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We extend the Moment Propagation method to capture the combined effects of adsorp-
tion/desorption of charged tracers, their migration under local and applied electric fields, as well as
their advection by the local velocity of the fluid. This is achieved by combining previous develop-
ments for the separate description of these phenomena, in particular taking advantage of the Lattice
Boltzmann Electrokinetics method to capture electrokinetic effects in the underlying fluid. We vali-
date the method on the case of dispersion by an electro-osmotic flow in a slit-pore with charged walls
and counterions in the absence of added salt. We compute the velocity auto-correlation function of
charged and neutral tracers, from which we extract their average mobility and dispersion coefficient.
Analytical results for the former allow to validate the algorithm, while the latter illustrates an ex-
ample of property which can be provided by the Moment Propagation method when no analytical
results are available. For both properties, we discuss the combined effects of the surface charge, of
the tracer valency and of the adsorption/desorption rates.

INTRODUCTION

The dynamics of ions at charged solid /liquid interfaces,
in particular in porous media, results from the complex
interplay between diffusion, advection by the fluid flow
and electrostatic interactions. In turn, the motion of ions
also influences the local charge distribution, hence the
electrical force acting on the fluid. Such electrokinetic
effects, which are encountered from energy conversion
exploiting couplings on the scale of interfaces [1, 2] to
large scales applications in Earth Sciences [3] have been
the subject of extensive theoretical and numerical stud-
ies (see e.g. Refs [4-10]) and a number of simulation
tools have been proposed to model them at various lev-
els, from the molecular to the macroscopic ones (see e.g.
Refs. [11, 12] for reviews).

It has also become obvious recently that the behaviour
of charged solid/liquid interfaces does not only depend
on the electrostatic interactions between the ions and
the wall, but also on their chemical nature, which mod-
ifies their short-range interactions, e.g. via the solvation
properties of the ions.[13, 14] Molecular simulations have
clarified such ion-specific effects, as well as the conse-
quences on the electrokinetic effects on both hydrophilic
and hydrophobic surfaces.[15] Details of the electronic
properties of the walls also have strong effects on the in-
teraction with solutes: Density Functional Theory (DFT)
calculations suggest for example that differences in the
interactions between the hydroxide ions and either car-
bon or boron nitride nanotubes, which have the same
geometry but different electronic structures [16], may be
at the origin of the dramatically different hydrodynamic
behaviour observed on larger scale for the flow of water
through these tubes.[17, 18] At a more coarse-grained

level, specific effects can be introduced in mean-field the-
ories such as Poisson-Boltzmann via Potentials of Mean
Force (PMF) which can be computed using molecular
simulations.[19]

Even without electrokinetic couplings, specific effects
play an important role on the dynamics of charged
species. For example, the diffusion of ions in porous ma-
terials depends not only on their charge but also on their
chemical nature. An illustration can be found e.g. with
the different properties of Na™ and Cs™ tracers in clays,
which go beyond their different behaviour in the bulk.[20]
Of course, charged tracers also experience the effects of
hydrodynamics and electrokinetic couplings in the fluid
as a whole, in addition to their own dynamics and interac-
tions with the solid surfaces. This is exploited in practice
in analytical chemistry e.g. in chromatography or elec-
trophoresis experiments.[21] It is well known e.g. in the
chemical engineering community that even in the case
of uncharged solids and solutes, the coupling between
pore-scale motion and surface adsorption may result in
intricate macroscopic transport properties [22]. Surface
charge and charged solutes only increase the difficulty to
understand and predict the emerging behaviour.

At the coarse-grained or macroscopic levels, specific
interactions with the surfaces are usually introduced via
adsorption and desorption reactions, with corresponding
rates. Such reactions are usually assumed to be of first-
order, even though in principle the description can be
improved to account for more complex features such as
the saturation of surface sites. In the present work, we
describe a numerical scheme which allows the simulation
of mobile tracers evolving under the combined effects of
diffusion, advection by the flow, migration under local
electric field and adsorption/desorption with the surface.



We combine previous developments for the separate de-
scription of these phenomena, in particular taking ad-
vantage of the Lattice Boltzmann Electrokinetics (LBE)
method to capture electrokinetic effects in the under-
lying fluid.[23—29] The Moment Propagation (MP) ap-
proach [30-36] is not limited to the mere computation of
average fluxes but allows the computation of observables
which reflect the statistical properties, averaged over all
possible trajectories, of their dynamics, such as their ve-
locity auto-correlation function (VACF).

Section presents the theoretical basis for the descrip-
tion of the transport of solvent and ions as well as their
adsorption/desorption at solid/liquid interfaces. The
lattice-based algorithms are then presented in Section .
Section finally considers the case of dispersion by an
electro-osmotic flow in a slit-pore with charged walls and
counterions in the absence of added salt, for which some
properties can be determined analytically. The algorithm
is validated by examining the average velocity of tracers
as a function of surface charge, of the tracer valency and
of the adsorption/desorption rates. We then illustrate
the ability of the MP method to estimate properties for
which no analytical results are available, by considering
their dispersion coefficient.

