

where r(x)→ 0 as x→ 0 and

λ(x)− µ(x) = (λ′(κ)− µ′(κ))(x− κ) + (λ′′(κ)− µ′′(κ) +R(x))(x− κ)2,

for a continuous function R(x) such that R(x)→ 0 as x→ κ. Then, for arbitrary ε > 0,
we can choose n sufficiently large that

λ(0)− µ(0) < λ
(
k
n

)
− µ

(
k
n

)
< λ(0)− µ(0) + ε

for all k ≤ n
lnn and

(λ′(κ)− µ′(κ))
(
k
n − κ

)
− ε < λ

(
k
n

)
− µ

(
k
n

)
< (λ′(κ)− µ′(κ))

(
k
n − κ

)
+ ε
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for all bκnc −
⌊
n

lnn

⌋
≤ k < bκnc, and split the sum in three:

b n
lnnc∑
k=1

1(
λ
(
k
n

)
− µ

(
k
n

))
k

+

bκnc−b n
lnnc−1∑

k=b n
lnnc+1

1(
λ
(
k
n

)
− µ

(
k
n

))
k

+

bκnc−1∑
k=bκnc−b n

lnnc

1(
λ
(
k
n

)
− µ

(
k
n

))
k
.

For the first sum, we have that

1

λ(0)− µ(0) + ε

b n
lnnc∑
k=1

1

k
≤
b n

lnnc∑
k=1

1(
λ
(
k
n

)
− µ

(
k
n

))
k
≤ 1

λ(0)− µ(0)

b n
lnnc∑
k=1

1

k
,

whereas
b n

lnnc∑
k=1

1

k
= ln

⌊ n

lnn

⌋
+ γ + εb n

lnnc,

where γ is the Euler-Mascheroni constant and εb n
lnnc ∼

1
2b n

lnnc
.

Similarly,

1

(λ′(κ)− µ′(κ)) + ε)κ

bκnc−1∑
k=bκnc−b n

lnnc

1

k − κn
≤

bκnc−1∑
k=bκnc−b n

lnnc

1(
λ
(
k
n

)
− µ

(
k
n

))
k

≤ 1

(λ′(κ)− µ′(κ))− ε)(κ− δ)

bκnc−1∑
k=bκnc−b n

lnnc

1

k − κn

and,
bκnc−1∑

k=bκnc−b n
lnnc

1

k − κn
= −

b n
lnnc∑
k=1

1

k + κn− bκnc
.

Since 0 ≤ κn− bκnc < 1,

b n
lnnc∑
k=1

1

k + 1
<

b n
lnnc∑
k=1

1

k + κn− bκnc
≤
b n

lnnc∑
k=1

1

k

Finally, to deal with the middle sum, we first note that

d

dx

1

(λ(x)− µ(x))x
= −(λ′(x)− µ′(x))x+ λ(x)− µ(x)

(λ(x)− µ(x))2x2

is bounded on any closed interval in (0, κ) and tends to +∞ at 0, where it is decreasing,
and at κ, where it is increasing; in particular, on

[
1

lnn , κ−
1

lnn

]
the derivative is bounded

above by its values at the endpoints, which are bounded above by

supx∈[0,κ]−(λ′(x)− µ′(x))x

min{λ(0)− µ(0), (λ′(κ)− µ′(κ))κ}
(lnn)2.
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Thus, applying Lemma A.1, we have that∣∣∣∣∣∣∣
bκnc−b n

lnnc−1∑
k=b n

lnnc+1

1(
λ
(
k
n

)
− µ

(
k
n

))
k
−
∫ 1

n(bκnc−b n
lnnc)

1
n(b n

lnnc+1)

dx

(λ(x)− µ(x))x

∣∣∣∣∣∣∣
≤

supx∈[0,κ]−(λ′(x)− µ′(x))x

min{λ(0)− µ(0), (λ′(κ)− µ′(κ))κ}
(lnn)2

2n

Moreover,

0 ≤
∫ 1

n(bκnc−b n
lnnc)

