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ARTICLE

All-optical control of long-lived nuclear spins in
rare-earth doped nanoparticles
D. Serrano1, J. Karlsson1, A. Fossati1, A. Ferrier1,2 & P. Goldner1

Nanoscale systems that coherently couple to light and possess spins offer key capabilities for

quantum technologies. However, an outstanding challenge is to preserve properties, and

especially optical and spin coherence lifetimes, at the nanoscale. Here, we report optically

controlled nuclear spins with long coherence lifetimes (T2) in rare-earth-doped nanoparticles.

We detect spins echoes and measure a spin coherence lifetime of 2.9 ± 0.3 ms at 5 K under

an external magnetic field of 9 mT, a T2 value comparable to those obtained in bulk rare-earth

crystals. Moreover, we achieve spin T2 extension using all-optical spin dynamical decoupling

and observe high fidelity between excitation and echo phases. Rare-earth-doped nano-

particles are thus the only nano-material in which optically controlled spins with millisecond

coherence lifetimes have been reported. These results open the way to providing quantum

light-atom-spin interfaces with long storage time within hybrid architectures.
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Quantum systems with spin qubits that can be optically
controlled allow efficient qubit initialization and readout,
and quantum gate operations1. Moreover, photonic

quantum states can be mapped to and/or entangled with spin
qubits for storage and processing2–4. Such schemes are investi-
gated in solid-state systems like colour centres in diamond,
quantum dots in semi-conductors, and rare-earth-doped crystals.
Targeted applications include quantum memories for light2,5,6 or
microwave photons7, and quantum processors1. In this respect,
crucial advances are expected at the nanoscale that include single
qubit control and readout8, multiple qubit gate operation1,9, and
extremely sensitive and localized sensing and imaging10. Strongly
enhancing light–matter interactions using nano- or micro-
cavities11,12, or coupling different quantum systems to build
hybrid devices with an optical interface13,14 are other attractive
possibilities. Optical control of spins can also be useful in
nanoscale systems. Optical excitations are faster than direct radio-
frequency (RF) excitations because they take advantage of strong
optical transitions15, while ensuring spatial selectivity because of
light’s much shorter wavelength. It may also lead to simpler
fabrication of devices by avoiding incorporating antennas in
proximity to the spins.

However, coherence lifetimes are often significantly shortened
in nano-materials16,17, impairing their use for quantum tech-
nologies. Indeed, surface effects, and/or high concentration of
defects or impurities due to the synthesis process can cause strong

dephasing mechanisms16. The latter can be partially cancelled in
nanostructures embedded in bulk crystals11,18. For rare earths,
this approach has led to promising demonstrations, including
single spin coherent control19 and quantum storage20. However,
freestanding nanoparticles have a higher flexibility for integration
with other systems. For example, nanodiamonds containing NV
centers and rare-earth-doped nanoparticles have been integrated
in high-finesse, fibre-based micro-cavities21,22, to increase fluor-
escence rates through the Purcell effect. This enables fast single
qubit state readout or efficient single photon emission. Other
hybrid structures for quantum technologies have been proposed
like nanodiamonds deposited on an active substrate23 or inter-
acting with plasmons in metallic particles24. Furthermore,
nanoparticles could also enable photon and phonon density of
states engineering to create bandgaps and achieve longer optical
and spin population and coherence lifetimes25–27.