ELECTROKINETIC AND
ADSORPTION/DESORPTION EQUATIONS

The dynamics of ions in a solvent is governed by several
processes, such as diffusion, migration under the effect of
the local or an external electric field and advection by
the flowing fluid. These phenomena can be encompassed
in a conservation equation for the ionic densities pi as a
function of position r and time ¢:

Opr(r,t)+V-[pr(r,t)u(r,t) + SDrqrepr(r,t)E +jk(r,(t)]

1)
where u is the local velocity of the fluid, 8 = 1/kgT
with kp Boltzmann’s constant and T the temperature,
Dy, is the diffusion coefficient of species k, ¢ its valency,
e the elementary charge and E the applied electric field.
Finally, ji is the flux in response to local thermodynamic
forces, which can be written for dilute enough solutions
as:

jk(r’t) = _ﬁkak(ra t)v:uk(rvt) (2)

where py the local chemical potential. Separating the
ideal and excess contributions, i = kT In(pr/pf)+p5",
the fluxes simplify to

jk(rﬂt) = _Dkka(rvt) - ﬁkak(r,t)V,u?”(r,t) (3)

Finally, if solutes interact only via electrostatic interac-
tions, at the mean-field level the excess chemical potential
is simply the product of the charge gre and 1 the local

electrostatic potential, solution of the Poisson equation:

> akpr(r;t) (4)
k

e

AY(r,t) = —

€0Ey

with €9 the vacuum permittivity and e, the dielectric
constant of the solvent. Summarizing, and dropping the
explicit space- and time-dependence, this leads to the
Nernst-Planck equation:

Oipr+V-[pru — D Vpr + BDrqrepr (E — V)] =0 (5)

Finally, the dynamics of the fluid is governed by the
Navier-Stokes equation for the velocity u(r,t):

Ou+u-Vu=nAu — Z ok Vg + £ (6)
k

with 7 the fluid viscosity, f&** the external force density
and where the first term in the right hand side corre-
sponds to the thermodynamic force, which can be ex-
pressed as a pressure gradient using the Gibbs-Duhem
equation. Separating again the ideal and excess parts in
the chemical potential, in the case where ui® = gqret,
and collecting the latter with the contribution of the ex-
ternal force, we recover the usual electric force density
e Xk arpr) (E = V).

The combination of the Poisson (4), Nernst-Planck (5)
and Navier-Stokes (6) equations provides a simple yet
reasonably accurate description of the coupled ionic and
solvent dynamics, provided that the above-mentioned as-
sumptions apply. They must be supplemented by elec-
trostatic and hydrodynamic boundary conditions. We
will focus here on fixed surface charge density oe (with
o per unit surface), which may in principle depend on
the position on the surface, and no-slip (u = 0) at the

uid-solid interface.

We will further investigate the dynamics of charged
tracers within such an ionic solution. Tracers follow the
same evolution equation (5) as the major ions, i.e. ex-
perience diffusion, advection and migration, but they do
not influence in return the electrostatic potential ¥ or
the fluid velocity u (or the other ionic densities). How-
ever, we will also consider the adsorption and desorption
of such tracers at the surface of solid walls. Introducing
'y the surface concentration of species k (length=2) and
assuming first-order kinetics for both processes, the evo-
lution of the adsorbed and mobile tracers at the surfaces
follow:

8tFk(r, t) = —dek<I', t) + k:apk(r, t) (7)

with kg (time™!) and k, (length-time~!) are the desorp-
tion and adsorption rates, respectively. In equilibrium,
this results in the Henry law adsorption isotherm.
These coupled non-linear equations, namely (4-6) for
the dynamics of the major species and of the fluid



and (5)4(7) for the adsorbing/desorbing charged trac-
ers should then be solved, in general numerically, to pre-
dict the evolution of the system. At this mean-field level,
however, such a solution does not provide information on
the dynamics of individual tracers and how they explore
the fluid and the interface under the combine effects of
all microscopic processes. Here we extend the Moment
Propagation method, which allows the computation of
observables which reflect the statistical properties, aver-
aged over all possible trajectories, of their dynamics, such
as their velocity auto-correlation function (VACF).

ALGORITHMS

Lattice-Boltzmann Electrokinetics

Previous work, cited in the introduction and below,
have demonstrated the power of lattice-based method
to achieve both goals, namely solving the electrokinetic
equations as well as computing statistical properties over
individual trajectories. Central to these descriptions are:
(a) the probability distribution f(r,v,t) for finding a par-
ticle with a given velocity at a given position and a given
time; (b) the spatio-temporal discretization of the evolu-
tion equation for this quantity, which is also associated
with a discretization of the velocity-space. In a nutshell,
this requires introducing a lattice of spacing Az and a
time step At together with a set of discrete velocities {c; }
connecting nodes of the lattice. The probability distri-
bution is discretized accordingly into populations f;(r,t),
which evolve following a discretized kinetic equation of
the form:

file + eyt + At) — fi(r, t) = Ai(x, 1) . (8)

In this equation, the left-hand side corresponds to the
transport of particles to neighbouring nodes according
to their discrete velocity, while the right-hand side (col-
lision operator) accounts for the redistribution of their
velocities due to interactions within the fluid. This al-
gorithm allows to propagate the distribution function f,
from which the hydrodynamic observables (local mass
density, momentum and stress tensor) are computed as
its moments in velocity-space.