1
n(b n

lnnc+1)

dx

(λ(x)− µ(x))x
≤
∫ κ− 1

lnn

1
lnn

dx

(λ(x)− µ(x))x
,

and, since r(x) and R(x) are continuous, and thus bounded on [0, κ],∫ κ
2

1
lnn

dx

(λ(x)− µ(x))x
−
∫ κ

2

1
lnn

dx

(λ(0)− µ(0))x
=

∫ κ
2

1
lnn

λ′(0)− µ′(0) + r(x)

(λ(0)− µ(0))(λ(x)− µ(x))
dx

and∫ κ− 1
lnn

κ
2

dx

(λ(x)− µ(x))x
−
∫ κ− 1

lnn

κ
2

dx

(λ′(κ)− µ′(κ))κ(x− κ)

=

∫ κ
2

1
lnn

λ′′(κ)− µ′′(κ) +R(x)

(λ′(κ)− µ′(κ))κh(x)
dx

are bounded, where

h(x) =

{
(λ(x)−µ(x))x

(x−κ) for x 6= κ, and

(λ′(κ)− µ′(κ))κ for x = κ.

Finally, we observe that∫ κ
2

1
lnn

dx

(λ(0)− µ(0))x
+

1

λ(0)− µ(0)

(
ln
κ

2
− ln

(
1

lnn

))
and ∫ κ− 1

lnn

κ
2

dx

(λ′(κ)− µ′(κ))κ(x− κ)
=

1

(λ′(κ)− µ′(κ))κ

(
ln

(
1

lnn

)
− ln

κ

2

)
,

so that the middle sum is � ln lnn.
Since the choice of ε is arbitrary, the result follows.

Proposition 7. We begin with a pair of lemmas:
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Lemma B.1. The logistic process conditioned on the event T
(n)
0 < T

(n)
M is a Markov

birth and death process with transition rates

λ̃
(n)
k = λ

(n)
k

h
(n)
0,M (k + 1)

h
(n)
0,M (k)

and µ̃
(n)
k = µ

(n)
k

h
(n)
0,M (k − 1)

h
(n)
0,M (k)

,

In particular, taking M = bνnc for κ < ν < η, we have that

lim
n→∞

λ̃
(n)
k = µ(0)k and lim

n→∞
µ̃
(n)
k = λ(0)k

Proof. This is a special case of Doob’s h-transform [8].

Lemma B.2. Let
τ
(n)
M (m) = Em

[
T
(n)
0

∣∣∣T (n)
0 < T

(n)
M

]
.

Then,

τ
(n)
M (m) =

m∑
k=1

M−1∑
j=k

1

λ̃
(n)
j

j∏
l=k

λ̃
(n)
l

µ̃
(n)
l

Proof. For m < M the function τ
(n)
M satisfies the recurrence relation

τ
(n)
M (m) =

1

λ̃
(n)
m + µ̃

(n)
m

+
λ̃
(n)
m

λ̃
(n)
m + µ̃

(n)
m

τ
(n)
M (m+ 1) +

µ̃
(n)
m

λ̃
(n)
m + µ̃

(n)
m

τ
(n)
M (m− 1),

with boundary τ
(n)
M (0) = 0, whilst

τ
(n)
M (M − 1) =

1

µ̃
(n)
M−1

+ τ
(n)
M (M − 2).

Solving the recurrence equation gives the result. As previously, we refer to [12] for a
detailed treatment.

The proof consists in showing that the sum

bκnc−1∑
j=i

1

λ̃
(n)
j

j∏
k=i

λ̃
(n)
k

µ̃
(n)
k

is uniformly bounded in n, so that we can apply Lemma A.2 to interchange sum and
limit to obtain

lim
n→∞

τ
(n)
bκnc(m) =

m∑
k=1

∞∑
j=k

1

µ(0)j

(
µ(0)

λ(0)

)j
=

1

µ(0)

m∑
k=1

∞∑
j=k

∫ µ(0)
λ(0)

0
xj−1 dx

=
1

µ(0)

m∑
k=1

∫ µ(0)
λ(0)

0

xk−1

1− x
dx =

1

µ(0)

∫ µ(0)
λ(0)