In the following, we investigate the nuclear spin coherence of
rare-earth dopants in nanoparticles at low temperatures. These
materials have unique properties for nanoscale systems, showing
narrow optical linewidths, down to 45 kHz at 1.3 K, and limited
spectral diffusion28. This is favourable to coupling to high-finesse
optical cavities and using electric dipole–dipole interactions for
quantum gate implementation. In these nanoparticles, we now
demonstrate nuclear spin coherence lifetimes from 1.3 ± 0.2 ms
up to 8.1 ± 0.6 ms in Eu3+-doped Y2O3 nanoparticles using a
fully-optical protocol, which includes spin echo and spin
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Fig. 1 All-optical nuclear spin coherence investigation in 151Eu3+-doped Y2O3 nanoparticles. a 151Eu3+ ground-state hyperfine structure in Y2O3. Two-color
laser pulses (at ω1 and ω2 frequencies) resonant with the 7F0→5D0 transition at 580.883 nm create coherent states between the ± 1=2ij and ± 3=2ij
nuclear spin levels. ± excij represents the excited state hyperfine levels. b Optical transmission spectrum after optical pumping. Ground-state population
initialization to ± 1=2ij corresponds to a lower transmission at ω1. High transmission (~95%) at 0 (ω2) and 33.99MHz (ω3) evidences efficient population
depletion in the ± 3=2ij and ± 5=2ij levels. ωopt= 516.098 THz (580.883 nm). c All-optical spin-echo sequence with heterodyne detection. Each sequence
is preceded by optical pumping and followed by chirped pulses to reset the spin population to equilibrium. d Fast Fourier transform of the heterodyne signal
revealing the spin echo at 29.34MHz
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dynamical decoupling (DD). High fidelity between excitation and
echo phases is moreover observed, as required for quantum sto-
rage. These results suggest that rare-earth-doped nanoparticles,
presenting both narrow optical and spin linewidths, could find
multiple applications in optical quantum technologies.

Results
Spin coherence in rare-earth-doped nanoparticles. Experiments
were carried out on 0.5 % Eu3+:Y2O3 nanoparticles of 400 ± 80
nm composed of 130 ± 10 nm crystallites obtained by homo-
geneous precipitation and high temperature annealing27. The
particles were placed in a cryostat in the form of a powder and
excited by laser pulses (see Methods). With a nuclear spin I= 5/2,
the 151Eu isotope presents three doubly degenerated ground-state
nuclear spin levels at zero magnetic field (Fig. 1a). To probe the
± 1=2ij $ ± 3=2ij hyperfine transition, the thermally distributed
ground-state population was first initialized by optical pumping
to the ± 1=2ij level for a subset of ions within the inhomogen-
eously broadened optical absorption line (Fig. 1b). Spin coherent
states were subsequently created and rephased following an all-
optical spin-echo sequence29,30, using two-color pulses at fre-
quencies ω1 and ω2 (Fig. 1c). A weak single-frequency pulse was
applied at time 2τ with frequency ω2 to convert the spin coher-
ence into an optical coherence at ω1. This resulted in a beating at
ω2–ω1 on the photodiode signal that was revealed with a signal to
noise ratio (SNR) of about 10 by a fast Fourier transform (FFT) as
displayed in Fig. 1d.

The spin-echo sequence was first used to determine the
inhomogeneous broadening of the ± 1=2ij $ ± 3=2ij transition,
which was found equal to 107 ± 8 kHz (Fig. 2a). This value,
identical to that reported on Y2O3:Eu3+ bulk crystals31 and
ceramics32, reflects the high crystalline quality of the particles.
The decay of the spin-echo amplitude as a function of the
increasing pulse separation reveals a coherence lifetime of 1.3 ±
0.2 ms (Fig. 2b), corresponding to a homogeneous linewidth Γh=
(π T2)−1 of 250 Hz. This spin coherence lifetime is one order of
magnitude lower compared to Eu3+:Y2O3 bulk transparent
ceramics (T2= 12 ms32) and Eu3+:Y2SiO5 bulk single crystals
(T2= 19 ms33). In contrast, the nanoparticles’ optical coherence
lifetime is two orders of magnitude lower than the bulk values:
T2opt= 7 µs28 versus T2opt= 1.1 ms (C. W. Thiel, personal
communication). Thus, the spin coherence is much more
preserved when scaling down in size than the optical coherence.
This is consistent with a previous analysis in which we proposed
that optical dephasing is mainly due to perturbations related to
surface electric charges28. These charges have,however, little
influence on nuclear spin transitions as the ratio between optical
and nuclear Stark coefficients is expected to be about 5 orders of
magnitude34. This suggests that magnetic perturbations are
responsible for the dephasing of the spin transition. Indeed,
under a weak magnetic field, the homogeneous linewidth
decreases and reaches 110 Hz at 9 mT (Fig. 2c). This variation
can be modelled by magnetic dipole–dipole interactions between
Eu3+ spins and defects carrying electron spins (Fig. 2c and
Supplementary Discussion). A small magnetic field reduces the
dipole–dipole interaction Hamiltonian to secular terms, which in
turn reduces Eu3+ spin frequency shifts due to defect spin flips
and, therefore, dephasing. Quantitative analysis was performed
assuming that Eu3+ spin dephasing is due to frequency shifts
following a Gaussian distribution. The inferred defect concentra-
tion, 6.4 × 1017 cm−3 or 25 ppm relative to Y, also indicates that
spin T2 could be increased in higher quality samples35.

