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Effect of population density on epidemics

Ruiqi Li1, Peter Richmond2 and Bertrand M. Roehner3

Abstract
Investigations of possible links between population density and the propagation and
magnitude of epidemics have so far proved inconclusive. There are three possible
reasons (i) A lack of focus on appropriate density intervals. (ii) For the density to be
a meaningful variable the population must be distributed asuniformly as possible. If
an area has towns and cities where a majority of the population is concentrated its
average density is meaningless. (iii) In propagation of an epidemic the initial propor-
tion of susceptibles (persons who have not developed an immunity) is an essential,
yet usually unknown, factor. The assumption that most of thepopulation is suscepti-
ble holds only for new strains of diseases.
Here we show that when these requirements are properly accounted for, the size
of epidemics is indeed closely connected with the population density. This empiri-
cal observation comes as a welcome confirmation of the classical KMK (Kermack-
McKendrick 1927) model. Indeed, one of its key predictions is that the size of the
epidemic increases strongly (and in a non linear way) with the initial density of sus-
ceptibles.
An interesting consequence is that, contrary to common beliefs, in sparsely popu-
lated territories, like Alaska, Australia or the west coastof the United states the size
of epidemics among native populations must have been limited by the low density
even for diseases for which natives had no immunity (i.e., were susceptibles).
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Introduction

Motivation

At the outset we note that, although the data that we analyze in this paper are mostly
from the early 20th century, our objective is not to write a historical paper. We seek
to explore the density effect in the propagation of epidemics in the most accurate
way. Clearly, to be significant such a study must consider broad-scale epidemics of
highly infectious diseases. With the possible exception ofinfluenza, such diseases
have been practically eliminated in developed countries. They still exist in devel-
oping countries but in most of these countries the reliability of vital statistics is not
very good. Hence our use of early 20th century data from developed countries. In
particular, data for the influenza pandemic of 1918 will provide a convenient “natural
experiment”.

We must also say a word about what brought us to study this question. The present
investigation is a first step in an attempt to solve a long standing historical mystery
which can be described as follows.

Historical accounts of the contacts between native populations and white immigrants
(for instance in Pacific Ocean islands, Australia or the United States) often say, with
no supporting evidence that natives were wiped out by diseases that their immune
system could not fight. Such native peoples were usually living in sparsely popu-
lated areas and the question of how population density affects the propagation of
epidemics becomes of central importance. The conundrum arises from the fact that
if it is really true that low density hampers the propagationof epidemics (as intu-
ition would suggest), then the disease-based explanation becomes questionable and
alternative explanations must be found.

Although we briefly come back to this point in our conclusion,a more comprehensive
study will be postponed to a forthcoming paper. In explaining our own motivation,
our hope is to bring about further investigations by other researchers.

Milestones of the study

The investigation will proceed in four steps.
(1) Initially, convinced that it would be easy to find clear-cut results and conclu-

sions in the literature, we were quite surprised to find mostly mixed results and it
took us some time to understand the reasons for this.

(2) In a second step we found out that if the observations respect a number of
appropriate requirements they lead to clear univocal results.

(3) Although reassuring, these empirical observations arefor limited numbers.
In order to get a picture of epidemic contagion, which has a broader validity, we
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required a model based on the simplest and most natural assumptions possible and
which illustrated the influence of population density. Sucha model has already been
proposed and studied in Kermack and McKendrick (1927). Yet,neither these authors
nor their followers (e.g. Bailey 1955) paid much attention to the influence of density.
Here, after a short presentation of the model, we focus on thedensity factor; in
particular in order to make contact with the data we check that the predictions of the
model are compatible. Once this confirmation has been obtained, the KMK model
allows us to claim that, provided the basic assumptions on which the model relies are
fulfilled, the propagation of epidemics are indeed slowed down by low population
density.

(4) With this knowledge in mind we return to the question of the contacts between
native populations and immigrants in the conclusion section.

What does the literature tell us?
Seen from the side of the pathogens, contagion is a form of diffusion in which the
virus or bacteria jump from one individual to another. If thetransmission takes place
through air or water both intuition and mathematical modeling would suggest that
it is facilitated by a higher population density1. The paradox is that in most studies
that we know about, the impact of density cannot be seen clearly. This is illustrated
below by the results of two studies.