0

1− xm

(1− x)2
dx.
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First,

j∏
l=k

λ̃
(n)
l

µ̃
(n)
l

=

j∏
l=k

λ
(n)
l

µ
(n)
l

j∏
l=k

h
(n)
0,bκnc(l + 1)

h
(n)
0,bκnc(k − 1)

=

k−1∏
l=1

µ
(n)
l

λ
(n)
l

j∏
l=1

λ
(n)
l

µ
(n)
l

h
(n)
0,bκnc(j + 1)h

(n)
0,bκnc(j)

h
(n)
0,bκnc(k − 1)h

(n)
0,bκnc(k − 1)

,

so, since i ≤ m, we can ignore terms in i and consider only the sum

bκnc−1∑
j=1

h
(n)
0,bκnc(j + 1)h

(n)
0,bκnc(j)

λ̃
(n)
j

j∏
k=1

λ
(n)
k

µ
(n)
k

=

bκnc−1∑
j=1

(h
(n)
0,bκnc(j))

2

λ
(n)
j

e−nV
(n)(j)

≤ 2(∑bκnc−1
k=0 enV

(n)(k)
)2 bκnc−1∑

j=1

1

λ
(n)
j

bκnc−1∑
k=j

en(2V
(n)(k)−V (n)(j))

≤ 2

λ(0)
(∑bκnc−1

k=0 enV
(n)(k)

)2 bκnc−1∑
j=1

bκnc−1∑
k=j

enV
(n)(k).

Now, by Lemma A.1, nV (n)(k) ≤ n
∫ k
n
0 f(x) dx+ f

(
k
n

)
− f(0), whereas, by the interme-

diate value theorem for integrals, we have

n

∫ k
n

0
f(x) dx = f(zk,n)i

for some zk,n ∈ [0, kn ]. Now, fix 0 < ε < κ. Provided k ≤ bνnc for 0 < ν < η, either
k
n < ε, in which case f(zk,n) < f(ε) < 0, or

f(zk,n)ε < f(zk,n)
k

n
=

∫ k
n

0
f(x) dx < min

{∫ ε

0
f(x) dx,

∫ ν

0
f(x) dx

}
< 0,

and thus, ρ := supn f(zk,n) < 0.
Now 0 ≤ f

(
k
n

)
− f(0) ≤ f(ν)− f(0), so if

an,k =

{∏k
j=1

µj
λj

if k ≤ bνnc, and

0 otherwise
,

then an,k ≤ ef(ν)−f(0)eρi, and eρ < 1, so

1 ≤
bνnc−1∑
k=j

enV
(n)(k) ≤

∞∑
k=j

ef(ν)−f(0)eρk =
ef(ν)−f(0)

1− eρ
eρj ,

and the sum above is bounded, independently of n.
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Proposition 8. We first observe that the time to extinction is simply the time spent in
all states k > 0:

Em
[
T
(n)
0

]
=
∞∑
k=1

Em
[
S
(n)
k (T

(n)
0 )

]
=
∞∑
k=1

1

λk + µk
Em
[
N

(n)
k (T

(n)
0 )

]
,

as 1
λk+µk

is the expected time spent in state k per visit, and, by definition, N
(n)
k (T

(n)
0 ) is

the total number of visits to k prior to extinction. As before, N
(n)
k (T

(n)
0 ) has a modified

geometric distribution with mean

Pm
{
T
(n)
k < T

(n)
0

}
Pk
{
T
(n)
0 < T

(n)
k+

} .
For the denominator, the process can only fail to return to k if the next event is a

death and the process hits 0 prior to hitting k:

Pk
{
T
(n)
0 < T

(n)
k+

}
=

µk
λk + µk

Pk−1
{
T
(n)
0 < T

(n)
k

}
=

µk
λk + µk

enV
(n)(k−1)∑k−1

j=0 e
nV (n)(j)

.

