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Abstract. We consider a spectrally positive Lévy process X that does not
drift to +∞, viewed as coding for the genealogical structure of a (sub)critical
branching process, in the sense of a contour or exploration process [34, 29]. We
denote by I the past infimum process defined for each t ≥ 0 by It := inf [0,t] X
and we let γ be the unique time at which the excursion of the reflected pro-
cess X − I away from 0 attains its supremum. We prove that the pre-γ and
the post-γ subpaths of this excursion are invariant under space-time reversal,
which has several other consequences in terms of duality for excursions of Lévy
processes. It implies in particular that the local time process of this excur-
sion is also invariant when seen backward from its height. As a corollary, we
obtain that some (sub)critical branching processes such as the binary, homo-
geneous (sub)critical Crump-Mode-Jagers (CMJ) processes and the excursion
away from 0 of the critical Feller diffusion, which is the width process of the
continuum random tree, are invariant under time reversal from their extinction
time.
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1. Introduction

There exist several links between spectrally positive Lévy processes (SPLP) and
branching processes that have been known and exploited for a few decades already.
We can find their origin in the seminal works of Lamperti [32], where it is shown that
there exists a one-to-one correspondence, via a random time change (the so-called
Lamperti transformation) between continuous state branching processes (CSBP)
and possibly killed SPLP [11, 30]. Lévy processes also provide a suitable way
of coding the genealogical structure of branching processes, through exploration
or contour processes [34, 29, 31]. Additionally, Ray-Knight type theorems link
the local time processes of SPLP to the width processes of branching populations
[39, 31].

Here we consider a Lévy process with no negative jumps X = (Xt, t ≥ 0), with
probability distribution Px = P (·|X0 = x) and with Laplace exponent ψ, defined
by

E0[exp(−λXt)] = exp(tψ(λ)).
Thanks to the Lévy-Kinchin formula, ψ can be expressed as follows for any λ ≥ 0,

ψ(λ) = αλ+ βλ2 +
∞∫

0

(
e−λr − 1 + λr1r<1

)
Π(dr), (1)

where α ∈ R, β ≥ 0 is called the Gaussian coefficient and Π is a σ- finite measure
on (0,∞), called the Lévy measure, satisfying

∫
(0,∞)(r

2 ∧ 1)Π(dr) <∞. The paths
of X have finite variation a.s. if and only if β = 0 and

∫
(0,1] rΠ(dr) <∞. Otherwise

they have infinite variation a.s.
We consider the process reflected at its infimum X − I, where for each t ≥ 0

we denote It := inf [0,t]X. A result due to Rogozin [41] states that for SPLP 0
is always regular for (−∞, 0), so is also regular for itself for the reflected process
(and it is regular for (0,+∞) if and only if X has infinite variation paths a.s.). We
know from general theory for Markov process that there exists a local time at 0
for X − I, here denoted by (Lt, t ≥ 0) that can be defined as the unique (up to
a multiplicative constant) adapted additive functional that grows exactly on the
zeros of X − I. Furthermore, the fact that X has no negative jumps entails that
−I satisfies these conditions, so it is an explicit local time for the reflected process.
Then, its right-continuous inverse

τt := inf {s > 0 : −Is > t}
is the same as T−t = inf{s ≥ 0 : Xs < −t}, the first hitting time of (−∞,−t). It
is a (possibly killed) subordinator whose jumps coincide exactly with the excursion
intervals of X − I so it represents the appropriate time scale for the so-called
excursion process, that we will now describe.

We let E be the space of real-valued càdlàg functions with finite lifetime V ∈
[0,∞), and we denote by ∂ a topologically isolated state, called cemetery point.
Define the excursion process ε = (εt, 0 < t ≤ −I∞), taking values in E ∪∂ as follows

εt :=
{ (

(Xτt−+s − Iτt− , 0 ≤ s ≤ τt − τt−
)
, if τt − τt− > 0,

∂, if τt − τt− = 0, or t =∞, for t ≥ 0.
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Then according to Itô’s excursion theory, (t, εt)t≥0 is a Poisson point process, pos-
sibly stopped at the first excursion with infinite lifetime (which arrives only and
a.s. when X drifts to +∞). Its intensity is dt n(dε), where n is a measure on E
called the excursion measure. We refer to [8, Chapter IV] for further details.

From now on, we assume that X is (sub)critical, meaning it does not drift to
+∞, which is equivalent to ψ′(0+) ≥ 0.

Let ε be the generic excursion of X − I away from 0 and γ the first instant at
which this excursion attains its supremum, that is

γ = γ(ε) = inf{s > 0 : εs = εV },
where εs = sup[0,s] ε. Define the space-time-reversal transformation ρ for any ex-
cursion ω ∈ E , as ρ ◦ ω := (ωV− − ω(V−s)−, 0 ≤ s ≤ V ), where by convention
ω0− = ω0. We also call it rotation. We are interested in the disintegration of ε at
γ. We prove that the pre-supremum and the post-supremum processes, denoted re-
spectively ←ε = kγ ◦ε = (εs, 0 ≤ s ≤ γ) and →ε = θ′γ ◦ε := (εγ+s−εγ , 0 ≤ s ≤ V −γ),
are both invariant for this space-time-reversal transformation under the measure
n. Moreover, this results imply the following theorem, for which we need first to
define the functional χ : E → E as

χ (ε) :=
[
ρ (kγ ◦ ε) , ρ

(
θ′γ ◦ ε

)
+ εγ

]
,

where for any two elements ω1, ω2 ∈ E , [ω1, ω2] stands for their concatenation.

Theorem 1. For every measurable functional F : E → R+ we have
n (F ) = n (F ◦ χ)

Williams [42] studied the decomposition of the generic excursion X − I at its
maximum for Brownian motion, showing it consists in two independent Bessel pro-
cesses of dimension 3, started at 0, running to encounter each other, and killed
upon hitting the same independent random variable (see e.g. [40, Chapter XII] or
[12, Section 5]). This result has been generalized to SPLP by Chaumont [13], and
for general Lévy processes by Duquesne [19]. The law of each, the pre-γ and post-γ
subpaths is characterized in [13] and [19] in terms of the law of X conditioned to
stay positive, denoted P ↑. Our study differs from these works since here we show
that these distributions are invariant under space-time-reversal. Rather our results
provide in passing properties of reversal invariance under the law P ↑ that we state
at the end of Section 3. For further details on path decomposition theorems for
Lévy processes at the overall maximum, minimum and other random times, we
refer to [38, 37, 23, 18].

More recently, in [1, 17] the authors also establish Williams decompositions under
the excursion measure for the exploration process associated with the Lévy contin-
uum random tree and super-processes with a spatially non-homogeneous quadratic
branching mechanism. Several properties of these branching processes are then
derived from these decompositions, such as a closed formula for the probability of
hitting zero for a CSBP with immigration. In [17], the Q-process is obtained by
looking at the super-process from the root and letting the extinction time tend to
infinity. Moreover, an equivalent of the Esty time reversal from [26] is given in a
continuous setting.

Another related result is obtained by Miermont in [35] concerning a similar
decomposition via the Vervaat’s transform. Proposition 1 in [35] applied to SPLP
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of infinite variation not drifting to +∞ and having bi-continuous marginal densities
w.r.t. to Lebesgue measure, has the following implications: the excursion above
the infimum conditioned to have a duration equal to l is well defined, and if we cut
this excursion at a uniform point υ and we concatenate the post-υ and the pre-υ
subpaths (in this order), we get a Lévy bridge going from 0 to 0 in l units of time
(which is well defined under these hypotheses). Such a bridge is clearly invariant
by rotation and hence, by conditioning respectively on the events {υ < γ} and
{υ > γ}, we could have obtained that the laws of ←ε and →ε are also invariant
by rotation. This approach provides an alternative way of obtaining some of our
results under the technical hypothesis of continuity on the marginal densities.

A first consequence of Theorem 1 is the invariance under time reversal of the
local time process of the excursion X − I away from 0. To be more specific, define
the local time process (Γ(ε, r), r ≥ 0) for the canonical excursion ε ∈ E as a Borel
function satisfying

V (ε)∫
0

φ (εs) ds =
∞∫

0

Γ (ε, r)φ(r)dr, (2)

for any continuous function φ with compact support in [0,∞). These local time
processes are known to exist and be unique in the infinite variation case, named
occupation densities, see for instance [8]. When X has finite variation we can
define an equivalent process, taking values in N ∪ {+∞}, as the number of times
the excursion hits level r, i.e.

Γ (ε, r) =
∑

0≤s≤V
1{εs=r}. (3)

Then we can state the following result.

Corollary 2. The local time process of the excursions of X − I away from 0 is
invariant under time reversal, that is

(Γ (ε, r) , 0 ≤ r ≤ εγ) d= (Γ (ε, εγ − r) , 0 ≤ r ≤ εγ) . (4)

As we previously pointed out, the main motivation that led us to look into
this pathwise decomposition comes from branching processes, that is stochastic
processes with non-negative values satisfying the branching property. This means
that for any x, y > 0, the process started at x+y has the same distribution as a sum
of two independent copies of itself, starting respectively at x and y. The simplest
branching processes are those in discrete time and state space, the well-known
Bienaymé-Galton-Watson (GW) processes [6]. In the case of discrete time and
continuous state-space, we use the term Jirina processes as in [29]. For continuous
time and discrete state space we speak of Crump-Mode-Jagers (CMJ) processes
and finally the so-called continuous state branching process (CSBP) for continuous
time and state spaces. Our results concern mainly CMJ processes and CSBP’s, so
we will spend more time specifying their characteristics in Section 4, but we refer
to [6, 25] for the general theory of branching processes.

Splitting trees are random trees formed by discrete particles that behave inde-
pendently from each other, have i.i.d. lifetime durations (possibly infinite), and give
birth to i.i.d. copies of themselves during their lives (single births). The process
counting the number of particles in the splitting tree alive at time t is a binary,
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homogeneous CMJ, in the sense that the excursion of X − I can be viewed, in the
finite variation case, as the contour process of a (sub)critical splitting tree and then
its local time process is a CMJ [29]. Consequently, here we consider only CMJ
processes that are binary and homogeneous, but we called them CMJ processes for
short. In the infinite variation case, under some mild assumptions, the excursion of
X − I codes the genealogy of a totally ordered measured (TOM) tree satisfying the
splitting property, which are the continuum analogue of chronological trees in the
setting of real trees, as it is shown in [31]. Hence, Theorem 1 leads in particular
to the invariance under time reversal from its extinction time of the (sub)-critical
CMJ process which is the local time of the SPLP characterized by (1). The same
holds for the excursion away from 0 of the critical Feller diffusion (the CSBP with
branching mechanism ψ(λ) = λ2, see [20] and Subsection 4.1 for the details on this
definition), which is the width process of the continuum random tree, [2]. This can
be summarized in the following corollary of Theorem 1.