Papers on influenza epidemics

In a study of the pandemic of 1918 in England and Wales (Chowell et al. 2008) the
authors observe “we did not find any obvious association between death rates and
measures of population density”.

Similarly in a study of the same 1918 epidemic in New Zealand (Haidari et al. 2006)
the authors present a plot for (x = population density,y = death rate. Although
the scatter plot comprisesn = 108 data points (each one for a separate district) the
authors found that the two variables are basically uncorrelated (r = 0.17).

Rather than to discuss other papers (most often negative results such as the previous
ones are not published) we prefer to present two observations in which one expects
to see a density effect albeit none is apparent.

Influenza and pneumonia in US states

The 1918 volume of “Mortality Statistics” published by the US Bureau of the Census
gives the death rate from influenza for each of the 30 Registration states i.e., the states
which recorded death statistics.

1As a second step, at a more detailed level, one would of courseexpect that proximity due to specific human mobility
and interactions will also play a role (Li et al. 2017a, 2017b).
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Fig. 1a,b,c Relationship between population density by state and death rate, USA, 1918. (a)This graph
is for influenza. There is basically no correlation (the correlation is 0.10 and the confidence interval is
(−0.27, 0.45)) which means that no regression line can be drawn. However, it seems (by comparison with
the pneumonia case) that there are some obvious outliers such as: 15=Montana, 2=Colorado, 16=New Hamp-
shire, 22=Pennsylvania, 3=Connecticut. It is not easy to understand why these states have death rates that are
abnormally high.(b) The graph of (a) was redrawn with log scales The correlation,namely−0.068 is still not
significant.(c) This graph is for pneumonia. The correlation (log d, log µ) is 0.62, CI= (0.33, 0.80). Sources:
Density: Historical Statistics of the United States, p. 24; death rate: Mortality Statistics 1918, p.118.

The (d =density,µ =death rate) Pearson correlation turns out to be equal to 0.10
which, for a probability level of 0.95, is not significant in the standard sense that the
confidence interval, namely(−0.27, 0.45) contains 0.

As a matter of fact, the scatter plot has the same shape as the one mentioned above
for New Zealand: for densities under 25 per square-kilometer there is a very large
dispersion of death rates; then for densities over 50 the plot becomes more orderly,
yet with some outliers.

The broad range of the population densityd in Fig. 1a suggests to use a log scale.
For the sake of consistency (particularly in the limitd → 0, µ → 0) it is then natural
to use also a log scale on theµ axis although that is not strictly necessary on account
of the narrow range ofµ. This has the additional benefit that it makes the regression
coefficients of(log d, logµ) independent of the unit of measurement used forµ.

Do these tests mean that there is no correlation whatsoever between density and death
rate? Not necessarily. It simply means that the background noise overrides any weak
association that may exist.

While a density effect would be expected for infectious contagious diseases, no sim-
ilar effect is expected for non-contagious diseases. In other words, a comparison
should show a clear-cut difference. Such a test is tried in the next subsection, once
again with conflicting results.

Contagious versus non contagious diseases

Table 1 compares the death rates in large cities with those inrural areas. Here again
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the results are found to be fairly puzzling. For instance, for contagious diseases, one
would expect the death rate ratio cities/rural to be larger than 1. Not only is this
ratio just barely higher than 1 but in addition the ratio for non-contagious diseases
is markedly higher than 1. The most intriguing result is the one for pneumonia.
Whereas Fig. 1c for 1918 showed a clear excess mortality in places of high density
the results for 1940 (the only year for which such data are given in Linder et al. 1947)
show higher death rates in rural places. In addition, if one draws the graph of death
rates by states one finds that the correlation which existed in 1918 has disappeared
in 1940. So, although we ignore the reason of this change, at least the two results are
consistent with each other.

Table 1: Comparison of death rates in cities of more than 100,000 and in rural areas, USA, 1940

Tubercu- Pneu- Syphilis Average of Intra Disease Disease Average of
losis monia contagious cranial of the of the non contagious

diseases lesion heart coronary diseases

Cities 40.8 55.5 11.1 78.4 23.6 45.4
Rural 34.0 70.0 8.80 88.0 18.6 23.0
Cities/Rural 1.20 0.79 1.26 1.08 0.89 1.27 1.97 1.36

Notes: The death rates are per 100,000 population. There is no clear difference between cities and rural areas.
The most surprising result is probably the one for pneumoniawhich, contrary to expectation, is notably higher
in rural places (may be related to better medical treatment available in cities). As a preliminary explanation
one may posit that the lower rural death rate for diseases of coronary arteries is due to the fact that life in rural
places involves more physical activity.
Source: Linder et al. (1947).