We first note that in light of (8), there is a bound εn that tends to 0 as n→∞ such
that ∣∣∣∣∣∣∣∣

enV
(n)(k−1)√

µ( k−1
n )

µ(0)
λ(0)

λ( k−1
n )

enV ( k−1
n )
− 1

∣∣∣∣∣∣∣∣ < εn

uniformly in k.
Now, fix some small δ > 0 such that V (δ) > V (κ). We consider the sum in k in two

parts, k ≤ bδnc, and k > bδnc. We first consider the latter.
As we observed in Remark 4, since V (0) > V (k−1n ) and k > bδnc,∣∣∣∣∣∣∣

∑k−1
j=0 e

nV (n)(j)

1

1−µ(0)
λ(0)

− 1

∣∣∣∣∣∣∣ < ηn,

where ηn → 0 as n→∞, independently of k. Thus,

Pk
{
T
(n)
0 < T

(n)
k+

}
∼
(

1− µ(0)

λ(0)

)√
µ
(
k−1
n

)
µ(0)

λ(0)

λ
(
k−1
n

)enV ( k−1
n )

uniformly in i.
For the numerator, from Proposition 2, we know that

Pm
{
T
(n)
k < T

(n)
0

}
∼ 1−

(
µ(0)

λ(0)

)m
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if m < ηn, whereas

lim
n→∞

Pm
{
T
(n)
k < T

(n)
0

}
= 0

otherwise, again uniformly in k.
Thus, since µk = nµ

(
k
n

)
k
n , −V (x) is maximized at x = κ, and µ(κ) = λ(κ), from

Proposition 1 we have

∞∑
k=bδnc+1

1

λk + µk
Em
[
N

(n)
k (T

(n)
0 )

]

∼
1−

(
µ(0)
λ(0)

)m
1− µ(0)

λ(0)

bηnc∑
k=bδnc+1

e−nV ( k−1
n )

nµ
(
k
n

)
k
n

√
µ( k−1

n )
λ( k−1

n )
λ(0)
µ(0)

∼

√√√√ 2π

n
(
µ′(κ)
µ(κ) −

λ′(κ)
λ(κ)

) µ(0)

λ(0)

1−
(
µ(0)
λ(0)

)m
1−

(
µ(0)
λ(0)

) e−nV (κ)

µ(κ)κ
(

1− λ(0)
µ(0)

) .
Finally, we observe that for k ≤ bδnc,

Pm
{
T
(n)
k < T

(n)
0

}
≤ 1,

whereas, since V (n)(j) < 0,

k−1∑
j=0

enV
(n)(j) ≤ k − 1 ≤ δn.

Moreover, since λ and µ are, respectively, decreasing and increasing,

enV
(n)(k−1) ≥

√
µ
(
k−1
n

)
µ(0)

λ(0)

λ
(
k−1
n

)enV ( k−1
n )(1− εn) ≥ enV (δ)(1− εn),

so that
bδnc∑
k=1

1

λk + µk
Em
[
N

(n)
k (T

(n)
0 )

]
≤ (δn)2

µ(0)(1− εn)
e−nV (δ),

which is asymptotically smaller than the sum over k > bδnc.

Corollary 4. By the strong Markov property, each excursion starting from state k is
independent. Thus, conditional on nk visits to k, the time spent in k after each return is
a sum of nk independent exponentially distributed random variables with rate λk + µk
i.e., a gamma-distributed with shape and rate parameters nk and λk+µk: the probability
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that the total time is in [t, t+ dt) is

∫ t

0

∫ t−t1

0
· · ·
∫ t−t1−t2−···−tnk−2

0

nk−1∏
j=1

(λk + µk)e
−(λk+µk)tj

× (λk + µk)e
−(λk+µk)(t−t1−t2−···−tnk−1) dt1dt2 · · · dtnk−1

=
(λk + µk)

nk

(nk − 1)!
tnk−1e−(λk+µk)t.