Corollary 3. The (sub)critical CMJ branching process and the excursion away
from 0 of the critical Feller diffusion, are invariant under time reversal from their
extinction time.

Similar results concerning the duality by time-reversal of branching processes
have been given in the litterature. In particular, in [4] we can find a time-reversal
invariance principle for the linear birth and death process in the critical case, when
the process is conditioned on the number of individuals at the time of reversal to
be equal to n. As suggested by the authors, the rescaled limit of the time-reversed
process when n→∞, is the Feller branching diffusion. This suggests an alternative
way of obtaining the second result in the previous Corollary. See also [21] and more
recently [5, 26, 17] for the treatment of the reverse of Galton-Watson processes and
specifically the Esty time reversal, which is the limit obtained by conditioning a
GW process in negative time upon entering the state 0 (extinction) at time 0 and
starting in the state 1 at time −n, when n tends to +∞. We also refer to [10] for a
time reversal property for the ancestor counting process of a stationary CSBP with
sub-critical quadratic branching mechanism.

This paper is a follow-up to [16], where we have obtained a property of invariance
under time-reversal, from a deterministic time T , for the population size process
of certain random forests. The latter are defined as a sequence of independent
splitting trees stopped at the first tree surviving up to time T . In [16] we focused
on the time-reversal from a deterministic time T whereas here we are interested in
the same property from the extinction time of the process. It is worth stressing
that, besides the implications concerning branching processes, some of our lemmas
are interesting in their own right since they provide some invariance results for
subpaths of SPLP.

The paper is organized as follows. In a short Section 2 we introduce some
preliminary notions and notation. It is followed up by Section 3, which contains
our main results on the path decompositions of SPLP reflected at their infimum
under the excursion measure. In Section 4 we recall some notions linking SPLP to
branching processes and give the main implications of our results in the context of
the latter. Finally Section 5 is devoted to completing the remaining demonstrations.
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2. Preliminaries

Basic notation. Let B(R) denote the Borel σ-field of R. Consider the spaceD(R+,R)
(or simply D) of càdlàg functions ω from R+ into the measurable space (R,B(R))
endowed with Skorokhod topology [24]. Denote the corresponding Borel σ-field by
B(D). Define the lifetime of a path ω ∈ D as V = V (ω) := inf{t ≥ 0 : ω(s) =
ω(t),∀s ≥ t}, with the convention inf ∅ = ∞. Here ω(t−) stands for the left limit
of ω at t ∈ R+, ∆ω(t) = ω(t)− ω(t−) for the size of the (possible) jump at t ≤ V
and we adopt the usual convention ω(0−) = ω(0). The subspace of functions in D
with finite lifetime is denoted E as in the introduction. We will consider invariably
ω ∈ E as a function defined on [0, V (ω)] or as its prolongation to R+ obtained by
stopping.

We consider stochastic processes, on the probability space (D,B(D), P ), say
X = (Xt, t ≥ 0), also called the coordinate process, having Xt = Xt(ω) = ω(t). In
particular, we will consider only processes with no negative jumps, that is such that
∆Xt ∈ R+ for every t ≥ 0. The canonical filtration is denoted by (Ft)t≥0 and we
let P(E) be the collection of all probability measures on any space E. We use the
notation Px(X ∈ ·) = P (X ∈ ·|X0 = x). In the absence of subscript the process is
considered to start at 0 a.s.

Define by TA := inf{t > 0 : Xt ∈ A}, the first hitting time of the set A ∈ B(R),
with the conventions T0 = T{0}, and for any x > 0, T−x = T(−∞,−x), Tx = T(x,+∞).
Note that in general T{±x} 6= T±x, for x > 0. However, since X has no negative
jumps, X is a.s. continuous at T−x for all x > 0, and then it holds that T{−x} =
T−x = T(−∞,−x) a.s.

As usual, for real valued functions, ‖ · ‖∞ stands for the uniform norm and
‖ω‖T := sup[0,T ] |ω| for the supremum over [0, T ].

Some path transformations of càdlàg functions. In this subsection we will define
some families of operators on the space of càdlàg functions ω ∈ D:

• the classical shift operators, θs, s ∈ R+, defined by

[θs(ω)]t := ωs+t, ∀t ∈ R+

• the non-standard shift operators, θ′s, s ∈ R+, defined by

[θ′s(ω)]t := ωs+t − ωs, ∀t ∈ R+

• the killing operators, ks, s ∈ R+ , defined by

[ks(ω)]t :=
{
ωt, if t < s
ωs, otherwise

the killing operator can be generalized to killing at random times, for in-
stance kTA(X) = kTA(X)(X), denotes the process X, killed at the first pas-
sage into A. It is easy to see that if X is a Markov process, so is kTA(X).
We set

k0(ω) ≡ ω0.

What we call killed path here, is more commonly denominated stopped
path. The difference is that killing usually refers to the path being sent to
an isolated state after the killing time, whereas here it remains constant to
a real value. We highlight our interest in keeping track of the final jump of
the functions we study, which justifies this choice.
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• the space-time-reversal mapping ρs, s ∈ R∗+, as

[ρs(ω)]t :=
{
ωs − ω(s−t)− ∀t ∈ [0, s]
ωs − ω0 if t > s

and when V (ω) < +∞, we call rotation, denoted simply by ρ, the space-
time-reversal operator at the lifetime of a path, that is ρ = ρV . Notice that
[ρs(ω)]0 = ∆ωs (possibly 6= 0).

The notations P ◦ θ−1
s , P ◦ k−1

s and P ◦ ρ−1 stand for the law of the shifted, killed
and space-time-reversed processes when P is the law of X.

For a sequence of functions in the same state space, say (ωi)i≥1 with lifetimes
(Vi, i ≥ 1), we define a new process by the concatenation of the terms of the
sequence, denoted by

[ω1, ω2, . . . ]
where the juxtaposition of terms is considered to stop at the first element with
infinite lifetime. For instance, if V (ω1) < +∞ and V (ω2) = +∞, then for every
n ≥ 2

[ω1, ω2, . . . , ωn]t =
{
ω1,t if 0 ≤ t ≤ V (ω1)
ω2,t−V (ω1) t > V (ω1) .

Notice that a concatenation of càdlàg functions thus defined, might not be a càdlàg
function, since, for instance, in the case where n = 2, the first function might end
with a jump, so the new function [ω1, ω2] will be càdlàg only if ω1,V1 = ω2,0. This is
always the case in our applications, that is why we choose to concatenate functions
in this less usual way, which has the property of recording the final jump of each
path.

Skorokhod topology. As mentioned before, we consider the space of càdlàg functions
D and the subset of excursions E (paths with finite lifetime), to be endowed with
Skorokhod’s topology, which makes D a Polish space. We refer to [24] for further
details on this topology, which can be characterized as follows: a sequence (εn) on
E converges to ε when n→∞, if and only if there exists a sequence (λn) of changes
of time (continuous, strictly increasing functions, with λn(0) = 0 and λn(t) ↑ ∞
when t ↑ ∞), such that ‖λn − Id‖∞ → 0 and ‖εn ◦ λn − ε‖T → 0 for all T ≥ 0.
The space of continuous, bounded functions from E into R+ with respect to the
Skorokhod topology, will be denoted by Cb(E ,R+).

Properties of the Laplace exponent and scale function of a SPLP. The Laplace
exponent given by (1) is infinitely differentiable, strictly convex (when Π 6≡ 0 or
β 6= 0), ψ(0) = 0 and ψ(+∞) = +∞. Let η := sup{λ ≥ 0 : ψ(λ) = 0}. Then we
have that η = 0 is the unique root of ψ, when ψ′(0+) ≥ 0. Otherwise the Laplace
exponent has two roots, 0 and η > 0. It is known that for any x > 0,

Px (T0 < +∞) = e−ηx.

More generally, there exists a unique continuous increasing functionW : [0,+∞)→
[0,+∞), called the scale function, characterized by its Laplace transform,

+∞∫
0

e−λxW (x)dx = 1
ψ(λ) , λ > η,
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such that for any 0 < x < a,

Px (T0 < Ta) = W (a− x)
W (a) . (5)

Time-reversal duality for Lévy processes. One of the key ingredients of our results
is the duality property under time-reversal of Lévy processes (see [8, Chapter II]
for details). Roughly speaking, it states that if a path is space-time-reversed at a
finite time horizon, the new path has the same distribution as the original process.
We will use the following formulation subsequently: for every fixed t > 0 and every
non-negative measurable function F we have

E [F (kt ◦X)] = E [F (ρ ◦ (kt ◦X))] . (6)
By integrating over t, this result is still valid if the process is killed at an independent
random finite time.

3. Main results

Throughout this section X denotes a SPLP with Lévy measure Π on (0,+∞),
whose Laplace exponent denoted by ψ is defined by (1). As in the preliminaries, we
let Px denote the law of the process conditioned on X0 = x. We assume ψ′(0+) ≥ 0,
meaning we are in the (sub)critical regime. Let St := sup{Xs, 0 ≤ s ≤ t} and
It := inf{Xs, 0 ≤ s ≤ t} be the running supremum and the running infimum of the
Lévy process X.

Pre-supremum processes. We recall that n denotes the excursion measure of
the process X − I away from 0. Let gt and dt be the left and right-end points of
the excursion straddling t, denoted et, that is,

et := (Xgt+s − It, 0 ≤ s ≤ dt − gt) .
Note that V (et) = dt − gt.

For any excursion ε and any s ∈ R+ define its supremum εs := sup[0,s] ε and the
first instant where the supremum is attained on the interval [0, s] , that is

γ(s) = γ(s, ε) := argmax [0,s]ε = inf {s′ ∈ [0, s] : ε(s′) = εs} .