Components of the background noise

To explain the observations made in Fig. 1a,b,c we used the expression “background
noise”. What is the meaning intended for this expression?

An illustration from particle physics may be helpful. Thereare currently experiments
under way to find out if protons can decay into lighter particles an idea first proposed
by Andrei Sakharov (1967) in order to explain how the Big Banghas led to the
present universe.

A proton decay can be identified by detecting the particles that it produces. However,
in spite of the fact that in such experiments the tank is located deep under ground it
is nevertheless hit by particles emitted by the Sun (especially neutrinos) or by the
surrounding rocks. This is what physicists call backgroundnoise. It is different
from purely statistical noise. Whereas the later cannot be reduced (except by taking
averages over large numbers of events), the background noise can be reduced for
instance by shielding the tank in appropriate ways. In short, the background noise is
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produced by specific sources which, once clearly identified,may be eliminated.

What are here the factors which contribute to the backgroundnoise for epidemics?
One can mention the following.

(1) In principle it would be better to consider incidence rates rather than death
rates. By considering death rates one mixes two effects: thediffusion of the disease
and the availability (and effectiveness) of medical treatment. For instance death
rates from tuberculosis may be higher in poor districts where pulmonary diseases
are widespread and where no treatment is provided. However,death rates may be a
good proxy for incidence rates for sufficiently large areas which include wealthy as
well as poor districts.

(2) The existence of large cities in an area makes the averagedensity a fairly
biased variable.

(3) The initial percentage of susceptibles which depends onthe previous occur-
rences of the disease.

(4) The climate, whether hot or cold, dry or humid. As an illustration of how
the climate effect can generate spurious data it can be mentioned that in the late 19th
and early 20th centuries the dry and sunny climate of Arizona, Colorado, Nevada and
New Mexico attracted many tuberculosis patients and led to the building of health
facilities (sanatoriums, boarding houses and even canvas camps). Naturally, this
resulted in highly inflated death rates in the correspondingstates.

(5) The age structure of the population. As the 1918 epidemichit particularly
middle-aged persons, if this group is over-represented thetotal death rate will be
higher.

The most important lesson to retain for the following sections is that one should
considerlarge density changes so that their impact can overcome the background
noise. As a matter of fact, Chowell et al. (2008) and Haidiri et al. (2006) also made
the observation that urban areas have higher death rates than rural areas but they did
not discuss the noise versus signal levels nor did they specify what must be done to
make the signal stand out more clearly.

Empirical evidence for the effect of density on contagion

Overview for contagious diseases

Population density (d) is a variable with a broad range of variation, from a few per-
sons per square kilometer in rural areas to a few thousands inbig cities. In contrast,
the mortality rate (µ) has a rather narrow range of variation. For this reason, if there
is to be a relationship betweenµ andd one would expectµ to depend uponlog d.
This is the point already emphasized in the introduction when we said that one needs
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to consider large changes ofd. Does this suffice to reveal a definite correlation?

Fig. 1c and Table 2 show that this is indeed true at the level ofUS states for several
contagious diseases; yet influenza stands as an exception asshown in Fig. 1b.

Table 2: Impact of the population densityd on the death rateµ of contagious diseases, US states