Now, we observed above that the number of visits to k prior to extinction, N
(n)
k (T

(n)
0 ),

has a modified geometric distribution, with probability Pm
{
T
(n)
k < T

(n)
0

}
of reaching

k prior to extinction, and return probability Pk
{
T
(n)
0 < T

(n)
k+

}
. The former gives the

probability that L
(n)
k (T

(n)
0 ) > 0, whereas summing over the distribution of N

(n)
k (T

(n)
0 )

the probability that L
(n)
k (T

(n)
0 ) ∈ [t, t+ dt) is

Pm
{
T
(n)
k < T

(n)
0

}(
1− Pk

{
T
(n)
0 < T

(n)
k+

})
×

∞∑
nk=1

(λk + µk)
nk

(nk − 1)!
tnk−1e−(λk+µk)tPk

{
T
(n)
0 < T

(n)
k+

}nk−1
= Pm

{
T
(n)
k < T

(n)
0

}
(λk + µk)

(
1− Pk

{
T
(n)
0 < T

(n)
k+

})
e
−(λk+µk)

(
1−Pk

{
T

(n)
0 <T

(n)
k+

})
t
.

The result then follows using the asymptotic approximations of the previous proof.

Proposition 9. Proceeding as previously, we have that

E1

[
T
(n)
bνnc

∣∣∣T (n)
bνnc < T

(n)
0

]
∼
bνnc−1∑
k=1

1

λkPk+1

{
T
(n)
bνnc < T

(n)
k

}
and

Pk+1

{
T
(n)
bνnc < T

(n)
k

}
=

1∑bνnc−1
j=k en(V

(n)(j)−V (n)(k))
.

Recall, ν ′ 6= ν is the unique value such that V (ν ′) = V (ν). Then, for k < bν ′nc,
V
(
j
n

)
− V

(
k
n

)
is maximized at j = k, whereas for bν ′nc < k < bνnc, it is maximized

at j = bνnc − 1.
We thus have

Pk+1

{
T
(n)
bνnc < T

(n)
k

}
∼ 1−

µ
(
k
n

)
λ
(
k
n

)
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for k < bν ′nc, whereas for bν ′nc < k < bνnc,

1

Pk+1

{
T
(n)
bνnc < T

(n)
k

} ∼
√

µ(ν)λ( kn)
λ(ν)µ( kn)

e
n
(
V
(
bνnc
n

)
−V ( kn)

)

1− λ(ν)
µ(ν)

We now split the sum over k at bν ′nc. Then,

bν′nc−1∑
k=1

1

λkPk+1

{
T
(n)
bνnc < T

(n)
k

} ∼ bν′nc−1∑
k=1

1(
λ
(
k
n

)
− µ

(
k
n

))
i
,

whereas

λ(0)− µ(0) ≤ λ
(
k

n

)
− µ

(
k

n

)
≤ λ(ν)− µ(ν),

so, as previously,

1

λ(ν)− µ(ν)
≤ lim inf

n→∞

1

ln(ν ′n)

bν′nc−1∑
k=1

1

λkPk+1

{
T
(n)
bνnc < T

(n)
k

}
≤ lim sup

n→∞

1

ln(ν ′n)

bν′nc−1∑
k=1

1

λkPk+1

{
T
(n)
bνnc < T

(n)
k

} ≤ 1

λ(0)− µ(0)
.

On the other hand, we observe that for x ∈ [ν ′, ν], V (ν) − V (x) is maximized at
x = κ, so that, applying Proposition 1, we have

bνnc−1∑
k=bν′nc

1

λkPk+1

{
T
(n)
bνnc < T

(n)
k

} ∼ bνnc−1∑
k=bν′nc

e
n
(
V
(
bνnc
n

)
−V ( kn)

)
nλ
(
k
n

) (
k
n

) (
1− λ(ν)

µ(ν)

)
∼
√√√√ 2π

n
(
µ′(κ)
µ(κ) −

λ′(κ)
λ(κ)

)
√

µ(ν)
λ(ν)

λ(κ)
µ(κ)e

n
(
V
(
bνnc
n

)
−V (κ)

)

λ(κ)κ
(

1− λ(ν)
µ(ν)

) .

The result follows on observing that λ(κ) = µ(κ).

Proposition 10. As previously, we have that

Ebνnc
[
T
(n)
bκnc

]
=

∞∑
k=bκnc+1

1

n(λk + µk)

Pbνnc
{
T
(n)
k < T

(n)
bκnc

}
Pk
{
T
(n)
bκnc < T

(n)
k+

} .