A classical result [38, 19] ensures that this instant is unique P -a.s. and n-a.e. thanks
to the regularity of 0 for (−∞, 0). In general when using γ and V , the dependence
on the excursion under focus will be omitted unless there is a risk of confusion.

Define in a similar way, for the process X,
σt(X) := argmax [0,t]X, and
σt(X) := arginf [0,t]X = sup {s′ ∈ [0, t] : Is′ = Xs′−} .

Note that this last instant is also unique a.s. and that it is a simple ‘argmin ’ in
the infinite variation case.

Let ω ∈ E be any path with finite lifetime. We are interested in the trajectories
where the infimum is attained before the maximum, so let us define the event

A(ω) := {arginf ω < argmax ω} .
We will be interested in particular in A(kt ◦X) where

A(kt ◦X) = {σt(X) < σt(X)} =
{
Sgt −Xgt < sup

(0,t−gt)
et

}
.
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We can now state the next result.

Proposition 4. The pre-supremum process of the excursion of X − I away from
zero is invariant under time reversal, that is, for any measurable functional h : E →
R+,

n
(
h
(
kγ(V ) ◦ ε

))
= n

(
h ◦ ρ

(
kγ(V ) ◦ ε

))
. (7)

This result is based on the following lemmas, for which we need first to define
the set H of functions of exponential type in the lifetime of excursions. That is,
measurable functions f : E → R+, such that there exist two non-negative constants
c and C such that f(ε)e−cV (ε) ≤ C, for every ε ∈ E .

Lemma 5. For any functional f ∈ H, the following functions are right-continuous
at every s > 0

(i) n
(
f
(
kγ(s) ◦ ε

)
1{s<V }

)
,

(ii) n
(
f
(
kγ(V ) ◦ ε

)
1{γ(V )<s<V }

)
.

Proof. See Section 5. �

Lemma 6. For any functional f ∈ H and every s ≥ 0, we have the following
identities

(i)
n
(
f
(
kγ(s) ◦ ε

)
1{s<V }

)
= n

(
f ◦ ρ

(
kγ(s) ◦ ε

)
1{s<V }

)
, (8)

(ii)
n
(
f(kγ(V ) ◦ ε)1{γ(V )<s<V }

)
= n

(
f ◦ ρ(kγ(V ) ◦ ε)1{γ(V )<s<V }

)
. (9)

Proof. Let us define the following functional

F1 (kt ◦X) = f
(
kγ(V ) ◦ θ′σ

t
(X) ◦ kt(X)

)
1{(σt−σt)(X)>0}g

(
Xσt −Xσt−, Xt −Xσt−

)
,

where f, g are also non-negative measurable functions. It is not hard to see that a.s.
A(kt ◦X) = {(σt−σt)(X) > 0} = A(ρ(kt ◦X)) since σt(ρ(X ◦kt)) = t−σt(kt ◦X)
and σt(ρ(kt ◦X)) = t− σt(kt ◦X). Hence, the duality (6) applied to F1 gives that

E
[
f
(
Xσ

t
+s −Xσ

t
−, 0 ≤ s ≤ σt − σt

)
1{σt<σt}g

(
Xσt −Xσ

t
−, Xt −Xσ

t
−
)]

= E
[
f
(
Xσt −X(σt−s)−, 0 ≤ s ≤ σt − σt

)
1{σt<σt}g

(
Xσt −Xσ

t
−, Xσt

)]
.

Notice that σt is the left-end point of et, the excursion straddling t, this point
is denoted gt. Similarly, σt is the point where this excursion attains its maxi-
mum before t. This implies that P -a.s. on A(kt ◦ X), we have kγ(t−gt) ◦ et =(
Xσt+s −Xσt−, 0 ≤ s ≤ σt − σt

)
and ρ

(
kγ(t−gt) ◦ et

)
=
(
Xσt −X(σt−s)−, 0 ≤ s ≤ σt − σt

)
,

which allows us to write the preceding identity as follows
E
[
f
(
kγ(t−gt) ◦ et

)
1A(kt◦X)g (et(γ(t− gt)), et(t− gt))

]
(10a)

= E
[
f
(
ρ
(
kγ(t−gt) ◦ et

))
1A(ρ◦(kt◦X))g (et(γ(t− gt)), et(γ(t− gt)) + It)

]
.

(10b)

We will first develop the left-hand side of this equation. First, rewrite A(kt ◦X)
as {Sgt − Xgt < max(0,t−gt)(et)} and instead of stopping the process at t, we kill
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it at an exponential independent rate, or equivalently, we integrate (10a) against
qe−qt, giving

+∞∫
0

qe−qtdt E
[
f
(
kγ(t−gt) ◦ et

)
1{Sgt−Xgt<et(γ(t−gt))}g (et (γ(t− gt)) , et (t− gt))

]
.

As in the introduction, we let (τu)u≥0 denote the inverse of the local time at 0
of the process X − I, and by εu the excursion starting at τu−. If we exchange the
expectation and the integral in the preceding equation (Fubini’s theorem), we can
express the quantity inside the expectation as a sum taken over all the excursion
intervals of X − I away from 0

+∞∫
0

qe−qtdtE
[ ∑
u:∆τu>0

1{τu−<t≤τu}f
(
kγ(t−τu−) ◦ εu

)
1{Sτu−−Xτu−<εu(γ(t−τu−))}

× g (εu (γ(t− τu−)) , εu (t− τu−))
]

= E

[ ∑
u:∆τu>0

∞∫
0

qe−qtdt1{τu−<t≤τu}f
(
kγ(t−τu−) ◦ εu

)
1{Sτu−−Xτu−<εu(γ(t−τu−))}

× g (εu (γ(t− τu−)) , εu (t− τu−))
]
.

We have applied Fubini’s theorem once more for the last step. By the change of
variable s = t− τu−, taking again the expectation and applying the compensation
formula [8, Chapter IV] we get

E

 ∑
u:∆τu>0

∆τu∫
0

qe−qτu−e−qsds f
(
kγ(s) ◦ εu

)
1{Sτu−−Xτu−<εu(γ(s))}g (εu (γ(s)) , εu (s))


(11a)

= E

 +∞∫
0

du e−qτu
∫
n(dε)

V (ε)∫
0

ds qe−qsf
(
kγ(s) ◦ ε

)
1{Sτu−Xτu<εγ(s)}g

(
εγ(s), εs

)
= E

 +∞∫
0

du e−qτuϕ (Sτu −Xτu)

 , (11b)

where ϕ(x) = n
(∫ V (ε)

0 ds qe−qsf(kγ(s) ◦ ε)1{x<εγ(s)}g
(
εγ(s), εs

))
.

DefineGq := arginf (0,eq)X, where eq is exponentially distributed with parameter
q and is independent of X. Then we can apply again the compensation formula to
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expand the last expression as follows

E
[
ϕ
(
SGq −XGq

)]
= E

 ∑
u:∆τu>0

1{τu−<eq<τu}ϕ
(
Sτu− −Xτu−

)
= E

 ∑
u:∆τu>0

(
e−qτu− − e−qτu

)
ϕ
(
Sτu− −Xτu−

)
= E

 +∞∫
0

du e−qτuϕ (Sτu −Xτu)

n (1− e−qV
)
.

So we get that (11a) is equal to
E
[
ϕ
(
SGq −XGq

)]
n (1− e−qV ) , (12)

and by applying Fubini’s theorem one more time, and replacing ϕ by its expression
this is equal again to

q

n (1− e−qV )E

n
 V∫

0

ds e−qsf
(
kγ(s) ◦ ε

)
1{Yq<εγ(s)}g

(
εγ(s), εs

)
= q

n (1− e−qV )n

 V∫
0

ds e−qsf
(
kγ(s) ◦ ε

)
P
(
Yq < εγ(s)

)
g
(
εγ(s), εs

)
= q

n (1− e−qV )

∞∫
0

ds e−qsn
(
f
(
kγ(s) ◦ ε

)
1{s<V }P

(
Yq < εγ(s)

)
g
(
εγ(s), εs

))
.

where Yq stands for an independent random variable, distributed as SGq −XGq .
We now go back to Equation (10) and apply all the above arguments to (10b). By

choosing the same function f and observing that εγ(s) = max[0,s] ε = max[0,s] ρ
(
kγ(s) ◦ ε

)
,

we obtain that this is equal to the following expressions, analogous to (11) and (12),

E

 +∞∫
0

du e−qτu ϕ̃ (Sτu −Xτu , Iτu)

 =
E
[
ϕ̃
(
SGq −XGq , IGq

)]
n (1− e−qV ) ,

where ϕ̃(x, y) = n
(∫ V (ε)

0 dsqe−qsf ◦ ρ(kγ(s) ◦ ε)1{x<εγ(s)}g
(
εγ(s), εγ(s) + y

))
. Us-

ing the same arguments as before, and denoting by (Yq, Zq) a pair distributed as
(SGq −XGq , IGq ), this is also equal to

q

n (1− e−qV )E

n
 V∫

0

ds e−qsf ◦ ρ
(
kγ(s) ◦ ε

)
1{Yq<εγ(s)}g

(
εγ(s), εγ(s) + Zq

)
= q

n (1− e−qV )

∞∫
0

ds e−qsn
(
f ◦ ρ

(
kγ(s) ◦ ε

)
1{s<V }E

[
1{Yq<εγ(s)}g

(
εγ(s), εγ(s) + Zq

)])
,

where it should be noted that the expectation is taken with respect to the law of
(Yq, Zq). Finally, since the first term in the above product is the same for (10a)



BRANCHING PROCESSES SEEN FROM THEIR EXTINCTION TIME 12

and (10b), Equation (10) is equivalent to
∞∫

0

ds e−qsn
(
f
(
kγ(s) ◦ ε

)
1{s<V }P

(
Yq < εγ(s)

)
g
(
εγ(s), εs

))

=
∞∫

0

ds e−qsn
(
f ◦ ρ

(
kγ(s) ◦ ε

)
1{s<V }E

[
1{Yq<εγ(s)}g

(
εγ(s), εγ(s) + Zq

)])
. (13)

(i) In order to prove the first identity in the lemma we start by taking g ≡ 1.
The probability P

(
Yq < εγ(s)

)
is also a function of kγ(s) ◦ ε, that is in

addition strictly positive since εγ(s) = 0 only if ε = 0. Therefore we can
consider

f
(
kγ(s) ◦ ε

)
=
h
(
kγ(s) ◦ ε

)
eαγ(s)

P
(
Yq < εγ(s)

) , ∀s > 0,

where h is a non-negative bounded function and α a non-negative constant.
Then, (13) entails

∞∫
0

ds e−qsn
(
h
(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }

)
=
∞∫

0

ds e−qsn
(
h ◦ ρ

(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }

)
.

