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Abstract

Sex pheromone communication in Lepidoptera has long been a valuable model system for studying fundamental 
aspects of olfaction and its study has led to the establishment of environmental-friendly pest control strategies. 
The cabbage moth, Mamestra brassicae (Linnaeus) (Lepidoptera: Noctuidae), is a major pest of Cruciferous 
vegetables in Europe and Asia. Its sex pheromone has been characterized and is currently used as a lure to trap 
males; however, nothing is known about the molecular mechanisms of sex pheromone reception in male antennae. 
Using homology cloning and rapid amplification of cDNA ends-PCR strategies, we identified the first candidate 
pheromone receptor in this species. The transcript was specifically expressed in the antennae with a strong male 
bias. In situ hybridization experiments within the antennae revealed that the receptor-expressing cells were closely 
associated with the olfactory structures, especially the long trichoid sensilla known to be pheromone-sensitive. The 
deduced protein is predicted to adopt a seven-transmembrane structure, a hallmark of insect odorant receptors, and 
phylogenetically clustered in a clade that grouped a majority of the Lepidoptera pheromone receptors characterized 
to date. Taken together, our data support identification of a candidate pheromone receptor and provides a basis for 
better understanding how this species detects a signal critical for reproduction.

Key words:  sex pheromone, odorant receptor, in situ hybridization, crop pest

Thousands of volatile compounds hover in our environment. For 
a nocturnal moth, some of them carry crucial information about 
the host plants or conspecific mates. In moths, as in many insects, 
mate recognition usually relies on sex pheromone emission and 
reception by the corresponding partners (Tamaki 1985). Moth 
sex pheromones are classified into different types, based on the 
chemical features and biosynthetic pathways of the molecules 
(Löfstedt et al. 2016). These molecules are present only in pico-
molar concentrations in the atmospheric mixture, necessitating 
a highly sensitive and specific detection system (Kaissling 2004, 
Vogt 2005). This system consists of pheromone-sensitive sensory 
neurons housed in sensilla located on the antennae (Montagné 
et al. 2015). Most moth sex pheromone components are hydro-
phobic and are thought to be transported from the air through the 
sensillum lymph to the neuron by dedicated proteins, the pher-
omone-binding proteins (PBPs) (Vogt 2005, Pelosi et  al. 2014). 
Reaching the neuron dendritic membrane, the pheromone com-
ponents are detected by specific subtypes of odorant receptors 

(ORs) termed pheromone receptors (PRs). The PRs are delicately 
tuned to detect the components of the pheromone blend emitted 
by the conspecific female (Zhang and Löfstedt 2015). As ORs, 
PRs are also seven transmembrane domain receptors and form 
heteromeric complexes of unknown stoichiometry with the OR 
co-receptor (Orco) that is conserved among insects (Larsson et al. 
2004, Jones et al. 2005). PRs tuned to type I pheromone compo-
nents all belong to the same OR subfamily, but some PRs tuned 
to type 0 and type II pheromone components have been recently 
described in other lepidopteran OR subfamilies (Li et  al. 2017, 
Yuvaraj et al. 2017).

Pheromones have been used for decades for environmen-
tal-friendly pest management and control (Witzgall et  al. 2010); 
thus, a better understanding of the molecular process of pheromone 
detection would help improve these strategies. Especially, identifi-
cation of sex PRs in crop pests opens the way to act as early as 
the reception step for signal disruption, via the search of receptor 
activators and/or inhibitors that would interfere with the receptor 
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response. More avenues of effective mating disruption could become 
available with the identification, via OR functional screening, of 
behavior modifying chemicals such as host plant volatiles for mat-
ing sites (push-pull strategies) (Cook et al. 2007) or intervening in 
host seeking strategies for feeding and/or egg laying (Conchou et al. 
2017).

