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ND-Tree-based update: a Fast Algorithm for the
Dynamic Non-Dominance Problem

Andrzej Jaszkiewicz, Thibaut Lust

Abstract—In this paper we propose a new method called ND-
Tree-based update (or shortly ND-Tree) for the dynamic non-
dominance problem, i.e. the problem of online update of a Pareto
archive composed of mutually non-dominated points. It uses a
new ND-Tree data structure in which each node represents a
subset of points contained in a hyperrectangle defined by its
local approximate ideal and nadir points. By building subsets
containing points located close in the objective space and using
basic properties of the local ideal and nadir points we can
efficiently avoid searching many branches in the tree. ND-Tree
may be used in multiobjective evolutionary algorithms and other
multiobjective metaheuristics to update an archive of potentially
non-dominated points. We prove that the proposed algorithm
has sub-linear time complexity under mild assumptions. We
experimentally compare ND-Tree to the simple list, Quad-tree,
and M-Front methods using artificial and realistic benchmarks
with up to 10 objectives and show that with this new method
substantial reduction of the number of point comparisons and
computational time can be obtained. Furthermore, we apply
the method to the non-dominated sorting problem showing that
it is highly competitive to some recently proposed algorithms
dedicated to this problem.

Index Terms—Multiobjective optimization, Pareto archive,
Many-objective optimization, Dynamic non-dominance problem,
Non-dominated sorting

I. INTRODUCTION

IN this paper we consider the dynamic non-dominance
problem [1], i.e. the problem of online update of a Pareto

archive with a new candidate point. The Pareto archive is
composed of mutually non-dominated points and this property
must remain fulfilled following the addition of the new point.

The dynamic non-dominance problem is typically used in
multiobjective evolutionary algorithms (MOEAs) and more
generally in other multiobjective metaheuristics (MOMHs),
whose goal is to generate a good approximation of the Pareto
front. Many MOEAs and other MOMHs use an external
archive of potentially non-dominated points, i.e. a Pareto
archive containing points not dominated by any other points
generated so far, see e.g. [2], [3], [4], [5], [6], [7], [8], [9]. We
consider here MOEAs that generate iteratively new candidate
points and use them immediately to update a Pareto archive.
Updating a Pareto archive with a new point y means that:

• y is added to the Pareto archive if it is non-dominated
w.r.t. any point in the Pareto archive,
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• all points dominated by y are removed from the Pareto
archive.

The time needed to update a Pareto archive, in general,
increases with a growing number of objectives and a growing
number of points. In some cases it may become a crucial
part of the total running time of a MOEA. The simplest data
structure for storing a Pareto archive is a plain list. When a
new point y is added, y is compared to all points in the Pareto
archive until either all points are checked or a point dominating
y is found. In order to speed up the process of updating a
Pareto archive some authors proposed the use of specialized
data structures and algorithms, e.g. Quad-tree [10]. However,
the results of computational experiments reported in literature
are not conclusive and in some cases such data structures may
in fact increase the update time compared to the simple list.

A frequently used approach allowing reduction of the time
needed to update a Pareto archive is the use of bounded
archives [11] where the number of points is limited and some
potentially non-dominated points are discarded. Please note,
however, that such an approach always reduces the quality of
the archive. In particular, one of the discarded points could be
the one that would be selected by the decision maker if the
full archive was known. Bounded archives may be especially
disadvantageous in the case of many-objective problems, since
with a growing number of dimensions it is more and more
difficult to represent a large set with a smaller sample of
points. The use of bounded archives may also lead to some
technical difficulties in MOEAs (see [11]). Summarizing, if an
unbounded archive can be efficiently managed and updated, it
is advantageous to use this kind of archive.

In this paper, our contribution is fourfold: firstly, we propose
a new method, called ND-Tree-based update, for the dynamic
non-dominance problem. The method is based on a dynamic
division of the objective space into hyperrectangles, which
allows to avoid many comparisons of objective function val-
ues. Secondly, we show that the new method has sub-linear
time complexity under mild assumptions. Thirdly, a thorough
experimental study on different types of artificial and realistic
sets shows that we can obtain substantial computational time
reductions compared to state-of-the-art methods. Finally, we
apply ND-Tree-based update to the non-dominated sorting
problem obtaining promising results in comparison to some
recently proposed dedicated algorithms.

The remainder of the paper is organized as follows. Basic
definitions related to multiobjective optimization are given in
Section II. In Section III, we present a state of the art of the
methods used for online updating a Pareto archive. The main
contribution of the paper, i.e. ND-Tree-based update method
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is described in Section IV. Computational experiments are
reported and discussed in Section V. In sections VI, ND-Tree-
based is applied to the non-dominated sorting problem.

II. BASIC DEFINITIONS

A. Multiobjective optimization

We consider a general multiobjective optimization (MO)
problem with a feasible set of solutions X and p objective
functions yk(x) to minimize. The image of the feasible set
in the objective space is a set of points Y = y(X ) where
y(x) = (y1(x), y2(x), . . . , yp(x)).

In MO, points are usually compared according to the Pareto
dominance relation:

Definition 1. Pareto dominance relation: we say that a point
u = (u1, ..., up) dominates a point v = (v1, ..., vp) if, and only
if, uk ≤ vk ∀ k ∈ {1, . . . , p}∧∃ k ∈ {1, . . . , p} : uk < vk. We
denote this relation by u � v.

Definition 2. Non-dominated point: a point y∗ corresponding
to a feasible solution is called non-dominated if there does
not exist any other point y ∈ Y such that y � y∗. The set YN
of all non-dominated points is called Pareto front.

Definition 3. Coverage relation: we say that a point u covers
a point v if u � v or u = v. We denote this relation by u � v.

Please note that coverage relation is sometimes referred to
as weak dominance [12].

Definition 4. Mutually non-dominated relation: we say that
two points are mutually non-dominated or non-dominated w.r.t.
each other if neither of the two points covers the other one.

Definition 5. Pareto archive (YN ): set of points such that
any pair of points in the set are mutually non-dominated, i.e
∀y ∈ YN ,@y′ ∈ YN | y′ � y.

In the context of MOEAs, the Pareto archive contains the
mutually non-dominated points generated so far (i.e. at a given
iteration of a MOEA) that approximates the Pareto front YN .
In other words YN contains points that are potentially non-
dominated at a given iteration of the MOEA.

Please note that in MOEAs not only points but also repre-
sentations of solutions are preserved in the Pareto archive, but
the above definition is sufficient for the purpose of this paper.