The collision operator captures interactions within the
fluids and the effect of the local force on the fluid, includ-
ing the thermodynamic forces in Eq. (6) which depends
on the local concentration of each species. The latter are
updated on the same lattice using the so-called link-flux
method of Capuani et al. [23], resulting in an evolution
of the concentrations according to Eq. (5), coupled with
that of the momentum of the fluid according to Eq. (6)
via Eq. (8). Finally, the Poisson equation (4) is solved
numerically on the same lattice using the Successive Over
Relaxation method [37]. Finally, no-slip boundary condi-
tions at the fluid-solid interface are implemented by the

bounce-back rule [38] and solute fluxes through links be-
tween fluid and solid nodes are set to zero to enforce the
no-flux boundary condition. This combination of LB and
link-flux methods has already been used succesfully to
simulated coupled electrokinetic effects in colloidal sys-
tems [23-26], channels and porous media [36, 39, 40] or
dielectric droplets under an electric field [41]. In the fol-
lowing we will consider specifically the simple case of the
electro-osmotic flow in a slit pore with charged walls,
where the fluid is driven by an applied electric field, for
which some properties can be computed analytically, of-
fering the possibility to validate the numerical results.

Moment Propagation

In order to compute the VACF of tracers within such
electrokinetic flows, we take advantage of the probabilis-
tic description underlying the LB method via the Mo-
ment Propagation (MP) approch introduced by Lowe and
Frenkel [30, 42]. Several descriptions and extensions of
this method have since been proposed for various appli-
cations, see e.g. [33, 35, 36, 43-46]. In the present work,
we show that this method can be used for charged mobile
(hence experiencing diffusion, advection and migration)
and adsorbing/desorbing species — a combination of fea-
tures which had to date not been investigated previously
despite its relevance in the many contexts described in
the introduction. We first show how the MP method
can be implemented to propagate any quantity related
to the transport of tracers under the combined effect of
all the above-mentioned processes. Then, we show how
a particular choice of propagated quantity can be made
to compute the VACF, before finally expressing averaged
quantities such as the average velocity or dispersion co-
efficient of tracers from their VACF.

We consider here the propagation of an arbitrary quan-
tity P(r,t) defined on the same lattice as the one used
for the LB/link-flux simulations. In the absence of ad-
sorption/desorption processes, it is updated in steps ac-
cording to P(r,t+ At) = P*(r,t + At) with:

P*(r,t + At) = P(r,t)

1- Zpi(r’ t)]

+ ZP(I‘ — c; At t) pi(r — c; At t)  (9)

where the sums run over discrete velocities and p;(r,t)
stands for the probability of leaving a node r with ve-
locity c¢;. The first term therfore corresponds to parti-
cles that have not left r between ¢ and t + At. All the
dynamics is then encompassed in the definition of these
probabilities, which are designed to capture the relevant



physical processes [36]:

1

1
pi(r,t) = pfd”(r, t) + Aw; {4ﬁqE cC; At +

(10)

with w; the weight associated with velocity c; in the
underlying LB lattice [47] and Apf*(r,t) = p*(r +
c;At,t) — p®(r,t) if r + c; At belongs to the fluid phase,
while p;(r,t) = 0 otherwise. The first term accounts for
advection by the fluid, whereas the term between curly
brackets is specific to the tracer and includes both the ef-
fect of diffusion and migration under the influence of the
external and internal electric fields (at the present level
of description, u®® = ¢ with g the charge of the tracer
and v the potential arising from the surface charges and
major ions). More precisely, the advective contribution
is computed from the LB populations as:

_ fz (I‘, t)
pf(r7 t)

P (x,t) —w; (11)
where p¢(r,t) = >, w;fi(r,t) is the local density of the
fluid, and the X\ parameter in Eq. (10) is related to the
diffusion coefficient D of the tracer via:

4D
c2AL

(12)

with ¢, the speed of sound associated with the LB lattice.

As a result, any property P will be propagated fol-
lowing the same dynamics as Eq. (5). We now comple-
ment this algorithm with the approach of Ref. [43] for ad-
sorption/desorption at the solid-liquid interface. To that
end, we introduce for interfacial fluid nodes a propagated
quantity Paqs(r,t) associated with adsorbed particles. It
is updated according to:

Pogs(r,t + At) = Pags(r,t)(1 — pg) + P(r, t)p,  (13)
where p, = k,At/Ax and pg = kgAt, with k, and k4 the
rates defined in Eq. (7). Conversely, the evolution of the
propagated quantity for mobile species is modified to:

P(r,t+At) = P*(r,t+At) = P(r,1)pa+Paas(r, t)pa (14)

with P* defined in Eq. (9).