Coefficient Exponent
of of the

correlation power law
µ = Cdα

1 Measles, 1915 0.71 0.35 ± 0.17
Measles, 1918 0.47 0.20 ± 0.14
Measles, average 0.28 ± 0.11

2 Diphtheria 1915 0.67 0.24 ± 0.11
Diphtheria 1918 0.56 0.19 ± 0.10
Diphtheria, average 0.22 ± 0.07

3 Whooping cough, 1915 0.13 0.04 ± 0.12
Whooping cough, 1915 0.41 0.17 ± 0.14
Whooping cough, average 0.11 ± 0.09

4 Pneumonia, 1915 0.59 0.10 ± 0.06
Pneumonia, 1918 0.60 0.17 ± 0.08
Pneumonia, average 0.14 ± 0.05

5 Tuberculosis, 1915 0.39 0.12 ± 0.11
Tuberculosis, 1918 0.48 0.15 ± 0.10
Tuberculosis, average 0.14 ± 0.07

Notes: The correlations and regressions are for(log d, log µ). Taking the log ofµ is not a necessity (forµ has a
small range of variation) but has the advantage of making theregression independent of the wayµ is measured
(for example per 1,000 or 100,000). These estimates are based on the data of US registration states; there were
25 in 1915 and 30 in 1918. At this level there is no significant correlation for influenza alone; however, most
often influenza and pneumonia are counted together. Apart from 1918, in all “normal” years there were about
10 times more pneumonia deaths than influenza deaths. In 1918the two diseases had about the same death
rate. Note that almost all these exponents are under 0.25 which suggest a fairly weak connection (α = 0 would
mean no connection at all).
Source: Mortality statistics 1919; this volume has a recapitulation for the years 1915 to 1919.

The results given in Table 2 show that, at least in the time period under considera-
tion, the values of the exponent of the power law were fairly stable in the course of
time. The exponent found in the next subsection for the influenza epidemic of 1918,
namely0.22 is in the same range.

It must be emphasized that exponentsα in the range0.10−0.25 denote a fairly weak
interdependence (obviously forα = 0 there would be no relationship at all). That is
why this effect can be easily covered by the background noise.

Influenza-pneumonia epidemic

Thanks to a special report published by the US Bureau of the Census (1920) which
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describes the spread of the influenza epidemic in the fall of 1918 we have far more
detailed data for this case than for any other. As in additionthis epidemic was par-
ticularly strong the relative magnitude of the background noise will be reduced thus
providing excellent observation conditions.

Fig. 2 summarizes the situation. Whereas there is a marked density-death rate cor-
relation (r = 0.90) on a broad density scale, within rural and urban places it isthe
background noise which dominates.

Such scaling behavior can be used as a powerful prediction tool for the epidemic size
for different population density at large scale (Li et al. 2017b).
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Fig. 2 Relationship between population densityd and the sizeµ of the influenza epidemic of September-
December 1918.In the graphm means million. The data are for Indiana, Kansas and the city of Philadelphia
in Pennsylvania. Influenza and pneumonia deaths are countedtogether. It can be seen that the relationship
between population density holds only on a broad density scale. Inside of the three groups of data points the
background fluctuations are strong enough to override the power law. The regression reads (the confidence
interval is for a confidence probability of 0.95):µ = Cdα, α = 0.22 ± 0.08, C = 3.5. Source: Bureau of the
Census (1920).

Effect of population density on the evolution of the epidemic

There’s not only a scaling relationship between populationdensity and size of the
influenza epidemic as shown above, but also a profound impactof population density
on the evolution of the epidemic within cities and regions (Li et al. 2016).
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Fig. 3 shows that the shape of the evolution curves is very much density dependent.
Philadelphia had a much higher density than cities in Indiana and Kansas which is
itself higher than the density of rural areas. As a result Philadelphia has not only a
higher global mortality rate but also a higher monthly rate.
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Fig. 3 Evolution of the death rate of the influenza epidemic from September to December 1918.It is
remarkable that the curves for Indiana and Kansas are almostthe same in spite of a distance of about 1,000
km between them; in contrast the curves are very dependent upon the population density. At the end of 1918
the epidemic was not completely over which is why the curves for Indiana and Kansas do not return to their
pre-epidemic level.Source: Bureau of the Census (1920).

As for a big earthquake, the influenza shock of October 1918 was followed by several
aftershocks, particularly in early 1919 and 1920. That is why the curves of Indiana
and Kansas do not return to their pre-epidemic level in January 1919. It can also be
observed that whereas the shock of October 1918 was well synchronized worldwide,
the aftershocks were not the same in different continents, e.g. in Australia, Europe
and North America.

Determinants of an epidemic: the KMK model
Needless to say, many epidemic models have been proposed in the course of time.
Why, then do we focus our attention on the KMK model (Kermack and McKendrick
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19272)? It is simply because it is the most basic model that can be proposed. It
involves only two features: infection (through a contact between two persons) and
subsequent recovery or death.