Now,

Pbνnc
{
T
(n)
k < T

(n)
bκnc

}
=


1 if bκnc < k ≤ bνnc, and∑bνnc−1

j=bκnc e
nV (n)(j)∑k−1

j=bκnc e
nV (n)(j)

if bνnc < k,
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whereas
Pk
{
T
(n)
bκnc < T

(n)
k+

}
=

µk
λk + µk

Pk−1
{
T
(n)
bκnc < T

(n)
k

}
and

Pk−1
{
T
(n)
bκnc < T

(n)
k

}
=

enV
(n)(k−1)∑k−1

j=bκnc e
nV (n)(j)

.

Thus, for k > bνnc,

1

n(λk + µk)

Pbνnc
{
T
(n)
k < T

(n)
bκnc

}
Pk
{
T
(n)
bκnc < T

(n)
k+

} =

∑bνnc−1
j=bκnc e

nV (n)(j)

nµkenV
(n)(k−1)

∼

√
µ(ν)λ( k−1

n )
λ(ν)µ( k−1

n )
e
n
(
V
(
bνnc
n

)
−V ( k−1

n )
)

µ
(
k−1
n

)
k
(

1− λ(ν)
µ(ν)

)
since V is minimized at κ. Moreover, as µ(x) and λ(x) are, respectively, increasing and
decreasing, the latter is bounded above by

e
n
(
V
(
bνnc
n

)
−V ( k−1

n )
)

(µ(ν)− λ(ν))ν
.

Further,

V

(
bνnc
n

)
−V

(
k − 1

n

)
= −V ′(z)

(
k − 1

n
− bνnc

n

)
< −V ′

(
bνnc
n

)(
k − 1

n
− bνnc

n
L

)
for some z ∈

[
bνnc
n , k−1n

]
; the inequality follows since V ′′(x) > 0 for all x. Thus,

∞∑
k=bνnc

e
n
(
V
(
bνnc
n

)
−V ( k−1

n )
)
< e

V ′
(
bνnc
n

) ∞∑
k=0

e
−V ′

(
bνnc
n

)
k

=
e
V ′
(
bνnc
n

)
1− e−V

′
(
bνnc
n

) ,
since ν > κ and V ′(κ) = 0. In particular, we see that the sum

∞∑
k=bνnc+1

1

n(λk + µk)

Pbνnc
{
T
(n)
k < T

(n)
bκnc

}
Pk
{
T
(n)
bκnc < T

(n)
k+

}
is bounded above.

Finally, consider
bνnc∑

k=bκnc+1

1

nµkPk−1
{
T
(n)
bκnc < T

(n)
k

} .
Arguing as above,

Pk−1
{
T
(n)
bκnc < T

(n)
k

}
∼ 1

1− λ( k−1
n )

µ( k−1
n )

∼ 1

1− λ( kn)
µ( kn)

,
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and, proceeding as in Proposition 6, one can show that

bνnc∑
k=bκnc+1

1(
λ
(
k
n

)
− µ

(
k
n

))
k
∼ − 1

(λ′(κ)− µ′(κ))κ
lnn.

Proposition 11. To begin, we decompose the expectation according to whether, starting
from bνnc, the next event is a birth or a death:

Ebνnc
[
T
(n)
bνnc+

∣∣∣T (n)
bνnc+ < T

(n)
0

]
=

λbνnc

λbνnc + µbνnc
Ebνnc+1

[
T
(n)
bνnc

∣∣∣T (n)
bνnc < T

(n)
0

]
+

µbνnc

λbνnc + µbνnc
Ebνnc−1

[
T
(n)
bνnc

∣∣∣T (n)
bνnc < T

(n)
0

]