Under regularity conditions guaranteeing the existence and injectivity of the
Laplace transform, this identity implies (8). This is true in particular if both
sides in (8) are right-continuous functions of s, for every s ∈ (0,+∞), grow
at most exponentially and are locally integrable on [0,+∞) [43]. Lemma 5
(i) ensures the right-continuity on (0,+∞), so we will now focus on showing
that the r.h.s. in (8) satisfies the other two conditions. Notice all the
arguments we use below also apply when changing h by h ◦ ρ.

Let us first show local integrability. For q > α, s > 0 and any constant
K > 0, we have∫ K

0
ds n

(
h
(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }

)
≤ ‖h‖∞eαK

∫ K

0
ds n (s < V )

= ‖h‖∞eαKn (V ∧K)

where as usual, ‖ · ‖∞ stands for the uniform norm and n (V ∧K) is finite
for every K > 0.

The exponential growth condition is also straightforward

n
(
h
(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }

)
≤ ‖h‖∞

∫
n (dε) eαs1{s<V }

≤ ‖h‖∞n (V > s) eαs ≤ C ′′eαs,

for every s > 1, since as we have mentioned before, n(V > 1) is finite.
Thus, we can conclude that both functions in (8) have well-defined

Laplace transforms that satisfy the injectivity conditions, so this identity
holds for every s ≥ 0 (is trivial for s = 0).

(ii) In order to prove the second identity we will follow a similar path. Go
back to Equation (13), on its r.h.s., we disintegrate n with respect to εγ(s),
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getting

∞∫
0

ds e−qs
∫

x∈(0,+∞)

n
(
f ◦ ρ

(
kγ(s) ◦ ε

)
1{εγ(s)∈dx,s<V }

)
E
[
1{x>Yq}g (x, x+ Zq)

]

=
∞∫

0

ds e−qs
∫

x∈(0,+∞)

n
(
f
(
kγ(s) ◦ ε

)
1{εγ(s)∈dx,s<V }

)
E
[
1{x>Yq}g (x, x+ Zq)

]

=
∞∫

0

ds e−qsn
(
f
(
kγ(s) ◦ ε

)
1{s<V }E

[
1{εγ(s)>Yq}g

(
εγ(s), εγ(s) + Zq

)])

=
∞∫

0

ds e−qsn
(
f ◦ ρ

(
kγ(s) ◦ ε

)
1{s<V }P

(
εγ(s) > Yq

)
g
(
εγ(s), εs

))
.

We have applied the identity (8) for the first step, which implies in partic-
ular that for every f ∈ H and s > 0,

n
(
f ◦ ρ

(
kγ(s) ◦ ε

)
1{εγ(s)∈dx,s<V }

)
= n

(
f
(
kγ(s) ◦ ε

)
1{εγ(s)∈dx,s<V }

)
,

since εγ(s) is invariant under time reversal of the excursion ε ◦ kγ(s) and
f ◦ ρ ◦ ρ ≡ f . The latter argument also justifies the last equality, when
applied directly to (13).

Moreover, since this is also equal to the l.h.s. in (13) we have

∞∫
0

ds e−qsn
(
f
(
kγ(s) ◦ ε

)
1{s<V }P

(
εγ(s) > Yq

)
g
(
εγ(s), εs

))

=
∞∫

0

ds e−qsn
(
f ◦ ρ

(
kγ(s) ◦ ε

)
1{s<V }P

(
εγ(s) > Yq

)
g
(
εγ(s), εs

))
. (14)

We choose the function g as follows, for 0 < z < x,

g(x, z) = Ez [H (kT0 ◦X,x)]
P (Yq < x) ,

where H : E × (0,+∞)→ R+ is a measurable function.
Then, the Markov property of n yields, for every s ≥ 0,

n
(
f
(
kγ(s) ◦ ε

)
1{s<V }Eεs

[
H
(
kT0 ◦X, εγ(s)

)])
= n

(
f
(
kγ(s) ◦ ε

)
1{s<V }H

(
θs ◦ ε, εγ(s)

))
.

In particular, for H(ε, x) = 1{sup ε<x} this is equal to

n
(
f
(
kγ(s) ◦ ε

)
1{s<V }1{sup θs◦ε<εγ(s)}

)
.
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Consequently, for this choice of g and H, Equation (14) becomes,
∞∫

0

ds e−qsn
(
f
(
kγ(V ) ◦ ε

)
1{γ(V )<s<V }

)

=
∞∫

0

ds e−qsn
(
f ◦ ρ

(
kγ(V ) ◦ ε

)
1{γ(V )<s<V }

)
. (15)

Here again we have the identity between the Laplace transform of two
functions of s. When f(ε) = h(ε)eαV for some h bounded and α > 0, both
integrands are locally integrable on [0,+∞) by the same arguments used
previously for (i). Right-continuity also holds thanks to Lemma 5 (ii), so
we can invert the Laplace transform in (15), leading to the desired identity
for s > 0.

�

Proof of Proposition 4. Let us go back to Equation (9). We can replace f(·) by
h(·)eqγ(V (·)), for h a bounded mesurable function. Then we integrate both sides
with respect to qe−qsds and apply Fubini’s theorem, which leads to

n
(
h
(
kγ(V ) ◦ ε

) (
1− e−q(V−γ(V ))

))
= n

(
h ◦ ρ

(
kγ(V ) ◦ ε

) (
1− e−q(V−γ(V ))

))
,

or equivalently,

n
(
h
(
kγ(V ) ◦ ε

) (
1− e−q(V−γ(V ))

)
1{V−γ(V )>0}

)
= n

(
h ◦ ρ

(
kγ(V ) ◦ ε

) (
1− e−q(V−γ(V ))

)
1{V−γ(V )>0}

)
.

Since h is non-negative, monotone convergence applies when q → +∞, leading to
n
(
h
(
kγ(V ) ◦ ε

)
1{V−γ(V )>0}

)
= n

(
h ◦ ρ

(
kγ(V ) ◦ ε

)
1{V−γ(V )>0}

)
,

Finally, notice that n(γ(V ) ≥ V ) = 0, so the identity in the proposition holds
for any h bounded. This is still true for any non-negative function, again by a
monotone convergence argument. �

Post-supremum process. We now give a result analogous to Proposition 4 for
the post-supremum process of the excursions of X − I away from 0.
Proposition 7. The post-supremum process of the excursion of X − I away from
zero is invariant under time reversal, that is, for any measurable functional h : E →
R+,

n
(
h
(
θ′γ(V ) ◦ ε

))
= n

(
h ◦ ρ

(
θ′γ(V ) ◦ ε

))
. (16)

Before we proceed to prove this result, we need to establish some lemmas, and
the following proposition, which is interesting in its own right, since besides serving
to prove our main results, it gives the invariance under time-reversal of parts of the
trajectory of a killed SPLP.
Proposition 8. Let x > 0 and X be a SPLP starting at 0 and killed upon hitting
(−∞,−x). This process shifted to the (unique) value where it attains its supremum
before T−x is invariant by rotation. More precisely, for every x > 0, P -a.s.

θ′γ(V ) ◦ kT−x ◦X
d= ρ
(
θ′γ(V ) ◦ kT−x ◦X

)
.
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We also need the following lemma.

Lemma 9. For every x ∈ (0,+∞) and every functional h ∈ Cb(E ,R+), the function
z : [0,+∞)→ [0,+∞) defined as

z(x) := E
[
h
(
θ′γ(V ) ◦ kT−x ◦X

)]
is right-continuous.

Proof. See Section 5. �

Proof of Proposition 8. To demonstrate this result we follow a similar path to that
of the proof of Lemma 6. We start by considering the complementary of the event
A defined at the beginning of this section, that is

Ac(kt ◦X) = {σt(X) < σt(X)}.
Notice that we may have ∆Xσt

6= 0, in particular in the finite variation case in
which the excursions of X − I away from 0 start by a jump [13, 15]. In order to
make the notation less heavy we develop the proof only for the infinite variation
case. Just a few modifications are needed to treat the general case. Likewise,
the bounded variation case is a straightforward consequence of Lemma 3.8 in [16],
where, conditionally on εγ = x, the post-supremum process is shown to have the
law Px(·|T0 < Tx) ◦ k−1

T0
, which is invariant under time-reversal.

We define the functional F2 as follows

F2 (kt ◦X) = f
(
θ′γ(V ) ◦ kσt ◦X

)
1Ac(kt◦X)g (Xt) ,

where f and g are non-negative measurable functions. In order to apply the duality
property (6) to this function, let us look at F2◦ρ(kt◦X) or equivalently F2(ρ◦kt◦X).
Notice first that Ac and Xt are invariant under time-reversal at t, and additionally,
under Ac, we also have σt = σσ

t
, so it holds that

E
[
f
(
θ′γ(V ) ◦ kσt ◦X

)
1Ac(kt◦X)g (Xt)

]
= E

[
f ◦ ρ

(
θ′γ(V ) ◦ kσt ◦X

)
1Ac(kt◦X)g (Xt)

]
.