A broader presentation and discussion of the KMK model can befound in Li et al.
(2016).

After defining the model our main purpose will be to see what itsays about the
density effect. In the original paper this aspect received afairly short discussion only
in the framework of the quadratic approximation (see below). However, as shown in
Fig. 6a, this approximation is fairly poor as soon as the epidemic takes a substantial
extension. As often the case with mathematicians, Kermack and McKendrick did
not attempt to provide the kind of numerical solutions shownin Fig. 6a,b and Fig. 7.
Thus, they may not have realized that the quadratic approximation was in fact pretty
poor beyond the initial stage.

It is by purpose that the model presented in this section involves only the most basic
features of an epidemic, namely contagion, recovery and death. In this way our hope
is to capture and understand the key mechanism of epidemics.The fact that local
conditions usually do not play a great role is demonstrated by the similarity of the
course of the influenza epidemic (one of the few for which extensive daily data are
available) in various cities whether in Europe or in the United States.

Mechanism and differential equations of epidemics

A simplified model of an epidemic can be seen as defined by 3 parameters (see Fig.
4)

(1) An infection (or incidence) rate,β, which describes the transition from health
to illness.

(2) A removal rate,γ, which describes the transition from illness to death or
recovery.

(3) A fatality rate,γ2, which defines the proportion of deaths in the wake of the
disease. The recovery rate,γ1, will be proportional to1 − γ2

The infection and removal effects are very different from one another
• β is determined by the type of contagion which is a biological factor but it is

also highly dependent upon the frequency of inter-individual contacts3. It can be
expected to be small when the population density is low.

2Their study was in three parts: Kermack and McKendrick (1927, 1932, 1933). Although in the reference section
we cite all three papers we are in fact only interested in the first one because the two others include a number of less
basic features. It can be noted that the three papers were reprinted in 1991 in the “Bulletin of Mathematical Biology”.
This model is still in use nowadays; sometimes it is referredto as the SIR model where SIR means Susceptible-Infected-
Recovered. Li et al. (2016) gives a full introduction to thisclass of models.

3The relationship between the network structure of the population and the frequency of interactions was examined in
Li et al. (2013).
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• γ describes the evolution of the disease either to death or to recovery. Thus, it
is chiefly a biological parameter which is dependent upon thetype of the disease.

In the argument which leads to the equations defining the model the crux of the
matter is the fact that newly infected persons are generatedthrough interaction be-
tween a person that is already infected (described by the variabley) and a susceptible
person, i.e., a person not yet infected and who has not yet developed an immunity
(described by the variablex). In the differential equation of the model this inter-
action is described by a product termβxy whereβ describes the infection process.
As the disease progresses the pool of infected persons is depleted because infected
persons may die or may recover and then be immune at least for the near future. This
removal process will be described by a term−γy. In other words there is a competi-
tion between infection and removal which can be quantified bythe ratioρ = x0β/γ.

γ= removal rate

Recovered

zyx

xy.dt

y.dt

β

γ
β= incidence (or infection) rate

1

γ 2
z.dt

γγ =2 case fatality rate

γ z.dt

Not part of
the model

Susceptibles Infectious
individuals

Dead

R
em

ov
ed

Fig. 4 Diagram illustrating the mechanism of the KMK model (Kermack and McKendrick 1927) for the
propagation of an epidemic.x(t) =persons susceptible to infection,y(t) =infected (and infectious) persons,
z(t) =persons who have been infected and who, at timet are either dead or immune to infection.

This is summarized in the following system of differential equations.

(1)















dx/dt = −βxy x : susceptibles (i.e. never infected) (1.1)
dy/dt = βxy − γy y : currently infectious (1.2)

dz/dt = γy z : once infected, now dead or immune(1.3)

In addition it should be added thatx + y + z = n and that we are only interested in
non-negative solutions, that is to say:x(t), y(t), z(t) ≥ 0.