The combination of Egs. (9-13) therefore corresponds
to the evolution of particles according to the coupled
diffusion-advection-migration and adsorption/desorption
equations (5) and (7) for tracers. However, one can prop-
agate properties beyond the mere density of particles.
Indeed, a proper choice of P (and corresponding P,gs),
defined by the initialization discussed below, allows the
computation of the VACF. We briefly recall here the
derivation of Ref. [36]. The starting point is the defini-
tion of the VACF for the v € {z,y, 2} component of the

1+ ePART (D)

|

velocity, which in the present case where the velocities of
particles can only assume discrete values:

Z,(t) = <vgvfy> = Z W(ro,cg)ﬂ(cmro,cg)czcg

ro,cQ/
R S
r0.cY rt

(15)

where the superscripts refer to times 0 and ¢ and the
discrete sums run over nodes and set of velocities as-
sociated with the chosen lattice. Moreover, m(r? )
is the probability of being at node r%, with velocity
) and 7(c|r%, ¢)) the probability to have a veloc-
ity ¢!, given that the particle was initially at node r°
with velocity cg (and similarly for the joint distribu-
tion in the sum over r'). Eq. 15 can be rewritten by
replacing w(r', ! %, ¢9) by the post-collisional average
m(rt, e, ) Y pilr t)ei, = w(rt, e |0, cd)ut (r,t),
with the local average tracer velocity defined by:

u*(r,t) = Z pi(r,t)c; (16)

~
~

which to first order in f§|c; - Vu®||At reduces to u*
u+ BD(qeE —Vu*) = u+ fDge(E— V). We can then
rewrite the VACF as a sum over all lattice nodes at time
t:

Zyt)=> | Y @ )Sm(r e, )| u(r,t)

t 0 0
r ro.cy

= P(rt,y)u}(r,t) (17)
r

which also defines the relevant probabilty P(r,t,~) to be
propagated for each component « of the VACF, namely
the probability to arrive at node r at time ¢, weighted
by the initial velocity of the particle. Since the particles
adsorbed at the solid-liquid interface are considered as
immobile (i.e. we neglect here surface diffusion), they do
not enter directly in u*. However, the adsorption and
desorption processes do contribute to the VACF via the
evolution of P in Eq. 17, which is coupled to that of the
corresponding Pqs — see Egs. (13) and (14). The crucial
step is then the definition of the initial values of both
propagated quantities. Specifically, this is achieved by
the following choice:

efﬁp““(rfciAt)
Ple) = 3

for all fluid (F') nodes, including interfacial (I) ones, with
(Q the partition function of the tracers, which also in-
cludes the adsorbed ones:

Q = Z e_ﬁuex(l‘) + Z e_B;J,EI(I‘) (1 + e_BAHads(l‘))

reF\I rel

pi(r — CZ‘At,O)Ci,Y (18)

(19)



where e~ PBHads = L /kqAx defines the tracer sorption
free energy. We further initialize the corresponding quan-
tity for adsorbed tracers to 0, because of their vanishing
velocity.

The initial value of the VACF is simply given by

e—Br(r)

Z,(0) = Z Tpi(lﬂ 0)ciy (20)

and subsequent values are computed with Eq. (17) where
the propagated quantity is initialized via (18) and evolved
according to Egs. (9), (13) and (14). This completes the
description of the algorithm. Note that this should be
applied separately for each direction v and of course for
each tracer, defined in the present case by its valency ¢
(which enters in ), its diffusion coefficient D (which
enters in the transition probabilities p;) and the adsorp-
tion/desorption rates k, and k4.

All the above algorithms have been implemented in the
LABOETIE code.[48]

RESULTS AND DISCUSSION

Dispersion of charged adsorbing tracers by an
electro-osmotic flow

In order to illustrate the ability of the moment propa-
gation method to capture the combined effects of adsorp-
tion/desorption, in addition to that of advection, electro-
migration and diffusion, we consider here the simple case
on which it had previously been tested in the absence
of adsorption/desorption. Specifically, we investigate
the dispersion of tracers with valency ¢ € {—1,0,+1}
by an electro-osmotic flow in a slit pore with paral-
lel walls of surface charge density ce < 0 separated
by a distance L, with monovalent counterions, as il-
lustrated in Figure 1. This system has the advan-

L/2
)o o7 ° ®
- ®
L @ Ny (2
v > (@) . |v(=z)
> Ey
® ® ; ®
o o (o ® Q D)
—I/2

FIG. 1. Electro-osmotic flow in a slit pore between negatively
charged walls.

