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Effect of population density on epidemics

Ruigi Li', Peter Richmondand Bertrand M. Roehner

Abstract

Investigations of possible links between population dgresid the propagation and
magnitude of epidemics have so far proved inconclusive.rd hee three possible
reasons (i) A lack of focus on appropriate density interv@ilsFor the density to be
a meaningful variable the population must be distributedraformly as possible. If
an area has towns and cities where a majority of the popul&iconcentrated its
average density is meaningless. (iii) In propagation ofademic the initial propor-
tion of susceptibles (persons who have not developed an mity)us an essential,
yet usually unknown, factor. The assumption that most opthygulation is suscepti-
ble holds only for new strains of diseases.

Here we show that when these requirements are properly atmmbdor, the size
of epidemics is indeed closely connected with the poputatiensity. This empiri-
cal observation comes as a welcome confirmation of the cldsMK (Kermack-
McKendrick 1927) model. Indeed, one of its key predictionghat the size of the
epidemic increases strongly (and in a non linear way) wighitiitial density of sus-
ceptibles.

An interesting consequence is that, contrary to commorefselin sparsely popu-
lated territories, like Alaska, Australia or the west caafdhe United states the size
of epidemics among native populations must have been bintojethe low density
even for diseases for which natives had no immunity (i.ereveesceptibles).
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Introduction

Motivation

At the outset we note that, although the data that we anatyttes paper are mostly
from the early 20th century, our objective is not to write stbiical paper. We seek
to explore the density effect in the propagation of epidenmcthe most accurate
way. Clearly, to be significant such a study must consideadhiscale epidemics of
highly infectious diseases. With the possible exceptiomfifienza, such diseases
have been practically eliminated in developed countriglseyTstill exist in devel-
oping countries but in most of these countries the relighdf vital statistics is not
very good. Hence our use of early 20th century data from deeel countries. In
particular, data for the influenza pandemic of 1918 will pdeva convenient “natural
experiment”.

We must also say a word about what brought us to study thigiqued he present
investigation is a first step in an attempt to solve a longditanhistorical mystery
which can be described as follows.

Historical accounts of the contacts between native pojoumisand white immigrants
(for instance in Pacific Ocean islands, Australia or the éthibtates) often say, with
no supporting evidence that natives were wiped out by déesetsat their immune
system could not fight. Such native peoples were usuallgdivin sparsely popu-
lated areas and the question of how population density taffise propagation of
epidemics becomes of central importance. The conundrusasafiom the fact that
if it is really true that low density hampers the propagatidrepidemics (as intu-
ition would suggest), then the disease-based explanatioonbes questionable and
alternative explanations must be found.

Although we briefly come back to this point in our conclusiamore comprehensive
study will be postponed to a forthcoming paper. In explagnir own motivation,
our hope is to bring about further investigations by otheeegchers.

Milestones of the study

The investigation will proceed in four steps.

(1) Initially, convinced that it would be easy to find cleartcesults and conclu-
sions in the literature, we were quite surprised to find nyastixed results and it
took us some time to understand the reasons for this.

(2) In a second step we found out that if the observationsesp number of
appropriate requirements they lead to clear univocal tesul

(3) Although reassuring, these empirical observationsfardimited numbers.
In order to get a picture of epidemic contagion, which hasaater validity, we
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required a model based on the simplest and most natural paisasipossible and
which illustrated the influence of population density. Saaghodel has already been
proposed and studied in Kermack and McKendrick (1927). nather these authors
nor their followers (e.g. Bailey 1955) paid much attentionite influence of density.
Here, after a short presentation of the model, we focus ordémsity factor; in
particular in order to make contact with the data we checkttiepredictions of the
model are compatible. Once this confirmation has been aatathe KMK model
allows us to claim that, provided the basic assumptions aolwthe model relies are
fulfilled, the propagation of epidemics are indeed slowed by low population
density.

(4) With this knowledge in mind we return to the question & tdontacts between
native populations and immigrants in the conclusion sactio

What does the literature tell us?

Seen from the side of the pathogens, contagion is a form fufsiloin in which the
virus or bacteria jump from one individual to another. If tremsmission takes place
through air or water both intuition and mathematical maaghkvould suggest that
it is facilitated by a higher population densityThe paradox is that in most studies
that we know about, the impact of density cannot be seenlglédris is illustrated
below by the results of two studies.