All-optical spin dynamical decoupling. A well-known approach
to control dephasing is DD36. Here, a train of π pulses is applied

to refocus frequency shifts due to fluctuations that are slow
compared to the pulse separation. This principle was applied but
with π pulses corresponding to two-color laser pulses instead of
the usual RF ones33. To the best of our knowledge this the first
demonstration of an all-optical spin DD. A crucial point for DD,
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Fig. 2 151Eu3+ spin inhomogeneous and homogeneous linewidths. a
Inhomogeneous linewidth of the ± 1=2ij $ ± 3=2ij spin transition obtained
by monitoring the spin-echo amplitude as a function of the frequency
detuning ω2–ω1 for a fixed time delay 2τ of 400 µs (circles). Solid line:
Lorentzian fit corresponding to a full width at half maximum of 107 ± 8 kHz.
b Spin-echo decay at zero magnetic field. A single-exponential fit yields a
coherence lifetime T2 of 1.3 ± 0.2 ms, corresponding to a Γh= 250 Hz
homogeneous linewidth. c Homogeneous linewidth evolution under an
applied external magnetic field. A fast decrease in Γh is observed for weak
fields, corresponding to a coherence lifetime increasing from 1.3 ms to 2.9
ms (Supplementary Fig. 6). Solid line: modelling by interactions with
defects carrying electron spins at a concentration of 6.4 ×1017 cm−3

(see Supplementary Discussion). Error bars and uncertainties correspond
to ±1 standard error
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is the phase coherence of the π pulses. We achieved it by gen-
erating the two frequency shifted laser beams using a single
acousto-optic modulator (AOM) and having them spatially
overlap (see Methods). This ensured a highly stable relative phase
between the two lasers beams and therefore phase coherent
excitation, rephasing, and detection of the spins coherence.

The CPMG (Carl-Purcell-Meiboom-Gill)37 DD sequence used
in our experiments is shown in Fig. 3a. Coherence lifetimes
extended by DD, T2DD, were determined by recording the spin-
echo amplitude vs. the total evolution time (n×τDD). This is
efficient in preserving coherences along the x-axis of the Bloch
sphere, but not those along the y-axis. This effect is due to the
accumulation of errors in the π pulse areas that have a larger effect
for Y coherences than for X ones. In our powder, such pulse area
errors are expected to be particularly high because of the random
light scattering and orientation of the particles, which further
increases the spread in spin Rabi frequencies. Indeed, significant

increase in coherence lifetime over the two-pulse echo value of 1.3
ms were achieved only for Y excitations (Fig. 3b). The π pulse
delay τDD was then varied, resulting in T2DD= 8.1 ± 0.6 ms for the
optimal value τDD= 300 µs, a 6-fold increase compared to the
two-pulse echo T2 (Fig. 3c). T2DD variation with τDD, shown in
Fig. 3d, can be explained by a balance between short τDD delays
implying a higher number of pulses during a given evolution time
and, therefore, accumulating pulse areas errors, and long delays
that are less efficient in refocusing fluctuations33 (see Supplemen-
tary Discussion). We also noted that applying a field of 0.7 mT
decreased T2DD, in opposition to T2 (Fig. 3e). This could be
explained by an increase in pulse errors when the transition
broadens under magnetic field (Supplementary Fig. 2).