The cabbage moth (Mamestra brassicae [Linnaeus] 
[Lepidoptera: Noctuidae]) is the major pest of Cruciferous vege-
table plants in Eurasia (Hill 1987). Its sex pheromone has been 
characterized (Attygalle et al. 1987) and is currently used as a lure 
to trap males, but very little is known about the molecular mech-
anisms of sex pheromone reception in male antennae. Although 
these mechanisms are well studied in many moths as reviewed 
(Zhang and Löfstedt 2015), it is surprising that no PR has yet been 
characterized in M. brassicae. So far, only Orco (Malpel et al. 2008) 
and two PBPs have been cloned in this species (Maïbèche-Coisné 
et  al. 1998). To extend the sex pheromone reception cascade in 
M. brassicae, here we present multiple lines of evidence to suggest 
that MbraOR16 is a PR expressed in the olfactory sensilla of male 
M. brassicae antennae.

Materials and Methods

Insect Rearing and cDNA Synthesis
Insects were reared on a semiartificial diet (Poitout and Buès 1974) 
at 20°C, 60–70% relative humidity and under a 16:8 light:dark 
cycle. For cDNA synthesis, various tissues (male and female anten-
nae, proboscis, brain-suboesophageal ganglion complex, thorax, 
abdomens, legs, and wings) were dissected from 3-d-old adults. For 
in situ hybridization, male antennae were cut into pieces and fixed 
overnight in 4% paraformaldehyde (PFA) at 4°C, then dehydrated in 
methanol, and stored at −20°C until use. Total RNAs were extracted 
with TRIzol reagent (Invitrogen, Carlsbad, CA). Single-stranded 
cDNAs were synthesized from 1-μg total RNA for each sample after 
DNaseI treatment (Promega, Madison WI) with M-MLV reverse 
transcriptase and oligo(dT) primer using protocol supplied in the 
Advantage RT-for-PCR kit (Clontech, Mountain View, CA) and were 
used as template for PCR reactions. For 5′ and 3′ rapid amplification 
of cDNA ends (RACE), 3′- and 5′-cDNAs were synthesized from 
1-μg total RNA from male antennae by using the SMART RACE 
cDNA Amplification kit (Clontech) according to the manufacturer’s 
instructions.

Molecular Cloning and RT–PCR Analysis
Antennal cDNA was used in PCRs (hot-start at 95°C for 1  min, 
followed by 40 cycles of 95°C for 30  s, 55°C for 30  s, 68°C 
for 30  s, and a final step at 68°C for 3  min) with Titanium Taq 
(Clontech) and two primers designed from conserved regions 
of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) and 
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) 
PRs: OR16up 5′-ATGGACTACAAATATATGAAAGT-3′ and 
OR16low 5′-TAGTTGTTGTACATGGGTATC-3′. The 3′ and 
5′ regions of the cDNAs were obtained by 3′ and 5′ RACE-
PCR using the SMART RACE kit with a Universal Primer 
Mix versus gene-specific primers (GSPs), OR16-5′-GSP: 
5′-ACGTTGGTGATCGTCGGCTCTTGGCCCAG-3′ and OR16-
3′-GSP: 5′-GGTGTAACCGGTGTTGGCATGATTGGAGCG-3′. 
These GSPs were designed to overlap the positions of the initial 
degenerated primers, allowing sequence verification. The gener-
ated fragments were cloned into pCR II-TOPO (Invitrogen) and 

sequenced (Biofidal, Vaux-en-Velin, France). Several clones were 
sequenced for each PCR product with all exhibiting 100% identity. 
By merging all sequences obtained, a cDNA with a CDS of 1290 bp, 
referred to as MbraOR16, was identified as a putative OR16 
homolog based on BLAST (Altschul et  al. 1990) sequence analy-
ses and multiple sequence alignments with Lepidoptera PRs using 
MULTALIN (Combet et al. 2000). Sequence integrity was verified by 
PCR amplification of the whole open reading frame and sequencing 
of both strands. Default prediction of the MbraOR16 transmem-
brane topology was done using HMMTOP2.1 (Tusnády and Simon 
2001). For tissue expression analyses, PCR profiling (40 cycles, 
60°C) was done using the different tissue templates and primers 
(OR16TE-up 5′-GGTGTAACCGGTGTTGGCATGATTGGA-3′; 
OR16TE-low 5′-CATGTAATACACGAACAGCATCGGTCC-3′) 
that generated a 765-bp product. The rpl8 gene (508 bp) of M. bras-
sicae was used as a control as described previously (Maïbèche-
Coisné et al. 2004).