tage, for validation purposes, that a number of prop-
erties can be computed analytically in the absence of
added salt. In particular, the electrostatic potential in
the direction perpendicular to the surfaces is given by:
Y(x) = Y(L/2) + ’CBTTln [cos?(az)/ cos®(aL/2)], with
x € [-L/2,+L/2] and where the characteristic length
a~1! is the solution of % tan % = moLlp with the Bjer-
rum length g = €2 /4mege, kpT. In the presence of an ap-
plied electric field F, parallel to the surfaces, the steady-
state profile is governed by the balance between the elec-
trostatic force ep (x)E, (since only monovalent cations
are present in the fluid) and viscous force nuy (), result-
ing in the electro-osmotic flow:

ek, N cos(aur)
cos(aL/2

uy(z) =

= 27_[_7713 ) = urefh(aj) (21)

which also defines the reference velocity u,.y =
eE,/2mnlp and the scaling function h. For small surface
charge density (L — 0), the velocity profile is almost

2
parabolic, uy(z) ~ Uyres (asL) {1 - 45—22], as in the case

of a Poiseuille flow (applied pressure gradient instead of
electric field, which corresponds of course to a different
prefactor).

Note that in the above the counterions are not subject
to adsorption/desorption, which only applies to the trac-
ers. The fraction of adsorbed tracers f,q4s (or equivalently
of mobile tracers frop = 1 — faas) depends on the surface
charge and distance between surfaces via the product oL,
as well as on their valency ¢ and the ratio k,/kqsL. More
generally, the equilibrium distribution of tracers within
the pore is given by the normalized Boltzmann weights:

B,(6) = i
M Bi©)de + i [By(Y) + By(- 1)

with § = x/L € [-1/2,41/2] and

(22)

B;(f) — e~ 1e¥()/kT _ [m] _ .

The integral in the denominator of Eq. (22) can be per-
formed analytically for ¢ € {—1,0,+1}, with the results
(14 %2aL) /(1 + cosal), 1 and #22L respectively. The
variation of the fraction of adsorbed tracers with aL and
ko /kqL will be discussed below.

From the dynamical point of view, we will analyze two
properties relevant in practice for the transport of trac-
ers, namely the average velocity and the dispersion coef-
ficient, in the direction of the flow:

1/2
By = / By(€) [BDE, + uresh(€)] d6 (24)
~1/2

and

Dyo= | T [g.0(0) — 0] oyalt) — Tyl At (25)



Both can be determined from the VACF (computed in
the following with the moment propagation method) as:

Uyq =/ Zy(c0) and:

Dy = /0 [Zy,q(t) — Zy,q(c0)] di (26)

with Zy,q(00) = limy e Zy,q(t).

Simulation parameters

We use the standard D3Q19 lattice, a cubic lattice
with 19 speeds connecting each node to the nearest and
next-nearest neighbouring nodes (and zero velocity). The

associated speed of sound is ¢ = % (%)2.[49] We use
Ny x Ny x N, =106 x 5 x 5 lattice points, with three lay-
ers of solid nodes on each side. The distance between the
solid-liquid interfaces is thus L = (N, — 6)Az = 100Azx.
Periodic boundary conditions are used in all directions.
The relaxation time in the collision operator of the LB
scheme is chosen as 7 = At (with At the time step); this
corresponds to a kinematic viscosity v = %AA—:’;. The dif-
fusion coefficient of the counterions and all the tracers is
D = 0.O5AA—zt27 which ensures that the Schmidt number
Sc=v/D is large, as in the case for small ions in water.
In order to resolve the variations of the electrostatic po-
tential, ionic concentrations and velocities over a distance
a1, we use a lattice spacing Az = 2.5 5. Since the Bjer-
rum length in water at room temperature is Iz ~ 7A, the
distance between walls is L = 100Az ~ 175 nm. Simula-
tions are performed for 4 surface charge densities, namely
2NmNyO'A$2 = —0.1,-1.0,—2.0 and —5.0 corresponding
to oL = 0.96,2.29,2.63 and 2.91. For each case, the
electric field is applied in the y direction with magnitude
BeE, Az = 0.0 to 0.15 in reduced units.

Finally, once the steady-state is reached in each case
with LBE, the populations f; are used in the moment
propagation for 3 different tracers with valency ¢ €
{-1,0,+1} to obtain the corresponding VACFs, from
which the average velocity v, , and dispersion coefficient
D, , are obtained as explained above. For each tracer,
4 different simulations to investigate the effect of ad-
sorption/desorption. In addition to the reference case
without adsorption (k,At/Az = 0), we consider a finite
adsorption rate k,At/Az = 107! and three desorption
rates kgAt = 10721073 and 10~%.