The new method ND-Tree-based update is based on the
(approximate) local ideal and nadir points that we define
below.

Definition 6. The local ideal point of a subset S ⊆ YN
denoted as z∗(S) is the point in the objective space composed
of the best coordinates of all points belonging to S, i.e.
z∗k(S) = min

y∈S
{yk},∀ k ∈ {1, . . . , p}. A point ẑ∗(S) such that

ẑ∗(S) � z∗(S) will be called Approximate local ideal point.

Naturally, the (approximate) local ideal point covers all
points in S.

Definition 7. The local nadir point of a subset S ⊆ YN
denoted as z∗(S) is the point in the objective space composed
of the worst coordinates of all points belonging to S, i.e.

z∗k(S) = max
y∈S
{yk},∀ k ∈ {1, . . . , p}. A point ẑ∗(S) such

that z∗(S) � ẑ∗(S) will be called Approximate local nadir
point.

Naturally, the (approximate) local nadir point is covered by
all points in S.

B. Dynamic non-dominance problem

The problem of updating a Pareto archive (also called non-
dominance problem), can be divided into two classes: the static
non-dominance problem is to find the set of non-dominated
points YN among a set of points Y . The other class is the
dynamic non-dominance problem [1] that typically occurs in
MOEAs. We formally define this problem as follows. Consider
a candidate point y and a Pareto archive YN . The problem is
to update YN with y and consists in the following operations.
If y is covered by at least one point in YN , y is discarded
and YN remains unchanged. Otherwise, y is added to YN .
Moreover, if some points in YN are dominated by y, all these
points are removed from YN , in order to keep only mutually
non-dominated points (see Algorithm 1).

Algorithm 1 DynamicNonDominance

Parameter l: A Pareto archive YN
Parameter ↓: New candidate point y

if (@ y′ ∈ YN | y′ � y) then
YN ← YN ∪ {y}
for each (y′ ∈ YN | y � y′) do

YN ← YN\{y′}

In this work we consider only the dynamic non-dominance
problem. Note that in general static problems may be solved
more effectively than their dynamic counterparts since they
have access to richer information. Indeed, some efficient algo-
rithms for static non-dominance problem have been proposed,
see [13], [14], [15], [16].

MOEAs and other MOMHs usually update the Pareto
archive using the dynamic version of the non-dominance
problem, i.e. the Pareto archive is updated with each newly
generated candidate point. In some cases it could be possible
to store all candidate points and then solve the static non-
dominance problem. The latter approach has, however, some
disadvantages:
• MOEAs need to store not only points in the objective

space but also full representations of solutions in the
decision space. Thus, storing all candidate points with
corresponding solutions may be very memory consuming.

• Some MOEAs use the Pareto archive during the run of the
algorithm, i.e. Pareto archive is not just the final output
of the algorithm. For example in [17], one of the parents
is selected from the Pareto archive. In [7] the success
of adding a new point to the Pareto archive influences
the probability of selecting weight vectors in further
iterations. The same applies to other MOMHs as well.
For example, the Pareto local search (PLS) method [18]
works directly with the Pareto archive and searches
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neighborhood of each solution from the archive. In such
methods, computation of the Pareto archive cannot be
postponed till the end of the algorithm.

Note that as suggested in [19] the dynamic non-dominance
problem may also be used to speed up the non-dominated
sorting procedure used in many MOEAs. As the Pareto archive
contains all non-dominated points generated so far the first
front is immediately known and the non-dominated sorting
may be applied only to the subset of dominated points. Using
this technique, Drozdı́k et al. showed that their new method
called M-Front could obtain better performance than Deb’s fast
nondominated sorting [20] and Jensen-Fortin’s algorithm [21],
[22], one of the fastest non-dominated sorting algorithms.

III. STATE OF THE ART

We present here a number of methods for the dynamic
non-dominance problem proposed in literature and used in
the comparative experiment. This review is not supposed to
be exhaustive. Other methods can be found in [23], [24] and
reviews in [25], [26]. We describe linear list, Quad-tree and
one recent method, M-Front [19].

A. Linear List
1) General case: In this structure, a new point is compared

to all points in the list until a covering point is found or
all points are checked. The point is only added if it is non-
dominated w.r.t. all points in the list, that is in the worst case
we need to browse the whole list before adding a point. The
complexity in terms of number of points comparison is thus
in O(N) with N the size in the list.

2) Biobjective case: sorted list: When only two objectives
are considered, we can use the following specific property: if
we sort the list according to one objective (let’s say the first),
the non-dominated list is also sorted according to the second
objective. Therefore, roughly speaking, updating the list can
be efficiently done in the following way. We first determine
the potential position i of the new candidate point in the sorted
list according to its value of the first objective, with a binary
search. If the new point is not dominated by the preceding
one in the list (if there is one), the new point is not dominated
and can be inserted at position i. If the new point has been
added, we need to check if there are some dominated points:
we browse the next points in the list, until a point is found that
has a better evaluation according to the second objective. All
the points found that have a worse evaluation according to the
second objective have to be removed since they are dominated
by the new point.

The worst-case complexity is still in O(N) since it can
happen that a new point has to be compared to all the other
points (in the special case where we add a new point in the
first position and all the points in the sorted list are dominated
by this new point). But on average, experiments show that the
behavior of this structure for handling biobjective updating
problems is much better than the simple list.

The algorithm of this method is given in Algorithm 2
(for the sake of clarity, we only present the case where the
candidate point y has a distinct value for the first objective
compared to all the other points in the archive YN ).

Algorithm 2 Sorted list

Parameter l: A biobjective Pareto archive YN
Parameter ↓: New candidate point y

if YN = ∅ then
YN ← YN ∪ {y}

else
- -| Looking for the position i of y in YN
i← BinarySearch(YN , y1)

if (i = 0) or (y2 < y
(i−1)
2 ) then

- -| y is added at position i in YN
Insert(YN , y, i)
j ← i+ 1
while (j < |YN |) and (y2 ≤ yj2) do

- -| yj is dominated
YN ← YN\{yj}
j ← j + 1

B. Quad-tree

The use of Quad-tree for storing potentially non-dominated
points was proposed by Habenicht [27] and further developed
by Sun and Steuer [28] and Mostaghim and Teich [10].
In Quad-tree, points are located in both internal nodes and
leaves. Each node may have p2 children corresponding to
each possible combination of results of comparisons on each
objective where a point can either be better or not worse. In
the case of mutually non-dominated points p2−2 children are
possible since the combinations corresponding to dominating
or covered points are not used. Quad-tree allows for a fast
checking if a new point is dominated or covered. A weak point
of this data structure is that when an existing point is removed
its whole sub-tree has to be re-inserted to the structure. Thus,
removal of a dominated point is in general costly.