Phylogeny
The MbraOR16 sequence was aligned with 66 PR sequences from 
16 Lepidoptera species (details in Fig. 3) using MAFFT v.7 (Katoh 
and Standley 2013). The 66 sequences included in the dataset belong 
to the so-called ‘pheromone receptor clade’, which includes most of 
the PRs identified to date that are tuned to type I pheromone com-
ponents. Phylogenetic reconstruction was performed with PhyML 
3.0 (Guindon et al. 2010) using the maximum likelihood method 
with the JTT + I + G + F substitution model (Jones et  al. 1992) 
and both SPR (Subtree Pruning and Regrafting) and NNI (Nearest 
Neighbor Interchange) methods for topology improvement. Rate 
heterogeneity was set at four categories, and values calculated by 
ProtTest were used for the gamma distribution parameter and the 
proportion of invariable sites. Node support was estimated using 
a hierarchical likelihood-ratio test (Anisimova and Gascuel 2006).

In Situ Hybridization
Dig-labeled RNA sense and antisense probes were in vitro tran-
scribed from PCR fragments amplified (PCR: 30 cycles, 65°C) 
from male antennal cDNA using GSPs flanked with T7 (for the 
antisense probe) and SP6 (for the sense probe) sequences: OR16F 
5′-GGTGTAACCGGTGTTGGCATGATTGGA-3′ and OR16R-T7 
5′-ATTG TAATACG ACTCACTATAGGGC ATGTAATACACGAAC 
AGCATCGGTCC-3′; OR16F-SP6: 5′-AGCTATTTAGGT 
GACACTATAGGGTGTAAC CGGTGTTGGC ATGATTGGA-
3’and OR16R 5’-CATGTAAT ACACGAACAG CATCGGTCC-3′. 
Transcriptions were performed using T7 and SP6 RNA polymerases 
(Promega) according to the recommended protocol. Hybridization 
and tissue sectioning (longitudinal and transversal) were performed 
as described previously (Jacquin-Joly et al. 2000).

Results

Molecular Cloning of MbraOR16 Full-Length cDNA
With primers designed to conserved regions of noctuid PRs, we were 
able to amplify a fragment of a M. brassicae OR (Fig. 1). Subsequent 
RACE PCRs facilitated identification of a full-length cDNA encod-
ing a 430-amino acid protein with high homology (72% identity 
and 84% similarity on average) to previously identified ORs anno-
tated as PRs in various moth species (Fig. 2). The cDNA sequence 
has been deposited in GenBank (accession number: MF431269). As 
expected for insect ORs, the sequence was predicted to have seven 
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transmembrane domains (Fig. 1). The C-terminal region known to 
be conserved in moth PRs was present as were the three highly con-
served PR motifs (Fig. 2) (Zhang and Löfstedt 2015).

Phylogenetic Analysis
We constructed a maximum-likelihood phylogeny of the OR 
subfamily members that have been reported to be tuned to type 
I  pheromones. In this tree, sequences grouped within five distinct 
clades (named A to E in Fig. 3) that were highly supported by the 

likelihood-ratio test. PRs from Noctuidae clustered only in clades 
D and E. MbraOR16 belonged to a particular lineage within clade 
E that included PR sequences (OR6 and OR16) from H. armigera, 
Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae), Spodoptera 
litura (Fabricius) (Lepidoptera: Noctuidae), and Agrotis segetum 
(Schiff.) (Lepidoptera: Noctuidae) that are tuned to type I  phero-
mones of different natures. Due to moderate support at several nodes 
within this lineage, the precise phylogenetic position of MbraOR16 
could not be determined.