Papers on influenza epidemics

In a study of the pandemic of 1918 in England and Wales (CHatall. 2008) the
authors observe “we did not find any obvious association éetwdeath rates and
measures of population density”.

Similarly in a study of the same 1918 epidemic in New Zealataidari et al. 2006)
the authors present a plot far (= population densityy = death rate. Although
the scatter plot comprises = 108 data points (each one for a separate district) the
authors found that the two variables are basically uncatedl¢ = 0.17).

Rather than to discuss other papers (most often negativéigssich as the previous
ones are not published) we prefer to present two obsengitiowhich one expects
to see a density effect albeit none is apparent.

Influenza and pneumonia in US states

The 1918 volume of “Mortality Statistics” published by th&Bureau of the Census
gives the death rate from influenza for each of the 30 Regjtratates i.e., the states
which recorded death statistics.

!As a second step, at a more detailed level, one would of cexysect that proximity due to specific human mobility
and interactions will also play a role (Li et al. 2017a, 201L7b
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Fig. 1a,b,c Relationship between population density by sta and death rate, USA, 1918. (aYhis graph

is for influenza. There is basically no correlation (the efation is 0.10 and the confidence interval is
(—0.27,0.45)) which means that no regression line can be drawn. Howeveeeims (by comparison with
the pneumonia case) that there are some obvious outlielnsasud 5=Montana, 2=Colorado, 16=New Hamp-
shire, 22=Pennsylvania, 3=Connecticut. It is not easy ttetstand why these states have death rates that are
abnormally high(b) The graph of (a) was redrawn with log scales The correlatiamely—0.068 is still not
significant. (c) This graph is for pneumonia. The correlatidog(d, log 1) is 0.62, Cl= (0.33,0.80). Sources:
Density: Historical Satistics of the United States, p. 24; death rate: Mortality Satistics 1918, p.118.

The (d =density,. =death rate) Pearson correlation turns out to be equal to 0.10
which, for a probability level of 0.95, is not significant ing standard sense that the
confidence interval, namely-0.27, 0.45) contains 0.

As a matter of fact, the scatter plot has the same shape as¢hmentioned above
for New Zealand: for densities under 25 per square-kilomisere is a very large
dispersion of death rates; then for densities over 50 thieb@loomes more orderly,
yet with some outliers.

The broad range of the population densitin Fig. 1a suggests to use a log scale.
For the sake of consistency (particularly in the limhi= 0, » — 0) it is then natural

to use also a log scale on theaxis although that is not strictly necessary on account
of the narrow range gf. This has the additional benefit that it makes the regression
coefficients of(log d, log ;1) independent of the unit of measurement used.for

Do these tests mean that there is no correlation whatsoetx@ebn density and death
rate? Not necessarily. It simply means that the backgroorms®roverrides any weak
association that may exist.

While a density effect would be expected for infectious egmius diseases, no sim-
ilar effect is expected for non-contagious diseases. lerotvords, a comparison
should show a clear-cut difference. Such a test is triedemixt subsection, once
again with conflicting results.

Contagious versus non contagious diseases
Table 1 compares the death rates in large cities with thoagah areas. Here again
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the results are found to be fairly puzzling. For instancectimtagious diseases, one
would expect the death rate ratio cities/rural to be largantl. Not only is this
ratio just barely higher than 1 but in addition the ratio f@nrcontagious diseases
Is markedly higher than 1. The most intriguing result is tme dor pneumonia.
Whereas Fig. 1c for 1918 showed a clear excess mortalityaices! of high density
the results for 1940 (the only year for which such data arergim Linder et al. 1947)
show higher death rates in rural places. In addition, if oraavd the graph of death
rates by states one finds that the correlation which existd®18 has disappeared
in 1940. So, although we ignore the reason of this changeaat the two results are
consistent with each other.

Table 1: Comparison of death rates in cities of more than 10000 and in rural areas, USA, 1940

Tubercu- Pneu- Syphilis Average of Intra Disease Disease Average of

losis monia contagious cranial of the ofthe  non contagious
diseases lesion heart coronary  diseases
Cities 40.8 55.5 11.1 78.4 23.6 45.4
Rural 34.0 70.0 8.80 88.0 18.6 23.0
Cities/Rural  1.20 0.79 1.26 1.08 0.89 1.27 1.97 1.36

Notes: The death rates are per 100,000 population. Thermedkear difference between cities and rural areas.
The most surprising result is probably the one for pneumuaiizh, contrary to expectation, is notably higher
in rural places (may be related to better medical treatmesitadole in cities). As a preliminary explanation
one may posit that the lower rural death rate for diseasesrohary arteries is due to the fact that life in rural
places involves more physical activity.