C. M-Front

M-Front has been proposed relatively recently by Drozdı́k
et al. [19]. The idea of of M-Front is as follows. Assume that
in addition to the new point y a reference point ref relatively
close to y and belonging to the Pareto archive YN is known.
The authors define two sets:

RSU (y, ref) = {z ∈ YN | ∃k ∈ {1, . . . , p} : zk ≥ refk ∧ zk ≤ yk}

RSL(y, ref) = {z ∈ YN | ∃k ∈ {1, . . . , p} : zk ≥ yk ∧ zk ≤ refk}

and prove that if a point z ∈ YN is dominated by y then it
belongs to RSL(y, ref) and if z dominates y then it belongs
to RSU (y, ref). Thus, it is sufficient to compare the new
points to sets RSL(y, ref) and RSU (y, ref) only. To find all
points with objective values in a certain interval M-Front uses
additional indexes one for each objective. Each index sorts the
Pareto archive according to one objective.

To find a reference point close to y, M-Front uses the k-
d tree data structure. The k-d tree is a binary tree, in which
each intermediate node divides the space into two parts based
on a value of one objective. While going down the tree
the algorithm cycles over particular objectives, selecting one
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objective for each level. Drozdı́k et al. [19] suggest to store
references to points in leaf nodes only, while intermediate
nodes keep only split values.

IV. ND-TREE-BASED UPDATE

A. Presentation

In this section we present the main contribution of the
paper. The new method for updating a Pareto archive is based
on the idea of recursive division of archive YN into subsets
contained in different hyperrectangles. This division allows to
considerably reduce the number of comparisons to be made.

More precisely, consider a subset S ⊆ YN composed of
mutually non-dominated points and a new candidate point
y. Assume that some approximate local ideal ẑ∗(S) and
approximate local nadir points ẑ∗(S) of S are known. In
other words, all points in S are contained in the axes-parallel
hyperrectangle defined by ẑ∗(S) and ẑ∗(S).

We can define the following simple properties that allow to
compare a new point y to the whole set S:
Property 1. If y is covered by ẑ∗(S), then y is covered by

each point in S and thus can be rejected. This property
is a straightforward consequence of the transitivity of the
coverage relation.

Property 2. If y covers ẑ∗(S), then each point in S is covered
by y. This property is also a straightforward consequence
of the transitivity of the coverage relation.

Property 3. If y is non-dominated w.r.t. both ẑ∗(S) and
ẑ∗(S), then y is non-dominated w.r.t. each point in S.
Proof. If y is non-dominated w.r.t. ẑ∗(S) then there is at
least one objective on which y is worse than ẑ∗(S) and
thus worse than each point in S. If y is non-dominated
w.r.t. ẑ∗(S) then there is at least one objective on which
y is better than ẑ∗(S) and thus better than each point in
S. So, there is at least one objective on which y is better
and at least one objective on which y is worse than each
point in S.

If none of the above properties holds, i.e. y is neither
covered by ẑ∗(S), does not cover ẑ∗(S), nor is non-dominated
w.r.t. both ẑ∗(S) and ẑ∗(S), then all situations are possible, i.e.
y may either be non-dominated w.r.t. all points in S, covered
by some points in S or dominate some points in S . This can be
illustrated by showing examples of each of the situations. Con-
sider for example a set S = {(1, 1, 1), (0, 2, 2), (2, 2, 0)} with
ẑ∗(S) = z∗(S) = (0, 1, 0) and ẑ∗(S) = z∗(S) = (2, 2, 2). A
new point (1, 1, 0) dominates a point in S , a new point (1,
1, 2) is dominated (thus covered) by a point in S, and points
(0, 3, 0) and (2, 0, 1) are non-dominated w.r.t. all points in S.

The properties are graphically illustrated for the biobjective
case in Figure 1. As can be seen in this figure, in the
biobjective case, if y is covered by ẑ∗(S) and y is non-
dominated w.r.t. ẑ∗(S) then y is dominated by at least one
point in S. Note, however, that this does not hold in the case of
three and more objectives as shown in the above example - the
point (0, 3, 0) is covered by ẑ∗(S) = (0, 1, 0), non-dominated
w.r.t. ẑ∗(S) = (2, 2, 2) and (0, 3, 0) is not dominated by any
points in S.

Fig. 1. Comparison of a new point to all points in set S based on comparisons
to ẑ∗(S) and ẑ∗(S) only.

In fact it is possible to distinguish more specific situations
when none of the three properties hold, e.g. a situation when a
new point may be covered but cannot dominate any point, but
since we do not distinguish them in the proposed algorithm
we do not define them formally.

The above properties allow in some cases to quickly com-
pare a new candidate point y to all points in set S without the
need for further comparisons to individual points belonging to
S. Such further comparisons are necessary only if none of the
three properties hold. Intuitively, the closer the approximate
local ideal and nadir points the more likely it is that further
comparisons can be avoided. To obtain close approximate local
ideal and nadir points we should:
• Split the whole set of non-dominated points into subsets

of points located close in the objective space.
• Have good approximations of the exact local ideal and

nadir points. On the other hand calculation of the exact
points may be computationally demanding and a reason-
able approximation may assure the best overall efficiency.

Based on these properties, we can now define the ND-Tree
data structure.

Definition 8. ND-Tree data structure is a tree with the
following properties:

1) With each node n is associated a set of points S(n).
2) Each leaf node contains a list L(n) of points and S(n) =
L(n).

3) For each internal node n, S(n) is the union of disjoint
sets associated with all children of n.

4) Each node n stores an approximate ideal point ẑ∗(S(n))
and approximate nadir point ẑ∗(S(n)).

5) If n′ is a child of n, then ẑ∗(S(n)) � ẑ∗(S(n′)) and
ẑ∗(S(n′)) � ẑ∗(S(n)).

The algorithm for updating a Pareto archive with ND-Tree is
given in Algorithm 3. The idea of the algorithm is as follows.
We start by checking if the new point y is covered or non-
dominated w.r.t. all points in YN by going through the nodes
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of ND-Tree and skipping children (and thus their sub-trees)
for which Property 3 holds. This procedure is presented in
Algorithm 4.