Fig. 1.  Full length sequence of MbraOR16 transcript and deduced amino acid sequence. Transmembrane domains (TMs) were predicted using HMMTOP2.1 
(Tusnády and Simon 2001); amino acids corresponding to the predicted TM 1–7 are shown in gray boxes.
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Tissue-Specificity by RT–PCR Analyses
MbraOR16 was only amplified from antennal cDNAs (Fig.  4, 
upper part). Although RT–PCR is not a quantitative method, we 

noticed a markedly higher amplification in male antennal cDNA 
relative to female (Fig. 4). The integrity of all cDNAs was con-
firmed by rp18 amplification, which exhibited little variation 

Fig. 2.  MbraOR16 amino acid alignment with other moth pheromone receptors. Multiple sequence alignment was done with MULTALIN (Combet et al. 2000). In 
the alignment only conserved amino acids are shown, nonconserved ones are represented with dots. Sequences included those from Spodoptera littoralis (Slit) 
(Legeai et al. 2011), Spodoptera litura (Slitu) (Zhang et al. 2015), Spodoptera exigua (Sexi) (Liu et al. 2013a), Agrotis segetum (Aseg) (Zhang and Löfstedt 2013), 
Athetis dissimilis (Adis) (Dong et al. 2016), Heliothis virescens (Hvir) (Krieger et al. 2004), and Helicoverpa armigera (Harm) (Liu et al. 2013b). The three C-terminal 
conserved domains characteristic of moth PRs (Zhang and Löfstedt 2015) are boxed.
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Fig. 3.  Maximum likelihood tree of Lepidopteran candidate pheromone receptors. The phylogenetic tree was constructed using the MbraOR16 sequence 
identified in this study and pheromone receptor sequences identified in Agrotis segetum (Aseg) (Zhang and Löfstedt 2013), Amyelois transitella (Atra) 
(Xu et al. 2012), Antheraea polyphemus (Apol) (Forstner et al. 2009), Bombyx mori (Bmor) (Krieger et al. 2005, Nakagawa et al. 2005, Tanaka et al. 2009), 
Ctenopseustis obliquana (Cobl) (Steinwender et al. 2015), Danaus plexippus (Dple) (Zhan et al. 2011), Diaphania indica (Dind) (Mitsuno et al. 2008), Epiphyas 
postvittana (Epos) (Jordan et al. 2009), Heliconius melpomene (Hmel) (The Heliconius Genome Consortium 2012), Helicoverpa armigera (Harm) (Liu et al. 
2013b, Jiang et al. 2014, Liu et al. 2014), Heliothis virescens (Hvir) (Krieger et al. 2002, Krieger et al. 2004, Wang et al. 2011), Manduca sexta (Msex) (Patch et al. 
2009, Grosse-Wilde et al. 2010), Mythimna separata (Mspe) (Mitsuno et al. 2008), Ostrinia nubilalis (Onub) (Miura et al. 2010, Wanner et al. 2010, Yasukochi 
et al. 2011, Leary et al. 2012), Plutella xylostella (Pxut) (Mitsuno et al. 2008, Sun et al. 2013), and Spodoptera litura (Slitu) (Zhang et al. 2015). When identified, 
the corresponding ligands are indicated on the right. Numbers on the branches are support values (approximate likelihood ratio-test) for basal nodes and 
for nodes within the clade containing MbraOR16. Letters A to E indicate the five distinct clades that were highly supported by the likelihood-ratio test. The 
scale bar represents the expected number of amino acid substitutions per site. In the color figure of the online version, red branches represent sequences 
from the Noctuidae family.
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in expression across the various tissues investigated (Fig.  4, 
lower part).