Source: Linder et al. (1947).

Components of the background noise

To explain the observations made in Fig. 1a,b,c we used {hession “background
noise”. What is the meaning intended for this expression?

An illustration from particle physics may be helpful. Thare currently experiments
under way to find out if protons can decay into lighter pagschn idea first proposed
by Andrei Sakharov (1967) in order to explain how the Big Bdnas led to the
present universe.

A proton decay can be identified by detecting the particlasitiproduces. However,
in spite of the fact that in such experiments the tank is etaeep under ground it
Is nevertheless hit by particles emitted by the Sun (eslheciautrinos) or by the

surrounding rocks. This is what physicists call backgroanoge. It is different

from purely statistical noise. Whereas the later cannotbeced (except by taking
averages over large numbers of events), the background nars be reduced for
instance by shielding the tank in appropriate ways. In shloetbackground noise is
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produced by specific sources which, once clearly identifrealy be eliminated.

What are here the factors which contribute to the backgrowisk for epidemics?
One can mention the following.

(1) In principle it would be better to consider incidenceesatather than death
rates. By considering death rates one mixes two effectsdithesion of the disease
and the availability (and effectiveness) of medical treaiitn For instance death
rates from tuberculosis may be higher in poor districts whailmonary diseases
are widespread and where no treatment is provided. Howeeath rates may be a
good proxy for incidence rates for sufficiently large aredwclv include wealthy as
well as poor districts.

(2) The existence of large cities in an area makes the avatagsity a fairly
biased variable.

(3) The initial percentage of susceptibles which dependtherprevious occur-
rences of the disease.

(4) The climate, whether hot or cold, dry or humid. As an iifaton of how
the climate effect can generate spurious data it can be om&atithat in the late 19th
and early 20th centuries the dry and sunny climate of ArizQudorado, Nevada and
New Mexico attracted many tuberculosis patients and ledhedbuilding of health
facilities (sanatoriums, boarding houses and even carsagp€). Naturally, this
resulted in highly inflated death rates in the correspondtates.

(5) The age structure of the population. As the 1918 epiddntiparticularly
middle-aged persons, if this group is over-representeddtat death rate will be
higher.

The most important lesson to retain for the following sewdias that one should
considerlarge density changes so that their impact can overcome the baahdr
noise. As a matter of fact, Chowell et al. (2008) and Haidiale (2006) also made
the observation that urban areas have higher death ratesutz areas but they did
not discuss the noise versus signal levels nor did they fspebiat must be done to
make the signal stand out more clearly.

Empirical evidence for the effect of density on contagion

Overview for contagious diseases

Population densityd) is a variable with a broad range of variation, from a few per-
sons per square kilometer in rural areas to a few thousarulg rities. In contrast,
the mortality rate ) has a rather narrow range of variation. For this reasoheifd

IS to be a relationship betwegnandd one would expect: to depend uporog d.
This is the point already emphasized in the introductioniwle said that one needs
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to consider large changes @fDoes this suffice to reveal a definite correlation?
Fig. 1c and Table 2 show that this is indeed true at the level®ttates for several
contagious diseases; yet influenza stands as an excepsbiowas in Fig. 1b.

Table 2: Impact of the population densityd on the death ratey of contagious diseases, US states

Coefficient  Exponent

of of the
correlation  power law
u=Cd*

1 Measles, 1915 0.71 0.35 +0.17
Measles, 1918 0.47 0.20 +0.14
Measles, average 0.28 +0.11

2 Diphtheria 1915 0.67 0.24 £0.11
Diphtheria 1918 0.56 0.19 +£0.10
Diphtheria, average 0.22 +0.07

3 Whooping cough, 1915 0.13 0.04 +0.12
Whooping cough, 1915 0.41 0.174+0.14

Whooping cough, average 0.11 £ 0.09
4 Pneumonia, 1915 0.59 0.10 £+ 0.06
Pneumonia, 1918 0.60 0.17 4+ 0.08
Pneumonia, average 0.14 +0.05
5 Tuberculosis, 1915 0.39 0.12+0.11
Tuberculosis, 1918 0.48 0.154+0.10
Tuberculosis, average 0.14 +0.07