We finally investigated the variation of spin-echo phase as a
function of the initial excitation phase in the 2 pulse and DD all-
optical sequences (see Methods). They were found to be highly
correlated, even for the DD case, in which a lower SNR was
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achieved (Fig. 4, Supplementary Fig. 7 and Supplementary Fig. 8).
This confirmed the fully coherent character of the spins driving
and detection. These experiments can also be considered as an
optical memory with spin storage, with the initial and final light
fields at ω1 being input and output signals (Figs. 1c and 3a). The
high correlations of Fig. 4 then correspond to a high phase
fidelity, an essential requirement towards an optical memory
operating at the quantum level. In this respect, further
investigations on the noise level introduced by all-optical DD
will be necessary to assert the possibility of long time high-fidelity
storage with spins. It will also be important to achieve faithful all-
optical operations on spin states for quantum memories and
processors. Suitable schemes using resonant two-color excitations
have been proposed for rare-earth-doped crystals38,39, reaching
experimental π pulse fidelity of 96%40. Similar results could be
achieved in a single Eu3+-doped nanoparticle, where interactions
between light and ions are well defined, as long as optical pulses
much shorter than the optical T2 (7 µs28), but still longer than the
inverse of the hyperfine splitting ((29 × 106)−1= 34 ns) are used.
The corresponding high Rabi frequencies could be obtained by
placing the particle in an optical micro-cavity21.

While the spin coherence lifetimes reported here are within a
factor of ten from bulk values, they could still be increased in
samples with lower content of magnetic defects or by polarising
them at lower temperatures and higher magnetic fields. More-
over, at the single particle level, T2 could be further improved by
several orders of magnitude by taking advantage of reduced

pulses area errors in DD and using clock transitions that appear
in europium and other rare-earth ions under suitable magnetic
fields41. This could open the way to nanoscale quantum
light–matter-spin interfaces, useful for quantum memories with
processing capabilities, hybrid opto-mechanical systems, or
coupling to optical micro-cavities. Nanoparticles doped with
essentially any rare-earth ion can also be synthesized in different
size, shape and layered structures, as shown by their huge
development as luminescent probes42. Although quantum grade
materials are very demanding, our results suggest that rare-earth
ion-doped nanoparticles could be an extremely versatile platform
for nanoscale quantum technologies.

Methods
Nanoparticles synthesis and structural characterization. 0.5% Eu3+:Y2O3

nanoparticles with 400 ± 80 nm average diameter and 130 ± 10 nm crystallite size
were grown by homogeneous precipitation27. An aqueous solution of Y
(NO3)3•6H2O (99.9% pure, Alfa Aesar), Eu(NO3)3•6H2O (99.99% pure, Reacton),
and urea (CO(NH2)2 > 99% pure, Sigma) was first heated at 85 °C for 24 h in a
Teflon reactor, yielding Eu3+:Y(OH)CO3.nH2O particles in suspension. The metal
and urea concentrations were 7.5 mmol L−1 and 0.5 mol L−1. After cooling to
room temperature, the carbonate particles were collected via centrifugation,
washed with distilled water once and absolute ethanol twice to remove the
byproducts, and finally dried at 80 °C for 24 h. They were calcined at 1200 °C
during 6 h (heating rate: 3 °C min−1) to obtain Eu3+:Y2O3 particles. The body-
centered cubic Y2O3 structure (Ia-3 space group) of the particles and their average
crystallite size were determined by X-ray diffraction. No evidence of other parasitic
phases was found. The morphology, size, and dispersion of the particles were
obtained by scanning electron microscopy (Supplementary Fig. 1).
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Experimental setup. The sample, consisting of an ensemble (≈1011–1012) of
particles in form of loose powder, was placed between two glass plates with a
copper spacer (~500 µm thickness) inside a He bath cryostat (Janis SVT-200). The
excitation was provided by a Sirah Matisse DS laser, with a linewidth of ~150 kHz
and operating at 516.098 THz (580.883 nm vac.) The laser beam was first sent
through a double pass AOM with central frequency of 200MHz (AA Optoelec-
tronic MT200-B100A0, 5-VIS) followed by a single pass AOM (AA Optoelectronic
MT110-B50A1-VIS) with a center frequency of 110MHz. Both AOMs were driven
by an arbitrary waveform generator (AWG) (Agilent N8242A) with 625MS s−1