Antennal Expression Pattern via In Situ 
Hybridization
M.  brassicae antennae are filiform and segmented, and their dor-
sal part is covered with scales, whereas the ventral part has numer-
ous trichoid sensilla (Jacquin-Joly et al. 2000) devoted to olfaction. 
Although no signal was generated with the sense probe (Fig. 5A), 
antisense probe labeling was restricted to the ventral side (the 
olfactory side) of the male antennae (Fig.  5B). More precisely, 
MbraOR16 transcripts were localized to olfactory sensilla bases in 
the male antenna, which likewise house olfactory neuron cell bod-
ies. Expression in particular could be seen at the bases of the long 
trichoid sensilla, which are known to be involved in pheromone 
reception and are easily recognizable in the transversal sections of 
the antennal segments (Fig. 5C).

Discussion

Our results suggest that we cloned a full-length mRNA encoding 
MbraOR16, which represents the first candidate PR of the crop pest 
moth M. brassicae. The encoded protein possessed the hallmarks 
of insect ORs, such as seven transmembrane domains and specific 
expression in the antennae that in situ hybridization showed was 
restricted to olfactory sensilla (Fig. 5). Additional findings support 
classification of this receptor as a PR: 1) the transcript was male 
enriched, as usually observed for moth PRs (Zhang and Löfstedt 
2015, Zhang et  al. 2015); 2)  the deduced protein possessed the 
conserved C-terminal signature motifs typical of moth PRs (Zhang 
and Löfstedt 2015); and 3) MbraOR16 clustered in a lineage con-
taining noctuid PRs tuned to type I pheromone components. Taken 
together, our findings suggest that MbraOR16 is also a type I PR, 
whereas M.  brassicae pheromone blend consists of type I  com-
ponents. However, the precise position of MbraOR16 within the 
clade could not be determined. Furthermore, because PR response 
spectra evolved rapidly, it is difficult to infer a putative ligand for 
MbraOR16 based on the phylogeny. Nevertheless, several lines of 
evidence let us propose that we have identified the receptor for 
M. brassicae behavioral antagonists Z11-16:OH and/or Z9-14:Ac 
(Descoins et al. 1978), compounds found in the sex blends of het-
erospecific females that prevent unspecific attraction between spe-
cies with similar sex pheromone blends. The in situ hybridization 
performed on male antennae indicates that MbraOR16 transcripts 
were localized in long trichoid sensilla, that are known to house 
two neurons, one tuned to the main pheromone component Z11-
16:Ac, and the other one tuned to the behavioral antagonists Z11-
16:OH and Z9-14:Ac (Renou 1991, Renou and Lucas 1994). In 
the phylogeny, MbraOR16 did not cluster with moth PRs tuned 
to Z11-16:Ac, such as H.  virescens OR14 (Wang et  al. 2011) 
and Mythimna separata (Walker) (Lepidoptera: Noctuidae) OR1 
(Mitsuno et al. 2008), but rather clustered with receptors tuned to 
Z11-16:OH, such as H. armigera and H. virescens OR16 (Wang 
et al. 2011, Liu et al. 2013b), and to Z9-14:Ac, such as A. segetum 
OR10 (Zhang and Löfstedt, 2013). However, unequivocal demon-
stration of ligand tuning will require further functional studies for 
a better understanding of M. brassicae sex pheromone reception.

Fig. 5.  Expression pattern of MbraOR16 in male antennae of M. brassicae. Male antennae longitudinal (A and B) and transversal (C) sections (6 µm) counterstained 
with acridine orange after whole-mount hybridization with a DIG-labeled sense probe (A, control) or a DIG-labeled antisense probe (B and C). Black triangles: 
trichoid sensilla. White triangles: long trichoid sensilla. Small arrows: labeled structures.

Fig.  4.  RT–PCR expression study of MbraOR16 in samples derived from 
different tissues. PCR products are visualized by ethidium bromide after 
electrophoresis on a 1.5% agarose gel. Tissues examined included male 
antennae, female antennae, proboscis, Br-SOG (brain–subesophageal 
ganglion complex), thorax, abdomens, legs, and wings. MbraOR16 
amplification led to a 765 bp product. A 508-bp fragment of ribosomal protein 
8 (rpl8) was amplified in each sample and used as a cDNA integrity control. 
Ladder: 1kb DNA ladder (Invitrogen). Only the 500-bp band is visible.
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