Notes: The correlations and regressions arélfgyd, log 1). Taking the log ofi is not a necessity (fgu has a
small range of variation) but has the advantage of makingefeession independent of the ways measured
(for example per 1,000 or 100,000). These estimates arel loasthe data of US registration states; there were
251in 1915 and 30 in 1918. At this level there is no significamt@ation for influenza alone; however, most
often influenza and pneumonia are counted together. Apart 4918, in all “normal” years there were about
10 times more pneumonia deaths than influenza deaths. Inth@l8vo diseases had about the same death
rate. Note that almost all these exponents are under 0.25w8higgest a fairly weak connectiom £ 0 would
mean no connection at all).

Source: Mortality statistics 1919; this volume has a reicégiion for the years 1915 to 1919.

The results given in Table 2 show that, at least in the timéogarnder considera-
tion, the values of the exponent of the power law were fait@pke in the course of
time. The exponent found in the next subsection for the intaeepidemic of 1918,
namely0.22 is in the same range.

It must be emphasized that exponenis the rang&).10 — 0.25 denote a fairly weak
interdependence (obviously far= 0 there would be no relationship at all). That is
why this effect can be easily covered by the background noise

Influenza-pneumonia epidemic
Thanks to a special report published by the US Bureau of tms@e(1920) which
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describes the spread of the influenza epidemic in the falb@Biwe have far more
detailed data for this case than for any other. As in addiins epidemic was par-
ticularly strong the relative magnitude of the backgrountse will be reduced thus
providing excellent observation conditions.

Fig. 2 summarizes the situation. Whereas there is a markesltgaleath rate cor-
relation ¢ = 0.90) on a broad density scale, within rural and urban placesthas
background noise which dominates.

Such scaling behavior can be used as a powerful predictahdiothe epidemic size
for different population density at large scale (Li et al1Zb).
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Fig.2 Relationship between population density! and the sizeu of the influenza epidemic of September-
December 1918.In the graphm means million. The data are for Indiana, Kansas and the €iBhoadelphia

in Pennsylvania. Influenza and pneumonia deaths are cotogether. It can be seen that the relationship
between population density holds only on a broad densities¢aside of the three groups of data points the
background fluctuations are strong enough to override theeptaw. The regression reads (the confidence
interval is for a confidence probability of 0.95):= Cd®, a = 0.22 + 0.08, C = 3.5. Source: Bureau of the
Census (1920).

Effect of population density on the evolution of the epident

There’s not only a scaling relationship between populatiensity and size of the
influenza epidemic as shown above, but also a profound ingb@cipulation density
on the evolution of the epidemic within cities and regionsdiLal. 2016).
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Fig. 3 shows that the shape of the evolution curves is veryhnaieaisity dependent.
Philadelphia had a much higher density than cities in Ingliand Kansas which is
itself higher than the density of rural areas. As a resulla@eiphia has not only a
higher global mortality rate but also a higher monthly rate.

Philadelphia Ah—A
Cities, Indiana *—o
Cities, Kansas s
Rural districts, Indiana —a
Rural districts, Kansas [+—F]

Annual death rate, influenza+pneumonia (per 1,000)

clv e b b B b b By
9 9.5 10 10.5 11 11.5 12

Month (from Sep. to Dec. 1918)

Fig.3 Evolution of the death rate of the influenza epidemic fom September to December 1918t is
remarkable that the curves for Indiana and Kansas are alim@stame in spite of a distance of about 1,000
km between them; in contrast the curves are very dependenttine population density. At the end of 1918
the epidemic was not completely over which is why the cuneedridiana and Kansas do not return to their
pre-epidemic levelSource: Bureau of the Census (1920).

As for a big earthquake, the influenza shock of October 19X¥albbwed by several
aftershocks, particularly in early 1919 and 1920. That iy wie curves of Indiana
and Kansas do not return to their pre-epidemic level in Jgni@19. It can also be
observed that whereas the shock of October 1918 was welhsymized worldwide,
the aftershocks were not the same in different continerds,ie Australia, Europe
and North America.

Determinants of an epidemic: the KMK model

Needless to say, many epidemic models have been proposee aotirse of time.
Why, then do we focus our attention on the KMK model (Kermao# BlcKendrick
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1927)? It is simply because it is the most basic model that can bpgsed. It
involves only two features: infection (through a contadiwsen two persons) and
subsequent recovery or death.