The new point is first compared to the approximate ideal
point (ẑ∗(S(n)) and nadir point (ẑ∗(S(n)) of the current node.
If the new point is dominated by ẑ∗(S(n) it is immediately
rejected (Property 1). If ẑ∗(S(n) is covered, the node and
its whole sub-tree is deleted (Property 2). Otherwise if
ẑ∗(S(n)) � y or y � ẑ∗(S(n)), the node needs to be analyzed.
If n is an internal node we call the algorithm recursively for
each child. If n is a leaf node, y may be dominated by or
dominate some points of n and it is necessary to browse the
whole list L(n) of the node n. If a point dominating y is
found, y is rejected, and if a point dominated by y is found,
the point is deleted from L(n).

If after checking ND-Tree the new point was found to
be non-dominated it is inserted by adding it to a close leaf
(Algorithm 5). To find a proper leaf we start from the root and
always select a child with closest distance to y. As a distance
measure we use the Euclidean distance to the middle point,
i.e. a point lying in the middle of line segment connecting
approximate ideal and approximate nadir points.

Once we have reached a leaf node, we add the point y to
the list L(n) of the node and possibly update the ideal and
nadir points of the node n (Algorithm 7). However, if the size
of L(n) became larger than the maximum allowed size of a
leaf set, we need to split the node into a predefined number of
children. To create children that contain points that are more
similar to each other than to those in other children, we use
a simple clustering heuristic based on Euclidean distance (see
Algorithm 6).

The approximate local ideal and nadir points are updated
only when a point is added. We do not update them when
point(s) are removed since it is a more complex operation.
This is why we deal with approximate (not exact) local ideal
and nadir points.

Algorithm 3 ND-Tree-based update

Parameter l: A Pareto archive YN organized as ND-Tree
Parameter ↓: New candidate point y

if YN = ∅ then
Create a leaf node n with L(n) = {y} and use it as a
root

else
n← root node
if UpdateNode(n l,y ↓) then

Insert(n l,y ↓)

B. Comparison to existing methods

Like other methods ND-Tree-based update uses a tree struc-
ture to speed up the process of updating the Pareto archive.
The tree and its use is, however, quite different from Quad-tree
or k-d tree used in M-Front. For example, both Quad-tree or
k-d tree partition the objective space based on comparisons on
particular objectives, while in ND-Tree the space is partitioned

Algorithm 4 UpdateNode

Parameter l: A node n
Parameter ↓: New candidate point y
Parameter ↑: Boolean (True if y is not dominated by any
points in the tree of root n, False otherwise)

if ẑ∗(S(n)) � y then
- -| Property 1, y is rejected
return False

else if y � ẑ∗(S(n)) then
- -| Property 2
Remove n and its whole sub-tree

else if ẑ∗(S(n)) � y or y � ẑ∗(S(n)) then
if n is a leaf node then

for each z ∈ L(n) do
if z � y then

return False
else if y � z then

L(n)← L(n)\{z}
else

for each Child n′ of n do
if not UpdateNode (n′ l,y ↓) then

return False
else

if n′ became empty then
Remove n′

if there is only one child n′ remaining then
Remove node n and use n′ in place of n

else
- -| Property 3
Skip this node

return True

Algorithm 5 Insert

Parameter l: A node n
Parameter ↓: New candidate point y

if n is a leaf node then
L(n)← L(n) ∪ {y}
UpdateIdealNadir (n l,y ↓)
if Size of L(n) became larger than maximum size of
a leaf set then

Split (n l)
else

Find child n′ of n being closest to y
Insert(n′ l,y ↓)

based on the distances of points. Both Quad-tree or k-d tree
have strictly defined degrees. In k-d tree it is always two
(binary tree) while in Quad-tree it depends on the number
of objectives. In ND-Tree the degree is a parameter. In Quad-
tree the points are kept in both internal nodes and leaves, while
ND-Tree keeps points in leaves only. In M-Front k-d tree is
used to find an approximate nearest neighbor and the Pareto
archive is updated using other structures (sorted lists for each
objective). In our case, ND-Tree is the only data structure used
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Algorithm 6 Split

Parameter l: A node n

Find the point z ∈ L(n) with the highest average Euclidean
distance to all other points in L(n)
Create a new child n′ with list set L(n′) = {z}
L(n)← L(n)\{z}
UpdateIdealNadir (n′ l,z ↓)
while The required number of children are not created do

Find the point z ∈ L(n) with the highest average
Euclidean distance to all points in all children of n

Create a new child n′ with an empty list set L(n′)
L(n′)← L(n′) ∪ {z}
UpdateIdealNadir (n′ l,z ↓)
L(n)← L(n)\{z}

while L(n) is not empty do
z ← first point in L(n)
Find child n′ of n being closest to z
L(n′)← L(n′) ∪ {z}
UpdateIdealNadir (n′ l,z ↓)
L(n)← L(n)\{z}

Algorithm 7 UpdateIdealNadir

Parameter l: A node n
Parameter ↓: New candidate point y

Check in any component of y is lower than correspond-
ing component in ẑ∗(S(n)) or greater than corresponding
component in ẑ∗(S(n)) and update the points if necessary
if ẑ∗(S(n)) or ẑ∗(S(n)) have been changed then

if n is not a root then
np← parent of n
UpdateIdealNadir (np l,y ↓)

by the algorithm.

C. Computational complexity

1) Worst case: The worst case for the UpdateNode and
Insert algorithm is when we need to compare the new point
to each intermediate node of the tree. For example, consider
the following particular case: two objectives, ND-Tree with
maximum leaf size equal to 2, 2 children, and constructed by
processing the following list of points (with K ∈ N∗): (0, 0),
(1, -1), (2K , −2K), (2K−1, −2K−1),..., (4, -4), (2, -2). This
list of points is constructed in such a way that the first two
points are put in one leftmost leaf and the third point creates
a separate leaf. Then each further point is closer to the child
on the left side but finally after splitting the leftmost node the
new point creates a new leaf. The ND-Tree obtained is shown
in Figure 2.

Consider now that the archive is updated with point (0.5,
-0.5). This point will need to be compared to all N − 1
intermediate nodes and then to both points in leftmost leaf.

Fig. 2. Example of fully unbalanced ND-Tree.

In this case:

T (N) = 4 + T (N − 1) (1)

where N is the number of points in the archive and T (N) is
the number of point comparisons needed to update an archive
of size N . Term 4 appears because we check two children
and for each child approximate ideal and nadir points are
compared. Solving the recurrence we get:

T (N) = 4 + 4N (2)

Thus, the algorithm has O(N) time complexity.
We are not aware of any result showing that the worst-

case time complexity of any algorithm for the dynamic non-
dominance problem may be lower than O(N) in terms of point
comparisons. So, our method does not improve the worst-
case complexity but according to our experiments performs
significantly better in practical cases.