Main features of the epidemic: how does it work

One can make three simple, yet quite useful, preliminary observations.
(1) As x, y, z are non-negative, equation (1.1) and (1.3) show thatx can only

decrease whereasz can only increase. Thus, after the process has started from an
initial situation wherex0 ≃ n, y0 ≃ 0, z0 = 0 the variablex(t) will fall and z(t)

will grow. Until when will this go on? The answer is given by equation (1.2).
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(2) At time t = 0 equation (1.2) becomes:dy/dt = (βx0 − γ)y0. Clearly the
right-hand side must be positive for otherwise the process cannot start; this implies:
x0β/γ > 1. This quantity plays an important role, we call it thethreshold parameter
ρ = x0β/γ.
Then, whenx decreases, at one pointx(t) will become equal toγ/β; after that it
cannot fall further. In other words, the process will stop. Thus, the propagation of
the epidemic stops well beforex(t) becomes zero that is to say before the whole
population has been infected. In other words, under the assumptions made here a
population cannot be completely wiped out by an epidemic (even if γ1 = 0). We will
come to the same conclusion below when we discuss the variable z.

(3) Whereas the meaning of the variablesx andz appears fairly clearly, from a
practical perspective the meaning ofy is less clear. However, equation (1.3) tells us
that y is proportional todz/dt and the later has a clear practical interpretation. If,
for the sake of simplicity we assume that all infected peopledie (which means that
in Fig. 4γ1 is zero), thendz/dt represents the daily (or weekly) number of deaths.
This is a quantity commonly recorded in any epidemic.

Reduction to a single differential equation

The system (1) can in fact be reduced to a single nonlinear equation. From (1.1) and
(1.3) follows:dx/dz = −βx/γ which implies:x = x0 exp(βz/γ. Replacing this in
(1.3) one gets:

dz

dt
= γ

[

n − z − x0 exp

(

−
β

γ
z

)]

(2)

By expanding the exponential to second order one gets a logistic equation which can
be solved analytically. This quadratic approximation is valid when β/γ ≪ 1 and
remains valid as long asz is small enough.

Outcome of the epidemic fort → ∞

Whent → ∞ the variablez(t) which represents the persons affected by the epidemic
converges toward a stationary limit which is the solution ofthe equation:

n − z = x0 exp [−ρ(z/x0)] (3)

Fig. 5 shows that the limit ofz increases whenρ becomes larger. The way the size
of the epidemic increases withρ is shown more precisely in Fig. 6b which is based
on a numerical solution of equation (2).

Can a population be wiped out by an epidemic?

The death toll of the epidemic is described by the parametersγ1, γ2 of Fig. 4.
Although this part of the process is not covered by the model,it is nonetheless pos-
sible to determine if a population can be wiped out for even inthe worst case (i.e.
gamma1 = 0) the death toll cannot exceedz(∞).
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Fig. 5 Limiting value of the variable z which represents the total number of persons who have been
infected. The straight line represents the left-hand side of equation(3) whereas the curve represents the expo-
nential in the right-hand side of the same equation. The intersections marked by the green squares correspond
to the asymptotic valuez(t → ∞). The figure shows two things: (i)z(∞) is always smaller thann which
means that there are always some persons which are not infected. (ii) z(∞) increases along with the threshold
parameterρ = x0β/γ. It can also be noted that because of the relationx + y + z = n the intervaln − x0 is
equal toy0 + z0; this allows a discussion of the solutions according to various cases of initial conditions.

Both Fig. 5 and Fig. 6b show that, whatever the values of the parametersβ, γ, z(∞)
is always smaller than the whole populationn. In other words, under the present
assumptions, a populationcannot be wiped out by an epidemic. Even if all infected
persons die (which would correspond to a very severe diseaseand a complete lack of
immunity) non-infected persons will remain alive. This is because as the number of
dead people increases at the same time the sources of infection (i.e. they) dwindle.

In short, no matter the severity of a disease only a fraction of the population will die,
although it is true that this fraction may become close to onewhenρ becomes large.

The situation would be different if the dead are not buried and remain a source of
contagion. Although this case is not covered by the present model, one can imagine
that in such a case the whole population can be wiped out.

Key-role of population density

The threshold parameterρ = x0β/γ is proportional to the initial number of suscep-
tibles which itself, in case of a new disease, is close to the total population. The
model does not describe the spatial aspects of the epidemic but as it is formulated
for a populationn on a given territory it implies that population density and total
population are both proportional ton. In other words,n plays the role of population
density.