Let us integrate this equality in t against the Lebesgue measure,∫ +∞

0
dt E

[
f
(
θ′γ(V ) ◦ kσt ◦X

)
1Ac(kt◦X)g (Xt)

]
(17a)

=
∫ +∞

0
dt E

[
f ◦ ρ

(
θ′γ(V ) ◦ kσt ◦X

)
1Ac(kt◦X)g (Xt)

]
. (17b)

Using the same strategy as before, we can express some quantities in this equation
in terms of the excursion straddling t of the process reflected at its infimum. We
recall that (τu)u≥0 denotes the inverse of the local time at 0 of the process X − I,
and εu the excursion starting at τu−. Recall also that −I is the local time at 0 for
this excursion process and its inverse is τu = T−u = T(−∞,−u) a.s.. Thus, we can
expand (17a) as follows
∞∫

0

dt E
[
f
(
θ′γ(V ) ◦ kσt ◦X

)
1Ac(kt◦X)g (Xt)

]

=
∞∫

0

dt E

 ∑
u:∆τu>0

1{τu−<t≤τu}f
(
θ′γ(V ) ◦ kτu− ◦X

)
1{sup(0,t−τu−) εu<Sτu−−Iτu−}g (Xt)

 .
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Thanks to Fubini’s theorem and the change of variable s = t− τu−, followed by the
application of the compensation formula, we obtain that this is equal to

= E

 ∑
u:∆τu>0

∆τu∫
0

ds f
(
θ′γ(V ) ◦ kτu− ◦X

)
1{sup(0,s) εu<Sτu−−Iτu−}g

(
Xτu−+s

)
= E

[∫ ∞
0

duf
(
θ′γ(V ) ◦ kτu ◦X

)∫
n(dε)

∫ V

0
ds 1{sup(0,s) ε<Sτu−Iτu}g (Xτu + εs)

]

=
∫ ∞

0
du e−quE

[
f
(
θ′γ(V ) ◦ kT−u ◦X

)
Cq
(
ST−u − IT−u

)]
,

where for any y ≥ 0 we set Cq(y) = n
(∫ V

0 ds eqεs1{εγ(s)<y}

)
and we have taken

the function g of the form g(x) = eqx, with q > 0. Fubini’s theorem was applied
again in the last step. Note that

Cq(y) = n

(∫ V

0
ds eqεs1{ε̄s<y}

)
= n

(∫ V

0
ds eqεs1{s<Ty}

)
,

so that for any y > 0,

0 < n (Ty ∧ V ) ≤ Cq(y) ≤ eqyn (Ty ∧ V ) <∞.

Now notice that ST−u−IT−u is precisely the height of the excursion θ′γ(V ) ◦ kT−u ◦X,
which allows us to choose the function f as follows,

f(ω) = h(ω)
Cq (supω − inf ω) ,

for any ω ∈ E , where h is a bounded, measurable and positive function. This is a
valid choice for f , since for all u > 0, writing ωu = θ′γ(V ) ◦ kT−u ◦X, we have that
P (supω − inf ω ∈ (0,∞)) = 1.

Taking into account the fact that the height of the excursion θ′γ(V ) ◦ kT−u ◦X is
invariant by the transformation ρ, Equation (17) becomes∫ ∞

0
du e−quE

[
h
(
θ′γ(V ) ◦ kT−u ◦X

)]
=
∫ ∞

0
du e−quE

[
h ◦ ρ

(
θ′γ(V ) ◦ kT−u ◦X

)]
.

We again have an identity between Laplace transforms of two functions. In virtue
of Lemma 9, if we choose h ∈ Cb(E ,R+), these functions are right-continuous on
(0,+∞). Besides, because h is bounded they are both bounded (and so locally
integrable and growing at most exponentially), hence by the same reasoning as in
the proof of Lemma 6, we can invert the Laplace transforms and write that for any
h ∈ Cb(E ,R+)

E
[
h
(
θ′γ(V ) ◦ kT−u ◦X

)]
= E

[
h ◦ ρ

(
θ′γ(V ) ◦ kT−u ◦X

)]
,

which completes the proof. �
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Proof of Proposition 7. By applying the Markov property of n at s > 0, we get

n
(
h
(
θ′γ(V ) ◦ ε

)
1 (s < γ(V ))

)
=
∫
x∈(0,+∞)

∫
y≥x

n
(
1
(
s < γ(V ), εs ∈ dx, εγ(V ) ∈ dy

)
h
(
θ′γ(V ) ◦ ε

))
=
∫
x∈(0,+∞)

∫
y≥x

n (εs ∈ dx, εs < y, s < V )Ex

[
h
(
θ′γ(V ) ◦ kT0 ◦X

)
1

(
sup
[0,T0]

X ∈ dy
)]

=
∫
x∈(0,+∞)

∫
y≥x

n (εs ∈ dx, εs < y, s < V )Ex

[
h ◦ ρ

(
θ′γ(V ) ◦ kT0 ◦X

)
1

(
sup
[0,T0]

X ∈ dy
)]

= n
(
h ◦ ρ

(
θ′γ(V ) ◦ ε

)
1 (s < γ(V ))

)
, (18)

where we have used Proposition 8 in the third line, which is possible since Px-a.s.

sup
[0,T0]

X = sup θ′γ(V ) ◦ kT0 ◦X = sup ρ
(
θ′γ(V ) ◦ kT0 ◦X

)
.

Finally, since h is non-negative, the monotone convergence theorem can be applied
to (18) letting s ↓ 0, which allows us to conclude. �

We are now ready to prove our main result, stated in the introduction, that we
recall now.

Theorem 1. For every measurable functional F : E → R+ we have

n (F ) = n (F ◦ χ)

Proof. In the unbounded variation case, 0 is regular for both half-lines, so we can
apply Theorem 4.10 from [19], which ensures that the supremum of the excursion
of X − I away from zero, i.e. εγ(V ), admits a density w.r.t. to Lebesgue measure
under n. What is more, this theorem states that for every x > 0, the pre and post-
supremum subpaths are independent under n(·|εγ = x). When the trajectories
have finite variation, the conditional independence also holds, this result is due to
[36, 23] and also [12, 13]. Hence, we can disintegrate by the law of εγ and use
this independence property, which together with Propositions 4 and 7, lead to the
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following identities

n (F (ε)) = n (F ([kγ ◦ ε, θγ ◦ ε])) =
∫

x∈(0,+∞)

n
(
F ([kγ ◦ ε, θγ ◦ ε])1{εγ∈dx}

)
=

∫
x∈(0,+∞)

n (F ([kγ ◦ ε, θγ ◦ ε]) | εγ = x)n (εγ ∈ dx)

=
∫

x∈(0,+∞)

n
(
F
([
kγ ◦ ε, θ′γ ◦ ε+ x

]) ∣∣ εγ = x
)
n (εγ ∈ dx)

=
∫

x∈(0,+∞)

∫
F ([η, η′])n

(
kγ ◦ ε ∈ dη, θ′γ ◦ ε+ x ∈ dη′

∣∣ εγ = x
)
n (εγ ∈ dx)

=
∫

x∈(0,+∞)

∫ ∫
F ([η, η′])n (kγ ◦ ε ∈ dη | εγ = x)n

(
θ′γ ◦ ε+ x ∈ dη′

∣∣ εγ = x
)
n (εγ ∈ dx)

=
∫

x∈(0,+∞)

∫ ∫
F ([η, η′])n (ρ (kγ ◦ ε) ∈ dη | εγ = x)n

(
ρ
(
θ′γ ◦ ε

)
+ x ∈ dη′

∣∣ εγ = x
)
n (εγ ∈ dx)

=
∫

x∈(0,+∞)

n
(
F
([
ρ (kγ ◦ ε) , ρ

(
θ′γ ◦ ε

)
+ x
]) ∣∣ εγ = x

)
n (εγ ∈ dx)

= n
(
F
([
ρ (kγ ◦ ε) , ρ

(
θ′γ ◦ ε

)
+ εγ

]))
= n (F (χ ◦ ε)) ,

which terminates the proof. �

Corollary 2. The local time process of the excursions of X − I away from 0 is
invariant under time reversal, that is

(Γ (ε, r) , 0 ≤ r ≤ εγ) d= (Γ (ε, εγ − r) , 0 ≤ r ≤ εγ) . (4)

Proof. Consider a fixed path ε ∈ E corresponding to an excursion of X − I away
from 0. In the finite variation case, the local time at level r of this excursion is
defined by (3) as the number of times the excursion hits level r, for every r ≥ 0.
Then, the result in the corollary follows directly from Theorem 1 and the definition
of the path-wise transformation χ, which together imply that for every r ≥ 0,

Γ (χ(ε), εγ − r) = Γ (ε, εγ − r) = Γ (ε, r) .

Consider now the infinite variation case and let us identify the local time process
of χ(ε), defined by the occupation density formula (2), as the measurable function
(Γ(χ(ε), r), r ≥ 0) satisfying

V (ε)∫
0

φ ([χ(ε)]s) ds =
∞∫

0

Γ (χ(ε), r)φ(r)dr, (19)

for any continuous function φ with compact support in [0,∞). Its existence is
guaranteed by Theorem 1 since χ(ε) d= ε. The l.h.s. in this equation can be
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expanded in the following way (writing γ = γ(V ))
V (ε)∫
0

φ ([χ(ε)]s) ds =
γ(V )∫
0

φ ([χ(ε)]s) ds+
V∫

γ(V )

φ ([χ(ε)]s) ds

=
γ(V )∫
0

φ
(
εγ − ε(γ−s)−

)
ds+

V∫
γ(V )

φ
(
εγ − ε(γ+V−s)−

)
ds

=
V (ε)∫
0

φ (εγ − εs) ds =
∞∫

0

Γ (χ′(ε), r)φ(r)dr, (20)

where [χ′(ε)]s = εγ−εs, for any s ≥ 0. On the other hand, we know from Theorem 1
that for any function φ satisfying the conditions mentioned before, we have

∞∫
0

Γ (χ(ε), r)φ(r)dr d=
∞∫

0

Γ (ε, r)φ(r)dr.

Finally, this identity, together with (19) and (20), imply that

Γ (ε, ·) d= Γ (χ′(ε), ·) ,

which terminates the proof. �

4. Applications

The main motivation that led us to obtain the results in Section 3 is their im-
plications in the context of branching processes. SPLP are the genealogy-coding
processes for branching processes in a number of settings. Moreover, the local
time of these SPLP’s can be interpreted as the population size processes of the
encoded genealogies. The study of the genealogical structure of branching pro-
cesses is an essential aspect when it comes to their applications in the fields of
population dynamics, population genetics and evolutionary biology. In the case of
discrete state-space, the genealogy comes naturally from discrete trees, while for
continuous-state processes their definition is a more delicate issue and is done via a
non-Markovian process called the height process, which was introduced by Le Gall
and Le Jan [34] and is a functional of a SPLP.

The implications of Theorem 1 and Corollary 2 are quite direct once we establish
the well-known connections between random trees, branching processes and Lévy
processes. We will briefly outline these connections in the following subsections,
that ultimately lead to Corollary 3 announced in the introduction.