Fraction of adsorbed tracers

Before discussing the dynamical properties, we first
summarize the equlibrium fraction of adsorbed tracers
for the considered systems in Figure 2, which is calcu-
lated from the analytical expression Eq. (22). For given

~ 0.5 4
E
“—
OO I I | |
0.5 1.0 1.5 2.0 2.5 3.0
1.0 v v v v
@ 4 A A 4
% 0 5 - (kaAt/Arv det)
«2 ®(1071,1072) A (1071,107%) v (101,107
& - - -
00 | 1 1 1
0.5 1.0 1.5 2.0 2.5 3.0
1.0 v
=
|
~— 0.5 4
E
g
0.0 T T T
0.5 1.0 1.5 2.0 2.5 3.0

FIG. 2. Fraction of adsorbed tracers f,4s with valency ¢ = +1
(top), 0 (middle) and -1 (bottom), as a function of el which
quantifies the strength of electrostatic interactions with the
walls (see section ). In each panel, we consider a finite ad-
sorption rate kqAt/Az = 107" and three desorption rates:
kqAt = 1072 (red), 107 (blue) and 10™* (green). In the last
case simulated in the present work (without adsorption), ob-
viously fads = 0 regardless of the tracer valency (not shown).
The lines are computed from Eq. (22) and the symbols indi-
cate the values of aL corresponding to the simulated systems.

electrostatic conditions (fixed aL), f,qs increases with in-
creasing k,/kq for all tracers. For fixed k,/kq, the vari-
ation with of f,4s with the electrostatic conditions de-
pends on the valency of the tracer: f,4s does not depend
on aL for neutral tracers, while for the present case of a
negatively charged surface it increases (resp. decreases)
with aL for cations (resp. anions). This is a direct con-
sequence of the effect of the surface charge density on the
concentration of mobile tracers at the surface, which are
in equilibrium with the adsorbed ones.



Electro-osmotic flow profile

Figure 3a reports the electro-osmotic flow profile for an
applied electric field Be 5, Az = 0.1 and a surface charge
density 2N, N,0Az? = —2.0. Together with the above
simulation parameters, this corresponds to aL = 2.63.
As expected from previous work on a nearly identical
system[36], the LBE results are in excellent agreement
with the analytical solution Eq. (21). The fluid velocity
is maximal near the center and more inhomogeneous near
the walls (where it vanishes). Figure 3b then shows the
variation of the average velocity:

1 L2
u= —/ uy(x) do (27)
LJ 1)

with u, () given by Eq. 21, as a function of aL. As ex-
pected, the average electro-osmotic flow increases with
increasing surface charge density. In particular, it van-
ishes as uref% in the limit of small surface charges
(aL — 0).

Average tracer velocity

Figure 4 indicates the average velocity v, 4 of tracers
with valency ¢ € {—1,0,1} as a function of the Péclet
number Pe = @L/D with @ the average fluid velocity,
for a surface charge density corresponding to aL. = 2.63
and adsorption/desorption rates (k,At/Ax, ksAt) =
(1071,1073). We first note that the excellent agreement
between the simulation (LBE/MP) results and the ana-
lytical solution Eq. (24) for all tracers. Even though the
average velocity depends only on the limit of the VACF
at long times, this provides a first validation of the pro-
posed MP algorithm combining electrokinetics and ad-
sorption/desorption. We further note that the latter de-
creases the average velocity, by an amount which depends
on the charge of the tracer. More precisely, it follows
from Egs. (22) and (24) that the average velocity is sim-
ply equal to the product of the average velocity without
adsorption/desorption (previously studied in Ref. [36])
and the fraction of mobile tracers, fop =1 — faqs. The
proportionality between the average tracer velocity and
average fluid velocity suggests to investigate how the ra-
tio Uy 4/t depends on the surface charge and the adsorp-
tion properties. This is illustrated in Figure 5. The good
agreement with analytical results in all cases (varying oL,
q, ko and kg) further validates the present MP scheme.

In the simpler case of neutral tracers, the average
tracer velocity without adsorption is equal to the average
fluid velocity. In the presence of adsorption, the ratio
Uy 0/t is independent of the surface charge and simply
equal to the fraction of mobile tracers, which decreases
as kq increases for fixed k,. Similarly, the ratio v, /4
also decreases with increasing adsorption in the case of
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FIG. 3. (a) Electro-osmotic flow profile in a slit pore with
uniformly charged walls and no added salt (counterions only,
in the presence of an applied electric field along the sur-
faces (see text for details). The Lattice-Boltzmann Elec-
trokinetics simulations, normalized by the reference velocity
Uref = eFEy/2mnlp, are compared with the analytical solu-
tion Eq. (21). (b) Average fluid velocity @, normalized by the
reference velocity ures, as a function of aL.

positive and negative tracers. However, the behaviour is
more complicated since the mobile fraction as well as the
distribution of charged tracers within the pores (hence
the flow) depends on the surface charge.

For positive tracers, which are located closer to the
surface where the fluid is slower than near the center of
the pore, the ratio 0, 11/t decreases with increasing sur-
face charge («L). This ratio is larger than 1 for small
surface charge, because the motion of the counterions
(¢ = +1) is dominated by the direct effect of the electric

field. Specifically, in this regime vy 41 ~ BDekE,, while

Y
2
T ~ 2?5;‘3 (0‘1]“2) so that their ratio diverges as (aL)~2.