2) Best case: Assume first that the candidate point is not
covered by any point in YN . In the optimistic case, at each
intermediate node the points are equally split into predefined
number of children and there is only one child that has to be
further processed (i.e. there is only one child for which none
of the three properties hold). In fact we could consider even
more optimistic distribution of points when the only node that
has to be processed contains just one point, but the equal split
is much more realistic assumption. In this case:

T (N) = 2C + T (N/C) = Θ(logC N) (3)

where C is the number of children. If the candidate point is
covered by a point in YN the UpdateNode algorithm may
stop even earlier and there will be no need to run Insert
algorithm.

3) Average case: Analysis and even definition of average
case for such complex algorithms is quite difficult. The sim-
plest case to analyze is when each intermediate node has two
children which allows us to follow the analysis of well-known
algorithms like binary search or Quicksort. If a node has N
points then one of the two children may have 1, . . . , N − 1
points and the other child the remaining number of points.
Assuming that each split has equal probability and only one
child is selected:

T (N) = 4 +
1

N

N−1∑
k=1

T (k) (4)

Multiplying both sides by N :

NT (N) = 4N +

N−1∑
k=1

T (k) (5)
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Assuming that N ≥ 2:

(N − 1)T (N − 1) = 4(N − 1) +

N−2∑
k=1

T (k) (6)

Subtracting equations 5 and 6:

NT (N)− (N − 1)T (N − 1) =

4N − 4(N − 1) +

N−1∑
k=1

T (k)−
N−2∑
k=1

T (k)
(7)

Simplifying:

T (N) =
4

N
+ T (N − 1) (8)

Solving this recurrence:

T (N) = 4HN − 1 (9)

where HN is N-th harmonic number. Using well-known prop-
erties of harmonic numbers we get T (N) = Θ(logN).

We can expect, however, that in realistic cases more than
one child will need to be further processed in UpdateNode
algorithm because the candidate point may cover approximate
nadir points or may be covered by approximate ideal points of
more than one child. Assume that the probability of selecting
both children is equal to c1. Then:

T (N) = 4 +
1

N
(1 + c1)

N−1∑
k=1

T (k) (10)

Following the above reasoning we get:

T (N) =
2

N
+
N + c1
N

T (N − 1) (11)

Solving this recurrence, we obtain:

T (N) =
Γ(c1 +N + 1)

Γ(N + 1)
− 2

c1
(12)

(that can be checked by substituting (12) in (11)).
Since

lim
N→∞

Γ(N + α)

Γ(N)Nα
= 1 (13)

We have:
T (N) = Θ(N c1) (14)

and the algorithm remains sub-linear for any c1 < 1. In the
worst case, both children need to be selected, so c1 = 1 and
T(N) = Θ(N) which confirms the analysis presented above.

This analysis may give only approximate insight into be-
haviour of the algorithm since in UpdateNode algorithm c1
will not be constant at each level. We may rather expect that
while going down the tree from the root towards leaves the
probability that two children will need to be processed will
decrease because approximate nadir and ideal points of the
children will lie closer. Anyway, this analysis shows that the
performance of UpdateNode algorithm may be improved
by decreasing the probability that a child has to be processed.
This is why we try to locate in one node points lying close to
each other in Insert and Split algorithms.

In Insert algorithm always one child is processed, so the
time complexity remains Θ(logN) in average case.

The main part of Split algorithm has constant time
complexity since it depends only on the maximum size of
a leaf set which is a constant parameter of the algorithm.
UpdateIdealNadir algorithm goes up the tree starting

from a leaf which is equivalent to going down the tree and
selecting just one child. So, its analysis is exactly the same as
of Insert algorithm.

We also need to consider the complexity of the operation
of removal of node n and its sub-tree. In the worst case,
the removed node is the root, and thus all N point need to
be removed. Such situation is very unlikely, since it happens
when the new point dominates all points in the current archive.
Typically, the new point will dominate only few points.

V. COMPUTATIONAL EXPERIMENTS

We will show results obtained with ND-Tree and other
methods in two different cases:

A) Results for artificially generated sets which allow us to
easily control the number of points in the sets and the
quality of the points.

B) Results for sets generated by a MOEA, namely
MOEA/D [2] for the multiobjective knapsack problem.

We compare the simple list, sorted list (biobjective case),
Quad-tree, M-Front and ND-Tree for these sets according to
the CPU time [ms]. To avoid the influence of implementation
details all methods were implemented from the scratch in C++
in as much homogeneous way as possible, i.e. when possible
the same code was used to perform the same operations like
Pareto dominance checks.

For the implementation of Quad-tree, we use Quad-tree2
version as described by Mostaghim and Teich [10].

For M-Front, we use as much as possible the description
found in the paper of Drozdı́k et al. [19]. However the authors
do not give the precise algorithm of k-d tree used in their
method. In our implementation of k-d tree, when a leaf is
reached a new division is made using the average value of
the current level objective. The split value is average between
the value of new point and the point in the leaf. Also like in
Drozdı́k et al. [19] the approximate nearest neighbor is found
exactly as in the standard exact nearest neighbor search, but
only four evaluations of the distance are allowed. Note that
at https://sites.google.com/site/ndtreebasedupdate/ we present
results of an additional experiment showing that for a higher
number of objectives the details of the implementation of k-d
tree do not have any substantial influence on the running time.

We also noticed that a number of elements of M-Front
can be improved to further reduce the running time. The
improvement is in our opinion significant enough to call
the new method M-Front-II. In particular in some cases M-
Front-II was several times faster than original M-Front in our
computational experiments. The modifications we introduced
are as follows:

• In original M-Front the sets RSL(y, ref) and
RSU (y, ref) are built explicitly and only then the
points contained in these sets are compared to y.
In M-Front-II we build them only implicitly, i.e. we

https://sites.google.com/site/ndtreebasedupdate/
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immediately compare the points that would be added to
the sets to y.

• We analyze the objectives in such a way that we start
with objectives for which refk ≤ yk. In other words, we
start with points from set RSU (y, ref). Since many new
points are dominated this allows to stop the search im-
mediately when a point dominating y is found. Note that
a similar mechanism is in fact used in original M-Front
but only after the sets RSL(y, ref) and RSU (y, ref) are
explicitly built.