4.1. The continuum random tree. Real trees can be defined as the continuous
limiting object of rescaled discrete trees and can be coded by a continuous function
in a way similar to the coding of discrete trees by their contour functions. Aldous’
Continuum Random Tree (the so-called CRT) can be defined as the random real tree
coded by a normalized Brownian excursion e, i.e. the positive Brownian excursion
conditioned to have lifetime 1. More generally, the tree coded by Brownian motion
(possibly with drift) reflected at 0, is called Brownian forest. We refer to [3, 33, 22]
for the formalism on real trees.
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4.1.1. Ray-Knight theorems. The second Ray-Knight theorem [40] establishes that
the local time process of a reflected Brownian motion is Feller’s branching diffusion.
More precisely, let B be a Brownian motion reflected at 0 and (Las , s, a ≥ 0) the
family of its occupation densities, where the index s corresponds to the time of
the original process B and a is the level variable moving in the state-space of B.
Consider, for x > 0,

ςx = inf{s : L0
s > x}.

Then, the process (Ltςx , t ≥ 0) is equal in distribution to the square of a 0-dimensional
Bessel process started at x, that is, a standard Feller branching diffusion (Zxt , t ≥ 0).
The latter is defined as the unique strong solution of the SDE

dZxt = 2
√
Zxt dW x

t , with Zx0 = x.

This may be understood as a description of the genealogy encoded in Feller’s
branching diffusion, meaning that reflected Brownian motion codes (in the sense of
Aldous) the real tree which describes the genealogy of the population which evolves
according to Feller’s diffusion [33].

4.2. Splitting trees, CMJ’s and contour process. A chronological tree is the
subset of

⋃
n≥0 Nn× [0,+∞) containing all the existence points of individuals living

for a certain amount of time and giving birth to others during their lifetime. They
are represented in the plane, as in Fig. 1 (right), with time running from bottom
to top, dotted lines representing filiations between individuals: the one on the left
is the parent, and that on the right its descendant. We refer to [29] for the details.

Figure 1. An example of chronological tree with finite length
(left) and its contour process (right).

Consider a population (or particle system) that originates at time 0 with one single
progenitor, where individuals (particles) evolve independently of each other, giving
birth to i.i.d. copies of themselves at constant rate, while alive, and having a lifetime
duration with general distribution. The family tree under this stochastic model is
a splitting tree, that can be formally defined as an element T randomly chosen
from the set of chronological trees, characterized by a σ-finite measure Π on (0,∞]
called the lifespan measure, satisfying

∫
(0,∞] (r ∧ 1) Π(dr) < ∞. This means that

if Π has mass b, the tree corresponds to a population where individuals have i.i.d.
lifetimes distributed as Π(·)/b and give birth to single descendants throughout their
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lives at constant rate b, all having the same independent behavior. In the general
definition individuals may have infinitely many offspring and most of the following
results remain valid if Π is infinite.

We can define the width or population size process of locally finite chronological
trees as a mapping Ξ that maps a chronological tree T to the function ξ : R+ → N
counting the number of extant individuals at time t ≥ 0

Ξ(T ) := (ξt(T ), t ≥ 0) .

These functions are càdlàg, piecewise constant, from R+ into N, and are absorbed
at 0. Then we can define the extinction event Ext := {limt→∞ ξt (T ) = 0} and the
time of extinction of the population in a tree as

TExt := inf{t ≥ 0 : ξt(T ) = 0},

with the usual convention inf ∅ = ∞. A tree, or its width process Ξ, is said to be
subcritical, critical or supercritical if

m :=
∫

(0,+∞]

rΠ(dr)

is less than, equal to or greater than 1.
The width process Ξ(T ) = (ξt(T ), t ≥ 0) of a splitting tree is known to be a

binary homogeneous Crump-Mode-Jagers process (CMJ). This process is not Mar-
kovian, unless Π is exponential (birth-death process) or a Dirac mass at {+∞} (Yule
process).

4.2.1. The contour of a splitting tree. As mentioned before, the genealogical struc-
ture of a chronological tree can be coded via continuous or càdlàg functions. We
focus in particular on the jumping chronological contour process (JCCP) from [29].
The JCCP of a chronological tree T with finite length ` = `(T ) (the sum of lifespans
of all individuals), denoted by C(T ), is a function from [0, `] into R+, that starts
at the lifespan of the ancestor and then runs backward along the right-hand side
of this first branch at speed −1 until it encounters a birth event, when it jumps up
of a height of the lifespan of this new individual, getting to the next tip, and then
repeating this procedure until it eventually hits 0, as we can see in Fig. 1 (see [29]
for a formal definition).

The JCCP visits all the existence times of each individual exactly once and the
number of times it hits a time level, say s ≥ 0, is equal to the number of individuals
in the population at time s. More precisely, for any finite tree T , the local time of
its contour process is the population size process, that is

(Γ (C(T ), r) , 0 ≤ r ≤ TExt) = Ξ(T ),

where Γ is defined as in Equation (3).
One of the main results in [29] states that the law of C(T ) when the tree has

lifespan measure Π, conditional on Ext and on the lifespan of the root individual
to be x, is a spectrally positive Lévy process Y , with Laplace exponent ψ(λ) =
λ −

∫∞
0 (1 − exp(−λr))Π(dr), λ ≥ 0, started at x, conditioned and killed upon

hitting 0. A consequence of this result is that, under Px
(Γ (kT0 ◦ Y, r) , r ≥ 0) (21)

is a CMJ with lifespan measure Π, starting with one progenitor with lifespan x.
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As announced at the introduction of this section, these arguments together with
Theorem 1 lead to Corollary 3.

4.3. Other results. In the same way as we did in Section 3, we consider now the
excursion process of X − S away from 0, the canonical excursion is again denoted
by ε, and n is the excursion measure of this process. This measure is defined here as
in [19], such that it records the final jump of the excursion. Define for any s ∈ R+,
the first instant at which the excursion attains its minimum on the interval [0, s],
that is

ν(s) = ν(s, ε) := arginf [0,s]ε = inf {s′ ∈ [0, s] : ε(s′−) = εs} ,
where εs := inf [0,s] ε. We write ν = ν(V ) for the infimum up to the lifetime of the
excursion. Then, the following results can be derived, which are analogous to those
obtained in Section 3.

Lemma 10. The post-supremum of the excursion of X − I conditioned to have
height x has the same distribution as the pre-infimum of the excursion of X − S
conditioned to have depth greater than x and killed upon hitting −x for the first
time. More precisely, for any functional F ∈ Cb(E ,R+), define the conditional
expectation κ (x) := n

(
F
(
θ′γ ◦ ε

) ∣∣ εγ = x
)
. This function has a continuous version

which satisfies for all x > 0
κ (x) = n

(
F
(
kT−x ◦ ε

) ∣∣T−x <∞) . (22)

In order to demonstrate the previous result we need the following lemma on the
continuity of the functions in the stated identity. This next lemma is very close to
Lemma 9 and the details of the proof are given in Section 5.

Lemma 11. For every x > 0 and every functional F ∈ Cb(E ,R+), the function
w : [0,+∞)→ [0,+∞) defined as

w(x) := n
(
F
(
kT−x ◦ ε

) ∣∣T−x < +∞
)

is continuous.

Proof. See Section 5. �

Proof of Lemma 10. Fix x > 0 and let us consider the first excursion of X− I with
height greater than x, denoted ε(x). Let Gx be the left-end point of this excursion
and define

Ax := inf {t > 0 : Xt − It > x}
Dx := inf {t > Ax : It = Xt} .

It is not hard to see that ε(x) straddles Ax and that Dx is its right-end point.
We consider the event {ε(x)(γ) ∈ dy + a,−IGx ∈ da, SGx < y,Ax < +∞}. Note

that on this event for 0 < x < a+ y, Ax is a record time of the supremum process
and Gx + γ(ε(x)) is the left-end point of an excursion of S − X. Then, for any
positive measurable function F , and any y, a, such that y > x − a, we have the
following identity for the post-supremum of the excursion ε(x),

E
[
F (θ′γ ◦ ε(x))1

(
ε(x)(γ) ∈ dy + a,−IGx ∈ da, SGx < y,Ax < +∞

)]
= E

 ∑
u:∆τu>0

F (eu ◦ θ′γ)1
(
eu(γ) ∈ dy + a, −Iτu− ∈ da, Sτu− < y, sup

s<u
es < x

) ,
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we can apply the compensation formula to obtain this is equal to

= E

 ∞∫
0

du 1

(
−Iτu ∈ da, Sτu < y, sup

s<τu

(X − I)s < x

)n (F (θ′γ ◦ ε) , εγ ∈ dy + a
)

= da P
(
ST−a < y, sup

s<τu

(X − I)s < x

)
n
(
F
(
θ′γ ◦ ε

)
, εγ ∈ dy + a

)
= da P

(
ST−a < y, sup

s<τu

(X − I)s < x

)
n (εγ ∈ dy + a)n

(
F
(
θ′γ ◦ ε

) ∣∣ εγ = y + a
)
,

(23)

where the second line holds since the inverse local time τu is actually T−u, hence
−Iτu = u. Now notice that Ax is a stopping time for the process X, so thanks to
the strong Markov property, (23) can also be expressed as follows

E

 ∫
z∈[x−a,y]

1 (XAx ∈ dz,−IGx ∈ da, SGx < y,Ax < +∞)

×Ez
[
F
(
θ′γ(V ) ◦ kT−a ◦X

)
1
(
ST−a ∈ dy, T−a < +∞

)]
=

∫
z∈[x−a,y]

P (XAx ∈ dz,−IGx ∈ da, SGx < y,Ax < +∞)

× Pz
(
ST−a ∈ dy, T−a < +∞

)
Ez

[
F
(
θ′γ(V ) ◦ kT−a ◦X

) ∣∣∣ST−a = y, T−a < +∞
]

(24)

Additionally, if we let (ϑu)u≥0 be the inverse of the local time at 0 of the process
S −X, we can expand the last factor in the r.h.s. of (24) as follows, with the help
of the compensation formula,

Ez

[
F
(
θ′γ(V ) ◦ kT−a ◦X

)
1
(
ST−a ∈ dy, T−a < +∞

)]
= Ez

 ∑
u:∆ϑu>0

1
(
inf(eu) > y + a, Iϑu− > −a,Xϑu− ∈ dy

)
F
(
kT−y−a ◦ eu

)
=
∫ ∞

0
duPz (Iϑu > −a,Xϑu ∈ dy)n

(
F
(
kT−y−a ◦ ε

)
1{T−y−a<+∞}

)
. (25)

By choosing F ≡ 1 in (23), (24) and (25), we get the following identities defining
a measure on R2, that depends on x and that we denote by µx(da,dy), i.e. for any
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y > x− a we have

µx(da,dy) := da P
(
ST−a < y, sup

s<τu

(X − I)s < x

)
n (εγ ∈ dy + a)

=
∫

z∈[x−a,y]

P (XAx ∈ dz,−IGx ∈ da, SGx < y,Gx < +∞)Pz
(
ST−a ∈ dy, T−a < +∞

)
=

∫
z∈[x−a,y]

P (XAx ∈ dz,−IGx ∈ da, SGx < y,Gx < +∞)×

∫ ∞
0

duPz (Iϑu > −a,Xϑu ∈ dy)n (T−y−a < +∞) . (26)

Finally, combining (23), (24), (25) and (26) we get that,

µx (da,dy)n
(
F
(
θ′γ ◦ ε

) ∣∣ εγ = y + a
)

= µx (da,dy)n
(
F
(
kT−y−a ◦ ε

) ∣∣T−y−a < +∞
)
.