Fig. 6b shows how the size of the epidemic increases with the threshold parameter
that is to say, providedx0 ≃ n, with population density.
In the real world, one expectsβ also to increase with population density. As ex-



14

plained earlier,β depends upon the number of contacts and one expects people to
have more interactions (in stores, public transportation,entertainment places or at
work) in cities than in rural places. Needless to say, the level of β in cities depends
upon the special features of the city4. For instance, because of the difference in
public transportation one would expectβ to be higher in Tokyo than in Los Angeles.
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Fig. 6a,b The KMK model. (a) Increase in time of the fraction of the population which has been in contact
with the disease. This simulation corresponds to the following parameters: total population:n = 20, x0 =

n − 1, β = 0.32, γ = 3, ρ = x0β/γ = 2.03. The model’s equations must be solved numerically, but there
is also an analytic approximation which is shown by the lowercurve. The accuracy of this approximation is
controlled by the threshold parameterρ. Whenρ is slightly larger than 1, the infection starts slowly and only a
small fraction of the population becomes infected.(b) This graph shows the total fraction of the population that
has become infected, that is to sayz(∞)/n, as a function ofnβ/γ that we call the “normalized infection rate”.
Whenn ≃ xo it becomes identical to the threshold parameterρ. We have seen that the epidemic can develop
only if this parameter is larger than 1.

Remark
It can be added that the increase of the size of the epidemic with the density is spe-
cific to the exact model. In the quadratic approximation (which results in a logistic
equation forz(t)) the size of the epidemic (that is to say the limit ofz(t) whent goes
to infinity) is given by the expression:

z(∞) = 2γ/(x0β) [x0 − γ/β]

which, obviously, does not increase withx0.

Comparison to observation
4The hydrological environment plays a major role in the spreading of cholera. More generally, the role of population

distribution and of human interaction intensity was examined in Li et al. (2017 a,b).



15

The “Special Report” (Bureau of the Census 1920) gives deathrates by month. In a
few instances it gives also daily death data which provide a more accurate view of
the shape of the curve which describes the time evolution of the epidemic.
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Fig. 7 Predictions of the KMK equations for different densities and comparison with daily deaths in
Philadelphia. It can be seen that for the model as well as for Philadelphia the raising and falling parts are nearly
exponential. Apart from the populationn, the other parameters have the following values:β = 0.32, γ =

5, x0 = n − 1, y0 = 1, z0 = 0. At its peak the amplitude of the daily number of deaths increases asd5.2.
Source: The daily data for Philadelphia are from: Bureau of the Census (1920).

In Fig. 7 we tried to determine parameters which would lead tothis shape. The
height of the peak can be easily controlled through the threshold parameter; this is
shown in fig. 7 by the three curves corresponding to differentdensities. However,
a largerρ will give a curve whose falling part is wider than its raisingpart whereas
in fact the empirical curve is almost symmetrical with respect to its peak value. The
descending part can be made shorter by increasingγ. In this way, we can define a
set of parameters which approximates fairly closely the empirical curve.

Predictions of the model

From a mathematical perspective, one of the model’s distinctive features is the ex-
istence (shown in Fig. 6b) of a threshold under which the death rate falls abruptly
to zero. In other words for sufficiently low densities one should see a sudden drop
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of the death rate. Practically, however, what we can see in the low density range is
limited by the noise. In our comments about Fig. 2 we have already observed that
for rural places the impact of the density is over-ridden by the noise. Note that the
problem of the noise is more serious for low densities than for high densities because
low densities means few deaths which in turn imply high statistical fluctuations. As
observed in the first section, such fluctuations come in addition to the background
noise.
In other words, it will be difficult to ever observe the nice phase transition that is
supposed to occur at the threshold density.

However, this does not really matter. From our perspective,what is important is the
fact that the severity of the epidemic increases rapidly with the density. Fig.7 and
similar simulations for other values ofβ andγ show that, as a function of density, the
maximumM of the time series increases as a power law:M ∼ dν. Not surprisingly,
the exponentν of this law is itself a function ofβ andγ. For instance, whenγ = 5,
ν increases rapidly from 0 to 3 whenβ increases from 0 to 0.30 and then it decreases
slowly for values ofβ larger than 0.30.