• The last modification is more technical. M-Front uses
linked lists (std::list in C++) to store the indexes
and a hash-table (std::unordered_map in C++) to
link points with their positions in these lists. We observed,
however, that even basic operations like iterating over the
list are much slower with linked lists than with static or
dynamic arrays (like std::vector in C++). Thus we
use dynamic arrays for the indexes. In this case, however,
there is no constant iterator that could be used to link the
points with their positions in these indexes. So, we use
a binary search to locate a position of a point in the
sorted index whenever it is necessary. The overhead of
the binary search is anyway smaller than the savings due
to the use of faster indexes.

For ND-Tree we use 20 as the maximum size of a leaf and
p+1 as the number of children. These values of the parameters
were found to perform well in many cases. We analyze the
influence of these parameters later in this section.

The code, as well as test instances and data sets, are avail-
able at https://sites.google.com/site/ndtreebasedupdate/. All of
the results have been obtained on an Intel Core i7-5500U CPU
at 2.4 GHz.

A. Artificial sets

1) Basic, globally convex sets: The artificial sets are com-
posed of n points with p objectives to minimize. The sets
are created as follows. We generate randomly n points yi in
{0, . . . , Vmax}p with the following constraint:

∑p
k=1(Vmax−

yik)2 ≤ V 2
max. With this constraint, all the non-dominated

points will be located inside the hypersphere with the center
at (Vmax, . . . , Vmax) and with a radius of length equal to
Vmax. In order to control the quality of the generated points,
we also add a quality constraint:

∑p
i=k(Vmax − yik)2 ≥

(1− ε) ∗ V 2
max. In this way, with a small ε, only high-quality

points will be generated. We believe that it is a good model
for points generated by real MOEAs since a good MOEA
should generate points lying close to the true Pareto front. The
hypersphere is a model of the true Pareto front and parameter
ε controls the maximum distance from the hypersphere. We
have generated data sets composed of 100 000 and 200 000
points, with Vmax = 10000, and for p = 2 to 10. In the main
experiment we use data sets with 100 000 points because for
the larger sets running times of some methods became very
long. Also because of very high running times for sets with
many objectives, in the main experiment we used sets with
up to 6 objectives. For each value of p, five different quality
levels are considered: quality q1, ε = 0.5 ; q2, ε = 0.25 ;
q3, ε = 0.1 ; q4, ε = 0.05 ; q5, ε = 0.01. The fraction of

non-dominated points grows both with increasing quality and
number of objectives and in extreme cases all points may be
non-dominated (see Table I).

TABLE I
NUMBERS OF NON-DOMINATED POINTS IN ARTIFICIAL SETS

p Quality |YN | |YN | |YN |
convex non-convex clustered

2 q1 519 379 449
2 q2 713 613 552
2 q3 1046 1037 785
2 q4 1400 1454 1059
2 q5 2735 2748 1781
3 q1 4588 2587 3729
3 q2 6894 5344 5514
3 q3 12230 11497 9720
3 q4 19095 18648 15502
3 q5 53813 53255 44173
4 q1 14360 6853 11963
4 q2 21680 16420 18120
4 q3 39952 37709 35460
4 q4 64664 63140 57725
4 q5 98283 98243 97137
5 q1 28944 13437 23966
5 q2 42246 34357 38028
5 q3 77477 75796 71063
5 q4 96002 95867 93842
5 q5 99975 99975 98521
6 q1 45879 22956 40483
6 q2 65195 57966 61096
6 q3 96687 96480 94978
6 q4 99788 99786 99652
6 q5 100000 100000 99999

2) Globally non-convex sets: In order to test whether the
global convexity of the above sets influences the behavior of
the tested methods we have also generated sets whose Pareto
fronts are globally non-convex. They were obtained by simply
changing the sign of each objective in the basic sets.

3) Clustered sets: In these sets, the points are located
in small clusters. We have generated sets composed of 100
clusters, where each cluster contains 1000 points (the sets are
thus composed of 100 000 points). The sets have been obtained
as follows: we start with the 200 000 points from the basic
convex sets. We select from the set one random point, and
we then select the 999 points closest to this point (using the
Euclidean distance). We repeat this operation 100 times to
obtain the 100 clusters of the sets.

The shapes of exemplary biobjective globally convex, glob-
ally non-convex and clustered data sets can be seen at https:
//sites.google.com/site/ndtreebasedupdate/.

Each method was run 10 times for each set, with the
points processed in a different random order for each run.
The average running times for basic sets are presented in
Figures 3 to 7. We use average values since the different values
were generally well distributed around the average with small
deviations. Please note that because of large differences the
running time is presented in logarithmic scale.

In addition, in Figure 8 we illustrate the evolution of the
running times according to the number of objectives for the
data sets of intermediate quality q3. In this case we use sets
with up to 10 objectives. With 7 and more objectives even
the sets of intermediate quality q3 contain almost only non-
dominated points (see Table I). This is why the running times

https://sites.google.com/site/ndtreebasedupdate/
https://sites.google.com/site/ndtreebasedupdate/
https://sites.google.com/site/ndtreebasedupdate/
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of the simple list are practically constant for 7 and more
objectives, because the simple list boils down in this case to
the comparison of each new point to all points in the list. The
running times of all other methods including ND-Tree increase
with a growing number of objectives, but ND-Tree remains 5.5
times faster than the second best method (Quad-tree) for sets
with 10 objectives.

Furthermore, we measured the number of comparisons
of points with the dominance relation for the data sets of
intermediate quality q3 with p = 2, ..., 10. For ND-Tree-based

Fig. 3. CPU time (logarithmic scale) for biobjective convex data sets.

Fig. 4. CPU time (logarithmic scale) for three-objective convex data sets.

Fig. 5. CPU time (logarithmic scale) for four-objective convex data sets.

Fig. 6. CPU time (logarithmic scale) for five-objective convex data sets.

Fig. 7. CPU time (logarithmic scale) for six-objective convex data sets.

Fig. 8. CPU time (logarithmic scale) vs. number of objectives for convex
data sets of quality q3.

TABLE II
POINT COMPARISONS PER MS

Method Comparisons per ms
List 26 752

M-Front 3 476
M-Front-II 8 370
ND-Tree 17 733
Quad-tree 9 040
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update it includes also comparisons to the approximate ideal
and nadir points and for Quad-tree comparisons to sub-nodes.
The results are presented in Figure 9. Please note that the
results for the two versions of M-Front overlap in the Figure.

Fig. 9. Number of point comparisons (logarithmic scale) vs. number of
objectives for convex data sets of quality q3.