A broader presentation and discussion of the KMK model cafobed in Li et al.
(2016).

After defining the model our main purpose will be to see whataiys about the
density effect. In the original paper this aspect receividrly short discussion only
in the framework of the quadratic approximation (see belddgwever, as shown in
Fig. 6a, this approximation is fairly poor as soon as the e@pid takes a substantial
extension. As often the case with mathematicians, KermadkMcKendrick did
not attempt to provide the kind of numerical solutions shawig. 6a,b and Fig. 7.
Thus, they may not have realized that the quadratic apptamwas in fact pretty
poor beyond the initial stage.

It is by purpose that the model presented in this sectionwesonly the most basic
features of an epidemic, namely contagion, recovery anthd&athis way our hope
Is to capture and understand the key mechanism of epidenios.fact that local
conditions usually do not play a great role is demonstraiethé similarity of the
course of the influenza epidemic (one of the few for which esitee daily data are
available) in various cities whether in Europe or in the Bdiftates.

Mechanism and differential equations of epidemics

A simplified model of an epidemic can be seen as defined by 3rmeas (see Fig.
4)

(1) Aninfection (or incidence) ratéi, which describes the transition from health
to iliness.

(2) A removal rate,;y, which describes the transition from illness to death or
recovery.

(3) A fatality rate,v,, which defines the proportion of deaths in the wake of the
disease. The recovery ratg, will be proportional tal — v,

The infection and removal effects are very different frone @amother

e ([ is determined by the type of contagion which is a biologieatdr but it is
also highly dependent upon the frequency of inter-indisideontact?. It can be
expected to be small when the population density is low.

2Their study was in three parts: Kermack and McKendrick (192932, 1933). Although in the reference section
we cite all three papers we are in fact only interested in ti& dine because the two others include a number of less
basic features. It can be noted that the three papers weniatezbin 1991 in the “Bulletin of Mathematical Biology”.
This model is still in use nowadays; sometimes it is refeteegs the SIR model where SIR means Susceptible-Infected-
Recovered. Li et al. (2016) gives a full introduction to tbliass of models.

3The relationship between the network structure of the patiori and the frequency of interactions was examined in
Lietal. (2013).
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e ~ describes the evolution of the disease either to death @ctvery. Thus, it
Is chiefly a biological parameter which is dependent uporiytpe of the disease.

In the argument which leads to the equations defining the beecrux of the
matter is the fact that newly infected persons are genetatedgh interaction be-
tween a person that is already infected (described by thahtay) and a susceptible
person, i.e., a person not yet infected and who has not yella@d an immunity
(described by the variable). In the differential equation of the model this inter-
action is described by a product tefny where describes the infection process.
As the disease progresses the pool of infected persons lstelébecause infected
persons may die or may recover and then be immune at leakefoetar future. This
removal process will be described by a termy. In other words there is a competi-
tion between infection and removal which can be quantifietheyratiop = /7.

Not part of
the model

Bxy.dt

£\

Infectious
individuals

y

Susceptibles

N Removed

X

B: incidence (or infection) rate

y: removal rate

yy.dt

W2: case fatality rate

Fig.4 Diagram illustrating the mechanism of the KMK model (Kermack and McKendrick 1927) for the
propagation of an epidemic.z(t) =persons susceptible to infectioy(t) =infected (and infectious) persons,
z(t) =persons who have been infected and who, at timue either dead or immune to infection.

This is summarized in the following system of differentigbations.

de/dt = —pxy x : susceptibles (i.e. never infected) (1.1)
(1) dy/dt =  Pxy — -~y y : currently infectious (1.2)
dz/dt = Y 2z : once infected, now dead or immune(1.3)

In addition it should be added that+- y + z = n and that we are only interested in
non-negative solutions, that is to sayt), y(¢), z(t) > 0.

Main features of the epidemic: how does it work

One can make three simple, yet quite useful, preliminargoiations.

(1) Asx,y,z are non-negative, equation (1.1) and (1.3) show thatan only
decrease whereascan only increase. Thus, after the process has started fnom a
initial situation wherery ~ n, yo ~ 0, zy = 0 the variablez(¢) will fall and z(¢)
will grow. Until when will this go on? The answer is given byusdion (1.2).
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(2) Attimet = 0 equation (1.2) becomesly/dt = (Bxo — v)yo. Clearly the
right-hand side must be positive for otherwise the procassat start; this implies:
xo3/~ > 1. This quantity plays an important role, we call it tieeshold parameter
p=x0B/7.