Let Λ(da,dy) denote the Lebesgue measure in R2. We know from [19, Th. 4.10]
that the law of εγ is absolutely continuous w.r.t. Lebesgue measure under n, so µ
has a density with respect to Λ(da,dy). Since the previous identity holds Λ a.e.,
and thanks to Lemma 11, we have that n(F (kT−x′ ◦ ε) |T−x′ < +∞) is continuous
for every x′ > 0 and F ∈ Cb(E ,R+), we can conclude that the conditional measure
n
(
F
(
θ′γ ◦ ε

) ∣∣ εγ = x′
)
admits a continuous version that is equal to

n
(
F
(
kT−x′ ◦ ε

) ∣∣∣T−x′ < +∞
)
,

which proves the lemma. �

Proposition 12. For any x > 0, the law of kT−x ◦ ε is invariant by space-time
reversal under n (· |T−x <∞), that is for any measurable F : E → R+,

n
(
F
(
kT−x ◦ ε

) ∣∣T−x <∞) = n
(
F ◦ ρ

(
kT−x ◦ ε

) ∣∣T−x <∞) .
In addition,

n (F (kν ◦ ε) | −εν = x, V <∞) = n(F (kT−x ◦ ε) |T−x <∞), (27)

which implies that kν ◦ ε is invariant by space-time reversal under n (· |V <∞).

Proof. As a consequence of Proposition 7 and Lemma 10, the first equation of the
Proposition holds for any non-negative F which is continuous and bounded. The
result can be extended to any non-negative, bounded F by density and to any non-
negative F by monotone convergence.
Now recall that the scale function W is almost everywhere differentiable (see [27,
18]). Let us show that for every functional F as in the statement, the measure

n (F (kν ◦ ε) ,−εν ∈ dx |V <∞) , x > 0,

has a density equal to

n(F (kT−x ◦ ε) |T−x <∞) n(T−x <∞|V <∞)
P−x(T0 <∞)

W ′(x)
W (x) .

Applying the strong Markov property of n(· |V <∞) at T−x, we get that

n
(
F
(
kT−x ◦ ε

)
,−εν ∈ (x, x+ h) |V <∞

)
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is equal to

= n
(
F
(
kT−x ◦ ε

)
, T−x <∞|V <∞

)
P−x(T0 < T−(x+h) |T0 <∞)

= n
(
F
(
kT−x ◦ ε

)
|T−x <∞)n(T−x <∞|V <∞

)
P−x(T0 < T−(x+h) |T0 <∞)

= n(F (kT−x ◦ ε) |T−x <∞) n(T−x <∞|V <∞)
P−x(T0 <∞) P−x(T0 < T−(x+h))

= n(F (kT−x ◦ ε) |T−x <∞) n(T−x <∞|V <∞)
P−x(T0 <∞)

(
1− W (x)

W (x+ h)

)
,

and since W is differentiable at x, we find that

lim
h↓0

1
h
n
(
F
(
kT−x ◦ ε

)
,−εν ∈ (x, x+ h) |V <∞

)
= n(F (kT−x ◦ ε) |T−x <∞) n(T−x <∞|V <∞)

P−x(T0 <∞)
W ′(x)
W (x) ,

so we get

n
(
F
(
kT−x ◦ ε

)
,−εν ∈ dx |V <∞

)
= n (F (kν ◦ ε) ,−εν ∈ dx |V <∞)

= n(F (kT−x ◦ ε) |T−x <∞) n(T−x <∞|V <∞)
P−x(T0 <∞)

W ′(x)
W (x) dx,

which is the announced result. Now taking F ≡ 1, we get

n (−εν ∈ dx |V <∞) = n(T−x <∞|V <∞)
P−x(T0 <∞)

W ′(x)
W (x) dx,

so combining the last two equalities, we arrive at

n (F (kν ◦ ε) ,−εν ∈ dx |V <∞)
= n(F (kT−x ◦ ε) |T−x <∞) n (−εν ∈ dx |V <∞) , (28)

which can also be expressed as in (27)

n (F (kν ◦ ε) | − εν = x, V <∞) = n(F (kT−x ◦ ε) |T−x <∞).

Now from (28) and the first result of the Proposition, we get

n (F ◦ ρ (kν ◦ ε) ,−εν ∈ dx |V <∞) = n(F ◦ ρ(kT−x ◦ ε) |T−x <∞) n (−εν ∈ dx |V <∞)
= n(F (kT−x ◦ ε) |T−x <∞) n (−εν ∈ dx |V <∞)
= n (F (kν ◦ ε) ,−εν ∈ dx |V <∞) ,

and integrating over x the last equality, we get

n (F ◦ ρ (kν ◦ ε) |V <∞) = n (F (kν ◦ ε) |V <∞) ,

which terminates the proof. �

Beyond the independence between the pre and post-supremum subpaths, Theo-
rem 4.10 in [19] gives a characterization of the law of the pre and post-supremum
processes under n(·|εγ = x), for any x > 0, in terms of the laws P ↑ and P ↓, cor-
responding to the process X conditioned respectively to stay positive or negative.
We refer to [7, 8] and also [19] for the details on the construction of these laws.
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The aforementioned theorem states that, in the case of infinite variation, for any
positive measurable function h we have that

n
(
h
(
kγ(V ) ◦ ε

) ∣∣ εγ = x
)

= E↑ [h (kTx ◦X) |XTx = x] , (29)

n
(
h
(
θ′γ(V ) ◦ ε

) ∣∣∣ εγ = x
)

= E↓
[
h
(
kT−x ◦X

)]
. (30)

These identities have the following implications in our setting in the case of
infinite variation.

Proposition 13. For any x > 0, the laws P ↑ ◦ k−1
Tx

(·|XTx = x) and P ↓ ◦ k−1
T−x

are
invariant by rotation. Additionally, the law P ↓ can be viewed as the conditional law
n(·|V =∞), so we have for any functional h ∈ Cb(E ,R+) that

n
(
h
(
kT−x ◦ ε

) ∣∣V =∞
)

= n
(
h ◦ ρ

(
kT−x ◦ ε

) ∣∣V =∞
)
. (31)

Proof. The invariance by rotation for the laws P ↑◦k−1
Tx

(·|XTx = x) and P ↓◦k−1
T−x

for
any x > 0, is a consequence of Equations 29 and 30, combined with Propositions 4
and 7 as we will see now. Consider any functions h ∈ Cb(E ,R+) and f ∈ Cb(R+,R+),
we disintegrate n with respect to εγ as follows,

n
(
h
(
kγ(V ) ◦ ε

)
f (εγ)

)
=

∫
(0,∞)

f(x)n
(
h
(
kγ(V ) ◦ ε

)
, εγ ∈ dx

)
=

∫
(0,∞)

f(x)n
(
h
(
kγ(V ) ◦ ε

) ∣∣ εγ = x
)
n (εγ ∈ dx)

=
∫

(0,∞)

f(x)E↑ [h (kTx ◦X) |XTx = x]n (εγ ∈ dx) , (32)

where the last identity is a consequence of (29). We can obtain equivalent identities
for the rotated subpath, that is

n
(
h ◦ ρ

(
kγ(V ) ◦ ε

)
f (εγ)

)
=

∫
(0,∞)

f(x)n
(
h ◦ ρ

(
kγ(V ) ◦ ε

)
, εγ ∈ dx

)
=

∫
(0,∞)

f(x)n
(
h ◦ ρ

(
kγ(V ) ◦ ε

) ∣∣ εγ = x
)
n (εγ ∈ dx)

=
∫

(0,∞)

f(x)E↑ [h ◦ ρ (kTx ◦X) |XTx = x]n (εγ ∈ dx) .

(33)

Proposition 4 implies that (32) and (33) are equal. On the other hand, because the
process is assumed to have infinite variation, we have that n(εγ ∈ dx) is equivalent
to Lebesgue over (0,∞) and that, by the same arguments used in Lemma 11,
E↑ [h (kTx ◦X) |XTx = x] is continuous on x for all h ∈ Cb(E ,R+). Thus, the
following identity holds for all x > 0

E↑ [h (kTx ◦X) |XTx = x] = E↑ [h ◦ ρ (kTx ◦X) |XTx = x] .

In a similar way, Proposition 7 and (30) lead to the invariance by rotation of
P ↓ ◦ k−1

T−x
.



BRANCHING PROCESSES SEEN FROM THEIR EXTINCTION TIME 27

Finally, we know from [8, Chapter VII] that when the process drifts to −∞, the
law P ↓ can be viewed as the conditional law n(·|V = ∞), or equivalently, as the
law of X − S shifted at its last passage time at the origin. Hence, we also have for
any h ∈ Cb(E ,R+) that

n
(
h
(
kT−x ◦ ε

) ∣∣V =∞
)

= n
(
h ◦ ρ

(
kT−x ◦ ε

) ∣∣V =∞
)
,

which concludes the proof. �

We will finish this section by drawing a connection with previous works that
have studied CSBP’s near extinction time [9, 28]. The results of the present paper
imply that, in the Brownian case, the behavior of the excursion near extinction is
the same as near the origin.

Proposition 14. Let n0 denote the excursion measure of the critical Feller diffu-
sion away from 0. We have that

lim inf
t→0

Zt
tK

=
{

0, if K < 1
+∞, if K ≥ 1

, n0 − a.e.,

and

lim sup
t→0

Zt

t log log 1
t

= 1 n0 − a.e.