The differences in running times cannot be fully explained
by the number of point comparisons because the methods
differ significantly in the number of point comparisons per mil-
liseconds (see Table II). This ratio is highest for the simple list
because this method performs very few additional operations.
It is also relatively high for ND-Tree. Other methods perform
many other operations than point comparisons that strongly
influence their running times. This is particularly clear in
comparison of M-Front and M-Front-II. These method perform
the same number of point comparisons, but M-Front-II is
several times faster than M-Front because in the latter method
the sets RSL(y, ref) and RSU (y, ref) are built explicitly
and this method uses slower linked lists. Overall, ND-Tree
performs fewest number of point comparisons for data sets
with p ≥ 4. These results indicate that ND-Tree-based update
substantially reduces the number of comparisons with respect
to the simple list. For example for p = 10, all points in
the data set are non-dominated, thus on average each of the
100000 new points has to be compared to an archive composed
of 49999.5 points, while with ND-Tree-based update it only
requires 2029 point comparisons on average.

The results obtained for non-convex and clustered sets were
very similar to the results with basic sets. Thus, in Figures 10
to 13 we show only exemplary results for the three- and six-
objective cases. These results indicate that the running times of
the tested methods are not substantially affected by the global
shape of the Pareto front.

4) Discussion of the results for artificial sets: The main
observations from this experiment are:
• ND-Tree performs the best in terms of CPU time for

all test sets with three and more objectives. In some
cases the differences to other methods are of two orders
of magnitude and in some cases the difference to the
second best method is of one order of magnitude. ND-
Tree behaves also very predictably, its running time
grows slowly with increasing number of objectives and
increasing fraction of non-dominated points.

Fig. 10. CPU time (logarithmic scale) for three-objective non-convex data
sets.

Fig. 11. CPU time (logarithmic scale) for six-objective non-convex data sets.

Fig. 12. CPU time (logarithmic scale) for three-objective clustered data sets.
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Fig. 13. CPU time (logarithmic scale) for six-objective clustered data sets.

• For biobjective instances sorted list is the best choice. In
this case, M-Front and M-Front-II also behave very well
since they become very similar to sorted list.

• The simple list obtains its best performances for data
sets with many dominated points like p = 2 with lowest
quality. In this case the new point is often dominated by
many points, so the search process is quickly stopped
after finding a dominating point.

• Quad-tree performs very badly for data sets with many
dominated points, e.g. in biobjective instances where it is
the worst method in all cases. In this case, many points
added to Quad-tree are then removed and the removal of
a point from Quad-tree is a costly operation. As discussed
above when an existing point is removed its whole sub-
tree has to be re-inserted to the structure. On the other
hand, it is the second best method for most data sets with
six and more objectives.

• M-Front-II is much faster than M-Front on data sets with
larger fraction of dominated points. In this case, M-Front-
II may find a dominating point faster without building
explicitly the whole sets RSL(y, ref) and RSU (y, ref).

• The performance of both M-Front and M-Front-II deteri-
orates with an increasing number of objectives. With six
and more objectives M-Front is the slowest method in all
cases. Intuitively this can be explained by the fact that
M-Front (both versions) uses each objective individually
to reduce the search space. In the case of two objectives
the values of one objective carry a lot of information
since the order on one objective induces also the order on
the other one. The more objectives, the less information
we get from an order on one of them. Furthermore,
sets RSL(y, ref) and RSU (y, ref) are in fact unions of
corresponding sets for particular objectives, which also
results in their growth. Finally, in many objective case, a
reference point close on Euclidean distance does not need
to be very close on each objective, since it will rather have
a good balance of differences on many coordinates.

In an additional experiment we analyzed the evolution of
the running times of all methods with increasing number of
points. We decided to use one intermediate globally convex
data set with p = 4 and quality q3. We used 200 000 points

in this case and 10 runs for each method (see Figure 14). The
CPU time is cumulative time of processing a given number
of points. In addition, since the running time is much smaller
for ND-Tree its results are presented in Figure 15 separately.
We see that ND-Tree is the fastest method for any number of
points and its cumulative running time grows almost linearly
with the number of points. In other words, time of processing
a single point is almost constant. Please note that unlike in
other figures the linear scale is used in these two figures in
order to make them more informative.

Fig. 14. CPU time (linear scale) vs. the number of points for four-objective
convex data sets of quality q3.

Fig. 15. CPU time (linear scale) vs. the number of points for ND-Tree only
(four-objective convex data sets of quality q3).

ND-Tree has two parameters - the maximum size (number
of points) of a leaf, and the number of children, so the question
arises how sensitive it is to the setting of these parameters. To
study it we again use the intermediate data set with p = 4
and quality q3 and run ND-Tree with various parameters, see
Figure 16. Please note that number of children cannot be larger
than the maximum size of a leaf +1 since after exceeding
the maximum size the leaf is split into the given number of
children. We see that ND-Tree is not very sensitive to the two
parameters: the CPU time remains between about one and
three seconds regardless of the values of the parameters. The
best results are obtained with 20 for the maximum size of a
leaf and with 6 for the number of children.
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Fig. 16. ND-Tree CPU time for different values of parameters (four-objective
convex data sets of quality q3). Data series correspond to maximum leaf size.
CPU time in linear scale.

In our opinion the results confirm that ND-Tree performs
relatively well for a wide range of the values of the parameters.
In fact, it would remain the best method for this data set with
any of the parameters settings tested.

B. Sets generated by MOEA/D

In order to test if the observations made for artificial sets
hold for sets generated by real evolutionary algorithms, we use
sets of points generated by well-known MOEA/D algorithm
[2] for multiobjective multidimensional knapsack problem
instances with 2 to 6 objectives. We used the code available
at http://dces.essex.ac.uk/staff/zhang/webofmoead.htm [2]. We
used the instances with 500 items available with the code with
2 to 4 objectives. The profits and weights of these instances
were randomly generated uniformly between 1 and 100. We
have generated ourselves the 5 and 6 objectives instances
by adding random profits and weights, between 1 and 100.
MOEA/D was run for at least 100 000 iterations and the first
100 000 points generated by the algorithm were stored for the
purpose of this experiment. The numbers of non-dominated
points are given in Table III.