=
λbνnc

λbνnc + µbνnc

∞∑
k=bνnc+1

Pbνnc+1

{
T
(n)
k < T

(n)
bνnc

∣∣∣T (n)
bνnc < T

(n)
0

}
nµkPk−1

{
T
(n)
bνnc < T

(n)
k

∣∣∣T (n)
bνnc < T

(n)
0

}
+

µbνnc

λbνnc + µbνnc

bνnc−1∑
k=1

Pbνnc−1
{
T
(n)
k < T

(n)
bνnc

∣∣∣T (n)
bνnc < T

(n)
0

}
nλkPk+1

{
T
(n)
bνnc < T

(n)
k

∣∣∣T (n)
bνnc < T

(n)
0

} .
For the first sum, we observe that for any k ≥ bνnc,

Pk
{
T
(n)
bνnc < T

(n)
0

}
= 1,

and we may thus replace the conditional probabilities with the unconditional ones. Then,
using (2.2),

Pbνnc+1

{
T
(n)
k < T

(n)
bνnc

}
Pk−1

{
T
(n)
bνnc < T

(n)
k

} = en(V
(n)(bνnc)−V (n)(k)),

so that, using Lemma 1, the first sum is asymptotic to

µ(ν)

µ(ν) + λ(ν)

1

(µ(ν)− λ(ν))ν
.

For the second sum, we observe that{
T
(n)
bνnc < T

(n)
k

}
∩
{
T
(n)
bνnc < T

(n)
0

}
=
{
T
(n)
bνnc < T

(n)
k

}
,

whereas

Pbνnc−1
{
T
(n)
k < T

(n)
bνnc, T

(n)
bνnc < T

(n)
0

}
= Pbνnc−1

{
T
(n)
k < T

(n)
bνnc

}
Pk
{
T
(n)
bνnc < T

(n)
0

}
,
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so that, applying Bayes’ theorem,

Pbνnc−1
{
T
(n)
k < T

(n)
bνnc

∣∣∣T (n)
bνnc < T

(n)
0

}
Pk+1

{
T
(n)
bνnc < T

(n)
k

∣∣∣T (n)
bνnc < T

(n)
0

} =
Pbνnc−1

{
T
(n)
k < T

(n)
bνnc

}
Pk
{
T
(n)
bνnc < T

(n)
0

}
Pk+1

{
T
(n)
bνnc < T

(n)
k

} .

Again, from (2.2), we see that

Pbνnc−1
{
T
(n)
k < T

(n)
bνnc

}
Pk+1

{
T
(n)
bνnc < T

(n)
k

} = enV
(n)(bνnc−1)−V (n)(k)),

so this sum reduces to

bνnc−1∑
k=1

Pk
{
T
(n)
bνnc < T

(n)
0

}
nλk

enV
(n)(bνnc−1)−V (n)(k)).

To evaluate the sum, it is useful to consider it in two pieces. To do so, we first
re-introduce ν ′ < κ such that V (ν ′) = V (ν), and then consider

bν′nc−1∑
k=1

Pk
{
T
(n)
bνnc < T

(n)
0

}
nλk

enV
(n)(bνnc−1)−V (n)(k))

+

bνnc−1∑
k=bν′nc

Pk
{
T
(n)
bνnc < T

(n)
0

}
nλk

enV
(n)(bνnc−1)−V (n)(k)).

For the former, V (n)(bνnc − 1) − V (n)(k)) is maximized at k = bν ′nc − 1, whereas

Pk
{
T
(n)
bνnc < T

(n)
0

}
us bounded above by 1. Using Lemma 1, the first sum is asymptoti-

cally bounded above by

1(
λ
(
bν′nc−1

n

)
− µ

(
bν′nc−1

n

))
(bν ′nc − 1)

√√√√√µ
(
bνnc−1

n

)
λ
(
bν′nc−1

n

)
λ
(
bνnc−1

n

)
µ
(
bν′nc−1

n

) .
For the second piece, we note that for bν ′nc ≤ k < bν ′nc, Pk

{
T
(n)
bνnc < T

(n)
0

}
∼ 1,

whereas V (n)(bνnc− 1)−V (n)(k)) is maximized at bκnc, so appealing to Lemma 1, it is
asymptotically equivalent to√√√√ 2π

n
(
µ′(κ)
µ(κ) −

λ′(κ)
λ(κ)

) µ(ν)

λ(ν)

e
n
(
V
(
bνnc
n

)
−V (κ)

)
λ(κ)κ

The result follows.
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