It gradually vanishes as the surface charge increases, be-
cause the motion becomes dominated by the advection by
the electro-osmotic flow, which is more efficient for the
fluid as a whole than for the cations located on average
closer to the surface.
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FIG. 4. Average tracer velocity, adimensionalized as a Péclet
number ¥y,,L/D as a function of the actual Péclet num-
ber Pe = uL/D with @ the average fluid velocity, for trac-
ers with valency ¢ € {—1,0,1}, for a surface charge den-
sity corresponding to aL = 2.63 and adsorption/desorption
rates (koAt/Az, kgAt) = (1071,107%). The simulation re-
sults (symbols) are compared to the analytical results Eq. (24)
(solid line). In each case, the analytical solution without ad-
sorption (dashed line).

In contrast, co-ions (¢ = —1) are located on average
closer to the center of the pore and the direct effect of
the electric field is to drive them in the direction oppo-
site to the electro-osmotic flow. As a result, the ratio
Ty,—1/U is negative for small surface charge and diverges
as —(aL)™2 for aL — 0, but is positive for large oL
as the motion of co-ions becomes dominated by advec-
tion by the electro-osmotic flow. This ratio tends to 1
as al — m regardless of adsorption, since the fraction
of mobile co-ions also goes to 1 in this limit where both
Uy,—1 and u are dominated by the flow near the center of
the pore.

Dispersion coefficient

Due to their diffusion in the direction perpendicular to
the surface, tracers experience various streamlines with
different velocities. The adsorption/desorption processes
also participate in the dispersion since they offer other
possibilities for tracers to adopt different states (here the
adsorbed species are considered as immobile, but surface
diffusion would also contribute). The dispersion coeffi-
cient in the direction of the flow, D,,, normalized by the
diffusion coefficient D, as a function of the Péclet num-
ber @aL/D, is shown for tracers with ¢ € {—1,0,1}, for a
surface charge density corresponding to aL = 2.63.

In this geometry, for all cases the dispersion coefficient
increases quadratically with the Péclet number uL/D,
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FIG. 5. Average tracer velocity 0,4, normalized by the aver-
age flow velocity u, for charged adsorbing tracers with valency
q = +1 (top), 0 (middle) and -1 (bottom), as a function of
the strength of electrostatic interactions with the walls (aL).
In each case, simulation results (symbols) for various adsorp-
tion/desorption rates are compared with the anaytical results
Eq. (24) (lines).

more precisely as:

% = fmob + f(aL,q) x Pe? (28)
which defines the prefactor f(«L,q) which also depends
on the adsorption/desorption rates k, and ky. While
in the absence of electric field (E, = 0) the dispersion
coefficient is simply D, = fiopD, this is not the case in
the presence of an applied field. Following De Leebeck
and Sinton for the case of a cylindrical channel [50], we
obtained in Ref. [36] the expression for the dispersion
coefficient for a slit pore in the no-adsorption case:

1/2

faL g ks =0) = — / A€ B, (€)g4(6)x

—1/2

§ ! 1 5, 1" 1" 1"
| a5 | ae B )gq(ﬁ( ))
29

where g,(§) = [uy () + 8DgeE, — v, 4]/t measures the
local deviation from the average velocity. The simulation
results reported as symbols in Figure 6 are in good agree-
ment with this analytical result, reported as the dashed
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FIG. 6. Dispersion coefficient, normalized by the diffusion
coefficient, D, ,L/D as a function of the Péclet number
uL/D, for tracers with valency ¢ € {—1,0,1}, for a sur-
face charge density corresponding to aL = 2.63, without ad-
sorption (dashed lines) and with adsorption/desorption rates
(ko At/ Az, kgAt) = (1071,1073) (solid lines). The simulation
results are shown as symbols, while the lines correspond to the
quadratic form Eq. (28). In this equation, the value at zero-
field fmob = 1 — fads corresponds to Figure 2; the curvature is
known analytically in the no-adsorption case, see Eq. (29) and
fitted numerically in the presence of adsorption/desorption.
Results of this fitting are discussed in Figure 7.

lines. In this no-adsorption case, counterions (¢ = +1)
are more dispersed than neutral tracers (¢ = 0) because
they are mainly located near the walls, where the velocity
profile is more inhomogeneous (see Figure 3). The oppo-
site behaviour is observed for co-ions (¢ = —1), which are
mainly located near the center where the flow is more ho-
mogeneous.