Conclusion

Main results and open questions

We have shown that there is a weak but clearly defined relationship between pop-
ulation density and the death rate of epidemics providing sufficiently large density
ranges are considered and background noise is kept under control. We have also
shown that population density determines the time dependence of the death rate;
thus, large densities (as in Philadelphia) lead to high narrow peaks whereas for small
densities one observes low and broad humps.

The question of the length of time of an epidemic process deserves a closer study.
Here we have considered only influenza and pneumonia, diseases for which the in-
cubation time and the length of survival may be as short as a few days. However,
for other diseases these times may be much longer: for rabiesit is a few months, for
AIDS a few years5.

In a recent paper (Richmond et al. 2018) a methodology was developed which allows
measurement of the strength of family interactions betweenspouses or between par-
ents and children. One may wonder whether the propagation ofa disease can serve to
estimate the proximity between family members and more broadly between people.
At the moment one can only say that this requires detailed epidemic microdata that

5Rabies and AIDS have specific spreading mechanisms which should be taken into account in any model description.
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seem not to be available.

Immigration shock in native populations

Finally, let us briefly discuss the question of the immigration shock in the light of
what we have learned in the present study.

Epidemics ascribed to a lack of immunity in native populations are often given as the
reason of their collapse. The following excerpt taken from Marsh (2004) is typical
of this kind of statements:

“Nevada Indians had no immunity to the diseases that white explorers, colonists
and settlers brought to their lands. These diseases included smallpox, measles,
tuberculosis and others, which ravaged the tribes in great epidemics that killed
many, and sometimes all, members of a tribe”.

From a scientific point of view such statements are unsatisfactory for several rea-
sons.

(1) Together with the death of some in the community comes immunity for those
who survive.

(2) Quite as important as the death rates are the birth rates.Often in the wake of
an epidemic or famine there is a birth rate rebound. This is well documented after
the famines in India in the 19th and first half of the 20th century (Maharatna 1992).

(3) It is not easy to determine the moment when a native population has come in
contact with persons who may carry pathogens. For instance,it is abundantly clear
that the Nevada Indians had contacts with Spanish people fora long time before the
area became part of the US following the Mexican-American War of 1846-1848. The
main difficulty is that the paucity of sources does not allow us to set contact dates in
a reliable way6.

(4) Most often native populations have low density. This is of course true for the
Nevada Indians. If one takesd = 1 person per sq.km as a rough density estimate of
native populations7 andd = 340 as the density of present-day Massachusetts, then
according to Table 2 the death rate due to a contagious disease will be3400.20 = 3.2

times smaller in the native population. From Table 2 we know that the exponent is
slightly disease-dependent; the value of0.20 taken here represents a rough average.
Thus, one would expect diseases to be less severe in low density areas like Alaska,
Arizona or Nevada.

(5) Usually for native populations there are neither censusrecords nor reliable
estimates. However, in a few cases there are acceptable datagoing back to the early

6Actually, the very definition of the notion of “contact” is unclear. Is the arrival of one or several hunters sufficient to
start an epidemic? We do not know.

7It is almost impossible to know the population density of Arizona, California, Nevada or New Mexico around 1850
because at that time American Indians were not counted in US censuses. The 1890 census was the first to include the
enumeration of all Indians. See: https://www.census.gov/library/publications/1864/dec/1860a.html.
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19th century; Alaska and the Tonga Islands in the Pacific are two such cases and, re-
markably, their population did not experience any collapseafter coming into contact
with white travelers. Below we give some additional detailsfor Alaska.

(6) There are indeed documented cases of sudden population collapses within two
or three decades. If diseases are not the right explanation how can one explain them?
There are plenty of possible reasons: starvation or malnutrition when the traditional
source of food (e.g., salmons, buffaloes) is no longer available, dispersion of tribes
and splitting of families which prevents conceptions, or outright killings. Such events
can occur simultaneously as documented by Benjamin Madley (2008, 2016) for the
California Indians.

For the case of the Alaskan Indians there are two conflicting accounts: Mooney
(1929) claims a sharp population fall due to diseases over the period 1740-1780, a
time interval for which there are in fact no data available whereas for Petroff (1884)
who based his account on the Russian population estimates which became available
after 1780 there was no sizable population decrease. Note that the tribes of continen-
tal Alaska came into contact with white people only by 1840. In other words, in this
case one does not observe any substantial immunity shock.
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