Figure 17 presents running times of each of the tested
methods as well the running times of MOEA/D excluding
the time needed to update the Pareto archive. These results
confirm that the observations made for artificial sets also hold
in the case of real sets. ND-Tree is the fastest method for three
and more objectives. Quad-tree performs particularly badly
in the biobjective case. Both versions of M-Front relatively
deteriorate with a growing number of objectives. Furthermore,
these results show that the time of updating the Pareto archive
may be higher than the remaining running time of MOEA/D.
In particular, for the six-objective instance the running time
of M-Front is 5 times higher than the remaining running time
of MOEA/D. The running time of the simple list, Quad-tree
and M-Front-II are comparable to the remaining running time
of MOEA/D, and only the running time of ND-Tree is 10
times shorter. This confirms that the selection of an appropriate
method for updating the Pareto archive may have a crucial
influence on the running time of a MOEA.

TABLE III
NUMBERS OF NON-DOMINATED POINTS IN SETS GENERATED BY MOEA/D

p |YN |
2 140
3 1789
4 5405
5 10126
6 16074

Fig. 17. CPU time (logarithmic scale) on MOEA/D sets.

We have also generated sets of points by applying an-
other MOMH, namely Pareto local search [18] to solve
the multiobjective traveling salesman problem (MOTSP).
These results can be found at https://sites.google.com/site/
ndtreebasedupdate/ (the same conclusions apply).

VI. ND-TREE-BASED NON-DOMINATED SORTING

ND-Tree-based update may also be applied to the problem
of the non-dominated sorting. This problem arises in the non-
dominated sorting-based MOEAs, e.g. NSGA-III [29] where a
population of solutions needs to be assigned to different fronts
based on their dominance relationships.

We solve the non-dominated sorting problem in the very
straightforward way, i.e. we find the first front by updating
an initially empty Pareto archive with each point in the
population. Then the points from the first front are removed
from the population and the next front is found in the same
way. This process is repeated until all fronts are found.

We compare this approach to some recently proposed non-
dominated sorting algorithms, i.e. ENS-BS/SS [30] and DDA-
NS [31]. ENS-BS/SS algorithm sorts the points lexicographi-
cally based on the values of objectives. Then it considers each
solution using this order to efficiently find the last front that
contains a point dominating the considered point. For each
front this method in fact solves the dynamic non-dominance
problem with the simple list and if the considered solution
is non-dominated within this front it needs to be compared
to each solution in this front. If there is just one front in the
population, the method boils down to solving the dynamic non-
dominance problem with the simple list and requires O(N2)
comparisons. DDA-NS algorithm sorts the population accord-
ing to each objective which requires O(N logN) objective
function comparisons and builds comparison matrices for each

http://dces.essex.ac.uk/staff/zhang/webofmoead.htm
https://sites.google.com/site/ndtreebasedupdate/
https://sites.google.com/site/ndtreebasedupdate/
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objectives. Then it uses some matrix operations which in
general have O(N2) complexity to build the fronts. We also
compare our algorithm to M-Front-II [19] applied in the same
way as ND-Tree-based update. Please note that similarly to
what was done in [31] we apply M-Front-II for finding each
front, while in [19] only the first front was found by M-Front.

Also, like [30], [31] we used populations of size 5000.
We used both random populations drawn with uniform prob-
ability from a hypercube, and populations composed of 5000
randomly selected points from our data sets of intermediate
quality q3. For each number of objectives 10 populations were
drawn.

The results are presented in Figures 18 to 21. We report
both CPU times and the number of comparisons of points.
We also show the number of fronts on the right y-axis. Please
note that we do not show the number of comparisons for
DDA-NS, since this algorithm does not explicitly compares
points with the dominance relation. The slowest algorithm is
DDA-NS. Our results are quite contradictory to the results
reported in [31] where DDA-NS is the fastest algorithm in
most cases. Please note, however, that in [31] the algorithms
were implemented in MATLAB which, as the authors note,
is very efficient in matrix operations. On the other hand, the
CPU times reported in [31] are of orders of magnitude higher
compared to our experiment which suggests rather that the
MATLAB implementation of M-Front and ENS-BS/SS is quite
inefficient.

Fig. 18. CPU times of non-dominated sorting algorithms for artificial sets
with quality q3.

ENS-BS/SS performs well for populations with many fronts
but its performance deteriorates when the number of fronts
is reduced. As it was mentioned above if there is just one
front in the population, the method boils down to the dynamic
non-dominance problem solved with the simple list. This is
why in the case of populations drawn from our sets which
contain points of higher quality than random populations, and
for higher numbers of objectives, where the populations often
contain just one front, the number of comparisons saturates at
a constant level.

In most cases ND-Tree-based non-dominated sorting is the
most efficient method in terms of both CPU time and the
number of comparisons. These results are very promising
but only preliminary and further experiments, especially with

Fig. 19. #comparisons in non-dominated sorting algorithms for artificial sets
with quality q3.

Fig. 20. CPU times of non-dominated sorting algorithms for random
populations.

Fig. 21. #comparisons in non-dominated sorting algorithms for random
populations.
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populations generated by real MOEAs, are necessary. Please
note that as suggested in [19] the practical efficiency of the
non-dominated sorting in the context of a MOEA may be
further improved by maintaining the first front in a Pareto
archive.

VII. CONCLUSIONS

We have proposed a new method for the dynamic non-
dominance problem. According to the theoretical analysis the
method remains sub-linear with respect to the number of
points in the archive under mild assumptions and the time
of processing a single point observed in the computational
experiments are almost constant. The results of computational
experiments with both artificial data sets of various global
shapes, as well as results with sets of points generated by two
different multiobjective methods, i.e. MOEA/D evolutionary
algorithm and Pareto local search metaheuristic, indicate that
the proposed method outperforms competitive methods in the
case of three- and more objective problems. In biobjective case
the best choice remains the sorted list.

We believe that with the proposed method for updating
a Pareto archive, new state-of-the art results could be ob-
tained for many multiobjective problems with more than two
objectives. Indeed, results of our computational experiment
indicate that the choice of an appropriate method for updating
the Pareto archive may have crucial influence on the running
time of multiobjective evolutionary algorithms and other meta-
heuristics especially in the case of higher number of objectives.

Interesting directions for further research are to adapt ND-
Tree to be able to deal with archives of a relatively large but
bounded size or to solve the static non-dominance problem.

We have also obtained promising results by applying ND-
Tree-based update to the non-dominated sorting and compar-
ing it to some state-of-the-art algorithms for this problem.
Further experiments are, however, necessary especially with
populations generated by real MOEAs. Furthermore, good
results of ENS algorithm for populations with many fronts
suggest that a combination of ENS with ND-Tree may be an
interesting direction for further research.
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in the biobjective traveling salesman problem: an experimental study,” in
Metaheuristics for Multiobjective Optimisation, X. Gandibleux, M. Se-
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