In the general case with adsorption, Eq. (29) does
not apply, and the “curvature” f(aL,q) must be deter-
mined numerically by fitting the simulation results to
Eq. (28). Note that in each case the only fitting param-
eter is f(aL,q) since fmop =1 — fads is known indepen-
dently (see Figure 2). The solid lines in Figure 6 illus-
trate in this particular case that the behaviour remains
indeed quadratic with applied field (hence Pe) and that
the effect of adsorption depends strongly on the valency
of the tracer. For example, in this case dispersion is
increased by adsorption/desorption for neutral and neg-
ative tracers, while it is decreased for positive ones. This
dependence is shown in more detail in Figure 7 which re-
ports f(aL,q) for the same adsorption/desorption rates
as for the discussion of the average velocity (Figure 5).
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FIG. 7. Prefactor of the dispersion coefficient vs Péclet num-
ber, f(aL, q) defined by Eq. (28), for ¢ = +1 (top), 0 (middle)
and -1 (bottom). In the no-adsorption case (black), simula-
tion results are compared to the analytical expression Eq. 29
(solid line). The other simulation results are for finite ad-
sorption rate kqoAt/Azxr = 107! and three desorption rates:
kqaAt = 1072 (red), 1072 (blue) and 10™* (green). The
dashed-lines are only guide for the eyes.

It is less easy to understand than the average velocity,
which boils down to the combined effects of the fraction
of mobile species and their individual mobility.

In the limit of small surface charges (oL — 0) where
the flow profile is almost parabolic and where the tracer
distribution is (almost) flat even for charged tracers, one
recovers the result for a Poiseuille flow, namely f = 210
Already in this regime the effect of adsorption/desorption
is not simple: Consistently with the analytical result for
Taylor-Aris dispersion by a Poiseuille flow [51-53], f does
not vary monotonically with e.g. decreasing desorption
rate k4 at fixed adsorption rate k,. In this case (without
any effect of charge), it further depends separately on the
ratios kq/kqL and D/kgL? [22]. In the present case of
charged tracers and electro-osmotic flows, the situation is
even more complicated, even though one can note similar




trends for all tracers in the limit oL — 0.

For very large surface charge densities (oL — ), f
tends to decrease with increasing a. for both co- and
counterions, because their distribution becomes increas-
ingly concentrated near or away from the surface, respec-
tively, while the electro-osmotic velocity profiles becomes
flatter near the center (which also explains the less pro-
nounced decrease of f for neutral tracers). For counteri-
ons (resp. co-ions), this is likely due to the fact that the
fraction of mobile tracers then becomes very small (resp.
large), see Figure 2, so that the average velocity becomes
dominated by adsorbed (resp. mobile) tracers, which
have the same vanishing (resp. large) velocity. In the
cases with smaller desorption rates kg, this decrease with
alL is observed for relatively small values in the case of
co-ions (g = +1), it is preceded for counter-ions (¢ = —1)
by an increase with o, and is almost not visible for neu-
tral tracers. For the largest desorption rate, one observes
for all tracers a maximum as a function of aL. Overall,
the interplay between adsorption/desorption, migration
and advection by the electro-osmotic flow results in a
very rich behaviour of the dispersion coefficient — more
difficult to interpret than the average mobility. This un-
derlines the usefulness of a numerical simulation tool to
investigate the combined effects of all processes.

CONCLUSION

We have extended the Moment Propagation (MP)
method to capture the combined effects of adsorp-
tion/desorption of charged tracers, their migration under
local and applied electric fields, as well as their advec-
tion by the local velocity of the fluid. This was achieved
by combining previous developments for the separate de-
scription of these phenomena, in particular taking ad-
vantage of the Lattice Boltzmann Electrokinetics method
to capture electrokinetic effects in the underlying fluid.
For validation purposes, we examined the simple case of
dispersion by an electro-osmotic flow in a slit-pore with
charged walls and counterions in the absence of added
salt, for which some properties can be determined an-
alytically. We computed with MP the velocity auto-
correlation function (VACF) of charged and neutral trac-
ers, from which we extracted their average mobility and
dispersion coefficient. Comparison with analytical results
for the former allowed to validate the algorithm; the dis-
persion coefficient then illustrates an example of property
which can be provided by the MP method when no ana-
lytical results are available. For both properties, we dis-
cussed the combined effects of the surface charge, of the
tracer valency and of the adsorption/desorption rates.

Beyond the average velocity and dispersion coefficent,
the VACF is also related to the time-dependent diffusion
coefficient D(t). This is of particular interest in porous
materials since it reflects how each tracer explores the
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porosity accessible to it (which depends on its valency in
charged porous materials) and can be measured experi-
mentally using NMR [54]. As also mentioned previously,
the MP method is not limited to the VACF and can be
used e.g. to compute NMR spectra of species diffusing
in porous materials [55]. The present algorithm allows
the computation of such properties for charged species
undergoing adsorption/desorption, migration and advec-
tion, in simple geometries as presented here but also in
more complex media. Finally, we note that we have con-
sidered here the coupling of adsorption/desorption with
transport of charged tracers only, so that these processes
do not influence the dynamics of the underlying fluid.
While in the present case of steady-state in an infinite
slit pore this would only result in the renormalization
of the surface charge density, this is not true in general
and a richer behaviour is expected, especially in the tran-
sient regime. In order to do this and hence describe the
interplay between adsorption/desorption and electroki-
netic effects, the present development of the MP method
would need to be also extended to the Lattice-Boltzmann
Electrokinetics scheme.
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