Proof. The proof relies on [28, Th. 3 and 4], where equivalent results are established
for the process near extinction, Px-a.s. for all x > 0. The Markov property allows
us to extend the result, valid under Px, to the excursion measure n0. More precisely,
we have the following identity, relating both measures for any positive measurable
functional F ,

n0 (F (ZT0−s; s ≤ t) , T0 > t+ ε) =
∫

(0,∞)
n0 (Zε ∈ dx)Ex [F (ZT0−s; s ≤ t) , T0 > t] ,

which indeed shows that the behavior of Z near extinction is the same under Px as
under n0. The result follows then from Corollary 3. �

5. Remaining proofs

Proof of Lemma 5. Every function f ∈ H can be expressed as f(ε) = h(ε)eαV (ε),
for a non-negative bounded function h and a non-negative constant α. Hence,
here we want to prove that for every non-negative bounded function h and any
non-negative constant α, the functions

n
(
h
(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }

)
n
(
h
(
kγ(V ) ◦ ε

)
eαγ(s)

1{γ(V )<s<V }

)
are right-continuous at every s > 0.

Let us start by (i). Fix s > 0, and a sequence (sn) ⊂ R+ such that sn ↓ s. For
δ > 0, define the following subsets of E :

Υs(δ) := {ε ∈ E : ε(s− δ) = ε(s+ δ)} ,
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Then, we can analyze the continuity of n
(
h
(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }
)
at s by split-

ting the space E as follows for any δ′ > 0∣∣∣n(h (kγ(sn) ◦ ε
)

eαγ(sn)
1{sn<V }

)
− n

(
h
(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }

)∣∣∣
≤
∫ ∣∣∣h (kγ(sn) ◦ ε

)
eαγ(sn)

1{sn<V } − h
(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }

∣∣∣ n (dε)

=
∫

V≤s+δ′

| · | n (dε)

︸ ︷︷ ︸
(1)

+
∫

(Υs(δ))c,V >s+δ′

| · | n (dε)

︸ ︷︷ ︸
(2)

+
∫

Υs(δ),V >s+δ′

| · | n (dε)

︸ ︷︷ ︸
(3)

.

Now let us see what happens with each of the terms in this sum:
(1) Since sn ≥ s, 0 ≤ γ(s) ≤ s and h is bounded, we have∫
V≤s+δ′

∣∣∣h (kγ(sn) ◦ ε
)

eαγ(sn)
1{sn<V } − h

(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }

∣∣∣ n (dε)

≤ 2‖h‖∞eα(s+δ′)n (s < V ≤ s+ δ′) .

For every s, δ′ > 0 it holds that n(s < V ≤ s + δ′) < +∞. Therefore,
downward monotone convergence applies and it implies that

n (s < V ≤ s+ δ′) −→ 0, when δ′ → 0.
This allows to choose, for every η > 0, a suitable δ′ such that the term (1)
is smaller than η

2 .
(2) Again, h bounded implies that whenever sn < s+ δ′∫

(Υs(δ))c
V >s+δ′

∣∣∣h (kγ(sn) ◦ ε
)

eαγ(sn)
1{sn<V } − h

(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }

∣∣∣ n (dε)

≤ 2‖h‖∞eα(s+δ′)n ((Υs(δ))c , V > s+ δ′) .

On the other hand, from the definition of Υs(δ) and since the supremum is
attained at a unique point n-a.e., it follows from the dominated convergence
theorem that

lim
δ→0

n ((Υs(δ))c , V > s+ δ′) = n (εs = εs, V > s+ δ′) . (34)

We now show that the r.h.s. of this limit is 0 for every fixed s > 0. For any
u ∈ (0, s),

n (εs = εs, V > s+ δ′) =
∫

x∈(0,+∞)

∫
y≥x

n (εs = εs, V > s+ δ′, εu ∈ dx, εu ∈ dy)

=
∫

x∈(0,+∞)

∫
y≥x

n (εu ∈ dx, εu ∈ dy)Px (T0 > s+ δ′ − u, Ss−u = Xs−u ≥ y) ,

where the last line comes from the Markov property. Besides, for y ≥ x
Px (T0 > s+ δ′ − u, Ss−u = Xs−u ≥ y) = P0 (T−x > s+ δ′ − u, Ss−u = Xs−u ≥ y − x)
≤ P0 (Ss−u = Xs−u) = P

(
∃t > 0 : L−1(t) = s− u

)
= P

(
L−1(Ts−u) = s− u

)
,
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where L−1 is the so-called ladder time process, which is the inverse of the
local time at 0 of the process reflected at its supremum, S −X; and Tv :=
inf{t : L−1(t) > v} for any v ≥ 0. We know from [8] that L−1 is a
subordinator, with drift equal to 0 when 0 is regular for (−∞, 0), which is
always the case in absence of negative jumps (see for instance [14]). Another
result from [8, Chapter III.2] tells us that any subordinator Y with drift 0
never creeps over any level x > 0, that is P (YTx = x) = 0. Hence, we can
conclude that

n (εs = εs, V > s+ δ′) = 0, (35)

which guarantees, together with (34), that for any η > 0, we can choose
δ < δ′ sufficiently small that∫

(Υs(δ))c
V >s+δ′

∣∣∣h (kγ(sn) ◦ ε
)

eαγ(sn)
1{sn<V } − h

(
kγ(s) ◦ ε

)
eαγ(s)

1{s<V }

∣∣∣ n (dε) < η

2 .

(3) LetNδ be such that for n ≥ Nδ, |sn−s| < δ, then ∀n ≥ Nδ,∀ε ∈ Υs(δ), such
that V (ε) > s + δ′, we have γ(sn, ε) = γ(s, ε) and 1{sn<V } = 1{s<V } = 1.
Hence the third term is 0 for n ≥ Nδ.

Finally, we can conclude that the function n
(
f
(
kγ(s) ◦ ε

)
1{s<V }

)
is right-continuous

for every s > 0.

For (ii) take as well s > 0 and sn ↓ s. Fix δ > 0, then there exists Nδ such that
for every n ≥ Nδ, |sn − s| < δ and also∣∣n (f (kγ(V ) ◦ ε

)
1{γ(V )<sn<V } − n

(
f
(
kγ(V ) ◦ ε

)
1{γ(V )<s<V }

))∣∣
≤
∫
f
(
kγ(V ) ◦ ε

) ∣∣1{s≤γ(V )<sn<V } − 1{γ(V )<s<V≤sn}
∣∣n(dε)

≤ ‖h‖∞eα(s+δ) (n (s ≤ γ(V ) < sn < V ) + n (γ(V ) < s < V ≤ sn)) .

By dominated convergence as n→∞,

n (γ(V ) < s < V ≤ sn) −→ n(∅) = 0

and

n (s ≤ γ(V ) < sn < V ) −→ n (s = γ(V ), s < V ) ≤ n (εs = εs, s < V ) = 0,

as we has just proved in (35). So the function in (ii) is also right-continuous.
�

Proof of Lemma 9. Notice first that for all x > 0, since X has no negative jumps,
X is a.s. continuous at T−x and P

(
∆XT−x = 0, T−x = T(−∞,−x)

)
= 1. This allows

us to apply [24, Proposition VI.2.11 and VI.2.12], which ensure in this context that
if we have xn ↓ x, then a.s. T−xn ↓ T−x, and moreover, the killed paths kT−xn ◦X
also converge to kT−x ◦X when n → ∞ in Skorokhod topology. Hence, it exists a
sequence (λn) of changes of time (see Section 2) such that ‖λn − Id‖∞ → 0 and
‖kT−xn ◦X ◦ λn − kT−x ◦X‖M → 0 for all M ≥ 0 a.s.

Additionally, since the sequence (xn) is decreasing, we deduce from the definition
of γ that (γ(T−xn , X)) is also a decreasing sequence, and that for all n ≥ 0 we have

γ(T−xn , X) ≥ γ(T−x, X).
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Hence γ(T−xn , X) ↓ ` for some ` ≥ 0. Suppose that ` > γ(T−x, X), this implies
that for every n ≥ 0, T−x < γ(T−xn , X), so we have

T−x < γ(T−xn , X) ≤ T−xn .
Then, the convergence of (T−xn) entail that γ(T−xn , X) ↓ T−x, which in turn, since
X is continuous at T−x, implies that Xγ(T−xn ) ↓ XT−x = −x. The latter is not
possible since P -a.s., sup[0,T−xn ]X ≥ 0 for every n. Hence, we can conclude that
a.s. ` = γ(T−x, X), i.e.

γ (T−xn , X) ↓ γ(T−x, X).
Moreover, since for T−x we also have that P -a.s., sup[0,T−x]X ≥ 0, we can ensure
that γ(T−x, X) < T−x, so the sequence (γ (T−xn , X)) is not only convergent, but it
is constant from some N ≥ 0. As a consequence, we have that a.s. for all n ≥ N
and all M > 0

θ′γ(V ) ◦ kT−xn ◦X = θ′γ(T−x) ◦ kT−xn ◦X,

‖θ′γ(V ) ◦ kT−xn ◦X ◦ λn − θ
′
γ(V ) ◦ kT−x ◦X‖M ≤ ‖kT−xn ◦X ◦ λn − kT−x ◦X‖M → 0.

These arguments, together with the continuous mapping theorem applied to h ∈
Cb(E ,R+), lead to the a.s. convergence of h

(
θ′γ(V ) ◦ kT−xn ◦X

)
to h

(
θ′γ(V ) ◦ kT−x ◦X

)
.

Finally, since h is bounded, the dominated convergence theorem applies, and we
can conclude that

lim
n
z(xn) = z(x),

that is, z is right-continuous at x > 0. Since x is arbitrary, the result is proved. �

Proof of Lemma 11. As in the proof of Lemma 9, we can apply [24, Proposition
VI.2.11 and VI.2.12], which imply that T−x(ε) and even more, kT−x ◦ ε, are contin-
uous functions for every x > 0, where ε is the canonical excursion of X − S away
from 0. Since F ∈ Cb(E ,R+), the function F (e)1V (e)<+∞ is also continuous for
e ∈ E . Besides, we have for every x > 0, that 0 < n(T−x < +∞) < +∞, which
allows us to conclude. �
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