Then, whenr decreases, at one pointt) will become equal toy/3; after that it
cannot fall further. In other words, the process will stofgwu$, the propagation of
the epidemic stops well beforgt) becomes zero that is to say before the whole
population has been infected. In other words, under thengssons made here a
population cannot be completely wiped out by an epidemierfefry; = 0). We will
come to the same conclusion below when we discuss the variabl

(3) Whereas the meaning of the variableand > appears fairly clearly, from a
practical perspective the meaningois less clear. However, equation (1.3) tells us
thaty is proportional tadz/dt and the later has a clear practical interpretation. If,
for the sake of simplicity we assume that all infected pealde(which means that
in Fig. 4, is zero), theniz/dt represents the daily (or weekly) number of deaths.
This is a quantity commonly recorded in any epidemic.

Reduction to a single differential equation

The system (1) can in fact be reduced to a single nonlineateou From (1.1) and
(1.3) follows: dz/dz = —[(x/~ which implies:z = z¢exp(8z/7. Replacing this in
(1.3) one gets:

d
—Z:fy n — z — Toexp <—§z> (2)
dt y

By expanding the exponential to second order one gets dilgtpuation which can
be solved analytically. This quadratic approximation iidvavhen 5/~ < 1 and
remains valid as long asis small enough.

Outcome of the epidemic fort — oo

Whent — oo the variable:(¢) which represents the persons affected by the epidemic
converges toward a stationary limit which is the solutionh&f equation:

n—z=xgexp|—p(z/x0)] (3)
Fig. 5 shows that the limit of increases whep becomes larger. The way the size

of the epidemic increases withis shown more precisely in Fig. 6b which is based
on a numerical solution of equation (2).

Can a population be wiped out by an epidemic?

The death toll of the epidemic is described by the parametersy, of Fig. 4.
Although this part of the process is not covered by the matisl,nonetheless pos-
sible to determine if a population can be wiped out for evethenworst case (i.e.
gamma, = 0) the death toll cannot exceedo).
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Fig.5 Limiting value of the variable z which represents the total number of persons who have been
infected. The straight line represents the left-hand side of equd8bwhereas the curve represents the expo-
nential in the right-hand side of the same equation. Thedatdions marked by the green squares correspond
to the asymptotic value(t — oo). The figure shows two things: (B(cc) is always smaller than which
means that there are always some persons which are noeidf€ad) z(co) increases along with the threshold
parametep = xo(3/v. It can also be noted that because of the relatiehy + z = n the intervaln — xg is
equal toyg + zp; this allows a discussion of the solutions according tootagicases of initial conditions.

Both Fig. 5 and Fig. 6b show that, whatever the values of thempaterss, v, z(co)

Is always smaller than the whole population In other words, under the present
assumptions, a populatia@annot be wiped out by an epidemic. Even if all infected
persons die (which would correspond to a very severe disgaba complete lack of
immunity) non-infected persons will remain alive. This echuse as the number of
dead people increases at the same time the sources ofamf¢icéi. they) dwindle.

In short, no matter the severity of a disease only a fractidhepopulation will die,
although it is true that this fraction may become close towhenp becomes large.

The situation would be different if the dead are not buried eemain a source of
contagion. Although this case is not covered by the presediione can imagine
that in such a case the whole population can be wiped out.

Key-role of population density

The threshold parameter= z,/~ is proportional to the initial number of suscep-
tibles which itself, in case of a new disease, is close to ote population. The
model does not describe the spatial aspects of the epidamasht is formulated
for a populationn on a given territory it implies that population density adat
population are both proportional to In other wordsy plays the role of population
density.