sampling rate. The two-color pulses, generated by the single pass AOM, were
coupled to a single-mode fiber in order to ensure spatial overlapping. The over-
lapped beams were then focused onto the sample, within the cryostat, with a 75
mm focal length lens and the scattered light collected with a 5 mm focal length lens
mounted directly behind the sample holder. An avalanche photo diode (APD)
(Thorlabs 110 A/M) was used as detector. A scheme of the experimental setup is
displayed in Supplementary Fig. 3. The sample temperature was monitored with a
temperature sensor (Lakeshore DT-670) attached to the sample holder with
thermally conducting grease and tuned by controlling the helium gas flow and the
pressure inside the cryostat. The cryostat was operated in gas mode to maintain a
constant temperature of 5 K. Magnetic fields perpendicular to the laser beam
propagation axis were applied by means of Helmholtz coils sitting outside the
cryostat.

Two-pulse spin-echo measurements. Pulse areas in the two-pulse echo sequence
were optimized to maximize the spin-echo signal. Data presented in this work were
obtained with 100 µs-long pulses and total optical powers, P1+ P2, of the order of
120 mW, where P1 and P2 correspond to the optical powers applied to the ω1 and
ω2 transitions, respectively. Although this input power is large compared to single
crystal measurements, the scattering in the nanoparticles significantly reduces the
input power incident in the sample. The power ratio between the two laser fields P1
and P2 was also optimized to maximize the spin-echo signal. Lower excitation
power was used for the heterodyne pulse (~14 mW). Possible heating of the
nanoparticles by the laser was checked by varying laser power and was found
negligible in the measurements. The inhomogeneous linewidth of the 29MHz spin
transition was measured by monitoring the spin-echo signal as a function of the
frequency difference (ω2–ω1) in the two-color pulses for a fixed delay time τ. The
transition linewidth was estimated by a Lorentzian lineshape fit within an incer-
titude interval which was derived from the experimental SNR and the fit accuracy.
The decay of the spin-echo signal with increasing τ was used to determine the
nuclear spin coherence lifetime. The value was derived by single-exponential fit
within an uncertainty also given by the experimental SNR and the fit accuracy.

Dynamical decoupling and phase correlations measurements. DD experiments
were carried out with 20-µs-long π pulses in order to access a large excitation
bandwidth (about 50 kHz, half of the spin inhomogeneous linewidth) and short π-
pulse separation times (τDD). The preservation of the excitation phase coherence
along the DD sequence was confirmed by the observation of stable beating patterns
from a photodiode at the output of the fiber for times exceeding 30 s. The spin-
echo phase was directly derived from the real (Re) and imaginary (Im) parts of the
spin-echo signal FFT as

θecho ¼ tan�1 Im
Re

� �
þ nπ ð1Þ

The error Δθecho was calculated by classical error propagation from the
uncertainty associated to the real and imaginary FFT parts, ΔRe and ΔIm. Those
were estimated from the SNR in Supplementary Fig. 7 and Supplementary Fig. 8.
As observed, the SNR is clearly larger in Supplementary Fig. 8 due to the weaker
spin-echo signal obtained after 10 π-pulses, corresponding to a total evolution time
of 1.5 ms compared to the total evolution time of 600 µs in the two-pulse echo case.

Data Availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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