Fig. 6b shows how the size of the epidemic increases withhteshold parameter
that is to say, provided, ~ n, with population density.
In the real world, one expects also to increase with population density. As ex-
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plained earliers depends upon the number of contacts and one expects people to
have more interactions (in stores, public transportaterertainment places or at
work) in cities than in rural places. Needless to say, thelle¥j in cities depends
upon the special features of the éityFor instance, because of the difference in
public transportation one would expetto be higher in Tokyo than in Los Angeles.

o0 L._10tal population

175 threshold

0.8

0.6

15
125 -

Fraction of population infected

=
o

Quadratic approximation o4

Cumulative number of infected persons
N
(6)]

0.2

(&)

N
o

o\\\\‘\\\\‘\\\\‘\\\\‘

0.5 1 1.5 2 2.5 3 05 060708091 2 3 4 5 6 7

Time Normalized infection rate (under 1: no propagation)
Fig.6a,b The KMK model. (a) Increase in time of the fraction of the population which hasrbin contact
with the disease. This simulation corresponds to the faligwparameters: total populatiom: = 20, zy =
n—1, =032 v=3, p=1x3/y = 2.03. The model’'s equations must be solved numerically, buether
is also an analytic approximation which is shown by the loaawe. The accuracy of this approximation is
controlled by the threshold paramegenWhenp is slightly larger than 1, the infection starts slowly andyos
small fraction of the population becomes infectéa). This graph shows the total fraction of the population that
has become infected, that is to sgyc) /n, as a function of. 3/~ that we call the “normalized infection rate”.
Whenn ~ x, it becomes identical to the threshold paramete¥We have seen that the epidemic can develop
only if this parameter is larger than 1.

o

Remark

It can be added that the increase of the size of the epidentfictiag density is spe-
cific to the exact model. In the quadratic approximation @hiriesults in a logistic
equation forz(t)) the size of the epidemic (that is to say the limit:¢f) whent goes
to infinity) is given by the expression:

2(00) = 2v/(x0f3) [x0 — 7/ /]
which, obviously, does not increase with

Comparison to observation

4The hydrological environment plays a major role in the sgirgof cholera. More generally, the role of population
distribution and of human interaction intensity was exasdiim Li et al. (2017 a,b).
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The “Special Report” (Bureau of the Census 1920) gives dedds by month. In a
few instances it gives also daily death data which provideoaenaccurate view of
the shape of the curve which describes the time evolutiohe&pidemic.

00 L Philadelphia —
00 KMK model, density=30  m—
A KMK model, density=25  m—
00 KMK model, density=21 ——

Daily number of deathsin Philadelphia
o
o

O 5 10 15 20 25 30 35 40 45

Day (1=21 September 1918)

Fig. 7 Predictions of the KMK equations for different densities and comparison with daily deaths in
Philadelphia. It can be seen that for the model as well as for Philadelpl@iaatsing and falling parts are nearly
exponential. Apart from the population, the other parameters have the following valugs= 0.32, v =

5, 9 =n—1, yo = 1, 2o = 0. Atits peak the amplitude of the daily number of deaths iases as/®>.
Source: The daily data for Philadelphia are from: Bureau of the Census (1920).

In Fig. 7 we tried to determine parameters which would leathi® shape. The
height of the peak can be easily controlled through the Hulesparameter; this is
shown in fig. 7 by the three curves corresponding to diffedamtsities. However,
a largerp will give a curve whose falling part is wider than its raisipgrt whereas
in fact the empirical curve is almost symmetrical with redfe its peak value. The
descending part can be made shorter by increaging this way, we can define a
set of parameters which approximates fairly closely theigogb curve.

Predictions of the model

From a mathematical perspective, one of the model’s distmdeatures is the ex-
istence (shown in Fig. 6b) of a threshold under which theldeate falls abruptly
to zero. In other words for sufficiently low densities one @dosee a sudden drop
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of the death rate. Practically, however, what we can seeaihcilv density range is

limited by the noise. In our comments about Fig. 2 we haveadlyeobserved that
for rural places the impact of the density is over-riddenloy moise. Note that the
problem of the noise is more serious for low densities thahifgh densities because
low densities means few deaths which in turn imply high statal fluctuations. As

observed in the first section, such fluctuations come in eafdib the background

noise.

In other words, it will be difficult to ever observe the niceagle transition that is
supposed to occur at the threshold density.

However, this does not really matter. From our perspectivgt is important is the
fact that the severity of the epidemic increases rapidiyhe density. Fig.7 and
similar simulations for other values gfand~ show that, as a function of density, the
maximum/ of the time series increases as a power |AWwx~ d”. Not surprisingly,

the exponent of this law is itself a function ofs and~. For instance, when = 5,

v increases rapidly from 0 to 3 whehincreases from 0 to 0.30 and then it decreases
slowly for values ofg larger than 0.30.

Conclusion

Main results and open questions

We have shown that there is a weak but clearly defined rekttiprbetween pop-
ulation density and the death rate of epidemics providirfiicsently large density

ranges are considered and background noise is kept undepicowe have also

shown that population density determines the time depearaehthe death rate;
thus, large densities (as in Philadelphia) lead to highawapeaks whereas for small
densities one observes low and broad humps.

The guestion of the length of time of an epidemic processrdese closer study.
Here we have considered only influenza and pneumonia, éséaswhich the in-
cubation time and the length of survival may be as short asvady/s. However,
for other diseases these times may be much longer: for ratges few months, for
AIDS a few years,

In arecent paper (Richmond et al. 2018) a methodology waslaleed which allows
measurement of the strength of family interactions betvapemses or between par-
ents and children. One may wonder whether the propagatiadlisease can serve to
estimate the proximity between family members and morediydaetween people.
At the moment one can only say that this requires detailedespic microdata that

SRabies and AIDS have specific spreading mechanisms whiahdhe taken into account in any model description.
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seem not to be available.

Immigration shock in native populations

Finally, let us briefly discuss the question of the immigratshock in the light of
what we have learned in the present study.

Epidemics ascribed to a lack of immunity in native populasiare often given as the
reason of their collapse. The following excerpt taken fromrsh (2004) is typical
of this kind of statements:
“Nevada Indians had no immunity to the diseases that whipéoears, colonists
and settlers brought to their lands. These diseases ircckmallpox, measles,
tuberculosis and others, which ravaged the tribes in gmdemics that killed
many, and sometimes all, members of a tribe”.

From a scientific point of view such statements are unsatisfa for several rea-
sons.

(1) Together with the death of some in the community comesunity for those
who survive.

(2) Quite as important as the death rates are the birth r@#esn in the wake of
an epidemic or famine there is a birth rate rebound. This i§ dezumented after
the famines in India in the 19th and first half of the 20th cen{ivlaharatna 1992).

(3) Itis not easy to determine the moment when a native ptipaldas come in
contact with persons who may carry pathogens. For instaniseabundantly clear
that the Nevada Indians had contacts with Spanish peopkeltorg time before the
area became part of the US following the Mexican-American §/4846-1848. The
main difficulty is that the paucity of sources does not alletaset contact dates in
a reliable way.

(4) Most often native populations have low density. Thisfisaurse true for the
Nevada Indians. If one takels= 1 person per sq.km as a rough density estimate of
native populationsandd = 340 as the density of present-day Massachusetts, then
according to Table 2 the death rate due to a contagious disghde 340°2° = 3.2
times smaller in the native population. From Table 2 we knloat the exponent is
slightly disease-dependent; the valueddf0 taken here represents a rough average.
Thus, one would expect diseases to be less severe in lowmyglansas like Alaska,
Arizona or Nevada.

(5) Usually for native populations there are neither censgsrds nor reliable
estimates. However, in a few cases there are acceptablgaataback to the early

6Actually, the very definition of the notion of “contact” is clear. Is the arrival of one or several hunters sufficient to
start an epidemic? We do not know.

/It is almost impossible to know the population density ofzna, California, Nevada or New Mexico around 1850
because at that time American Indians were not counted indnSuses. The 1890 census was the first to include the
enumeration of all Indians. See: https://www.censusldwaty/publications/1864/dec/1860a.html.
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19th century; Alaska and the Tonga Islands in the Pacificvemestich cases and, re-
markably, their population did not experience any collagdser coming into contact
with white travelers. Below we give some additional detfolsAlaska.

(6) There are indeed documented cases of sudden populatiapses within two
or three decades. If diseases are not the right explanatiecén one explain them?
There are plenty of possible reasons: starvation or matimntrvhen the traditional
source of food (e.g., salmons, buffaloes) is no longer alig| dispersion of tribes
and splitting of families which prevents conceptions, drigint killings. Such events
can occur simultaneously as documented by Benjamin Ma@@9g, 2016) for the
California Indians.

For the case of the Alaskan Indians there are two conflicttgpants: Mooney
(1929) claims a sharp population fall due to diseases owepéniod 1740-1780, a
time interval for which there are in fact no data availableevdas for Petroff (1884)
who based his account on the Russian population estimatiek Wwbcame available
after 1780 there was no sizable population decrease. Nattéhtribes of continen-
tal Alaska came into contact with white people only by 1840other words, in this
case one does not observe any substantial immunity shock.
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