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Abstract

This paper proposes an innovative treatment of Greenwood and Johnson (1965)’s mechanism
of transformation plasticity of metals and alloys, based on the disregard of elasticity and the
powerful kinematic method of limit-analysis. In the new approach the spherical representative
unit cell considered in the homogenization process includes only the mother-phase surrounding
a growing nucleus of daughter-phase, but the external loading arising from the macroscopic
stress applied is supplemented with an internal one arising from the volumetric transformation
strain of the enclosed nucleus. The treatment brings considerable improvement to the classical
one of Leblond et al. (1989), not only by eliminating the need for ad hoc hypotheses of limited
validity, but more importantly by extending its results to more general situations involving
large external stresses, comparable in magnitude to the yield stress of the weaker, mother-
phase. The theoretical results are compared to other theories, experiments, and finite element
micromechanical simulations considering a representative volume of shape identical to that in
the theory. In addition, the methodology presented paves the way to incorporation, in a future
work, of the effect of anisotropies of morphologic type (tied for instance to growth of nuclei of
daughter-phase elongated in a certain privileged direction) upon transformation plasticity; this
will be done through consideration of representative unit cells of more complex shape.

Keywords : Transformation plasticity; Greenwood-Johnson’s mechanism; spherical phase growth;
limit-analysis; finite element micromechanical simulations

1 Introduction

The wording transformation plasticity was coined to denote the anomalous plastic behav-
ior of metals and alloys during solid-solid phase transformations. Such transformations
occur notably during the cooling phase of thermomechanical treatments such as welding
and quenching. The major impact of transformation plasticity upon residual stresses and
distortions resulting from such treatments has been underlined by various authors, see
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e.g. Miyao et al. (1986); Fukumoto et al. (2001); Taleb et al. (2004), among many others.
This impact constitutes the major motivation for developing good models of transfor-
mation plasticity, to be implemented in finite element programmes and used for accurate
predictions of residual stresses and distortions produced by thermomechanical treatments.

It is widely accepted nowadays that transformation plasticity arises from two distinct
physical mechanisms, which were proposed by Greenwood and Johnson (1965) and Magee
(1966) respectively:

• In Greenwood and Johnson (1965)’s interpretation, transformation plasticity is due to
standard, dislocation-induced plasticity at the microscopic scale in the weaker, mother-
phase (that prevailing at high temperatures, with a generally much lower yield stress).
Microscopic plasticity arises from the difference of specific volume between the phases
coexisting during the transformation (volumetric part of the transformation strain),
which generates internal stresses of sufficient magnitude to induce plasticity in the
weaker one. The effect occurs even in the absence of external stress; but such a stress,
when present, takes advantage of the internal “transformation-induced weakness” of
the material to deform it plastically.

• In contrast, in Magee (1966)’s interpretation, transformation plasticity is not due to
standard plasticity but to the deviatoric part of the transformation strain of the trans-
forming regions. (In this interpretation the expression “transformation plasticity” is
somewhat inappropriate, since the transformation strain responsible for the effect is of
essentially pseudo-elastic, reversible nature; but the wording is classical). In Magee’s
view, when the external stress is zero the deviatoric part of the transformation strain
varies randomly in direction in the material, and therefore averages out to zero; but
when the external stress is nonzero, it “orients” this deviatoric part and the net result
is a nonzero macroscopic strain.

In this paper, we concentrate on Greenwood and Johnson (1965)’s mechanism. (Some
comments on this point will be offered below). The most classical - and still widely used,
despite its age - constitutive model of this mechanism is due to Leblond et al. (1986a,
1989). The basis of this model was an additive decomposition of microscopic strains,
followed by homogenization and detailed analysis of the decomposition of macroscopic
strains (Leblond et al., 1986a); this led to an expression of the “transformation plastic
strain rate” as an average value over the domain occupied by the mother-phase, which
was finally evaluated explicitly using a simple model of growth of a spherical nucleus of
daughter-phase within a concentric spherical shell of mother-phase, considered as a typical
representative volume element (RVE) in the transforming material (Leblond et al., 1989).

The explanation of the popularity of this model probably lies in the fact that the expres-
sion of the transformation plastic strain rate it proposes involves only standard mechanical
parameters of the two phases, the yield stress of the weaker phase and the volumetric trans-
formation strain, in the absence of any ad hoc parameter to be determined experimentally.
Such a feature is essential for applications to the numerical simulation of thermomechan-
ical treatments, since most of the time no experimental data concerning transformation
plasticity are available for the specific material considered. 1

1 Even data pertaining to the yield stress of the weaker phase at the temperatures of interest,
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Leblond et al. (1989)’s model however suffered from serious drawbacks, which have long
been noted. First, it relied on some technical hypotheses of doubtful applicability (recalled
below). Also, the disregard of elasticity and the hypothesis of instantaneous total “plasti-
fication” of the mother-phase it relied upon, led to an infinite value of the transformation
plastic strain rate at the very beginning of the transformation, which has repeatedly been
criticized. But the most important drawback was that the treatment was by nature lim-
ited to small external stresses only (much smaller in magnitude than the yield stress of
the weaker phase); as a consequence it failed to predict the well-documented nonlinear
dependence of the transformation plastic strain rate upon the magnitude of the external
stress tensor (see e.g. Figs. 3 to 6 in the experimental section of Greenwood and Johnson
(1965)’s paper).

The model was improved in later years through refinement of the description of the me-
chanical behaviour of the mother-phase; see the works of Diani et al. (1995); Cherkaoui et
al. (2000); Taleb and Sidoroff (2003); Vincent et al. (2003); Fischlschweiger et al. (2012);
Weisz-Paltrault (2017), among others. For instance, the issue of the infinite initial value
of the transformation plastic strain rate was settled by Taleb and Sidoroff (2003) and
Weisz-Paltrault (2017) by accounting for elasticity and discarding the hypothesis of in-
stantaneous complete plastification of the mother-phase. The very author of the model
and coworkers contributed to the effort by introducing viscous effects, which are often
important at the temperatures of interest (Vincent et al., 2003). Weisz-Paltrault (2017)
extended the model by accounting for the possibility of consecutive or simultaneous for-
mation of several phases. It seems fair to say, however, that in spite of these efforts the
model has remained essentially the same over the years and still suffers from serious
shortcomings, most notably its lack of generality.

The aim of this paper is to propose an enhanced theoretical framework for the analysis of
Greenwood and Johnson (1965)’s mechanism. This framework will be based on the Mandel
(1964) - Hill (1967) theory of homogenization like before; but Leblond et al. (1989)’s
approximate treatment, based on specific and disputable hypotheses, of the problem of a
spherical volume of mother-phase containing a growing spherical core of daughter-phase,
will be replaced by a much more rigorous and efficient treatment of the same problem,
based on the powerful “kinematic approach” of limit-analysis. (See e.g. Leblond et al.
(2018) for a very recent summary and review of the theory). The idea of using limit-
analysis is logical in view of the assumption - in line with Leblond et al. (1989)’s hypotheses
- of negligible effect of elasticity. The main difficulty raised by use of this theory, in the
context of transformation plasticity, is the presence within the material of some “internal
active mechanism” - the growth, within the matrix of mother-phase, of a daughter-phase
with a different specific volume - not accounted for in limit-analysis, which considers
only “passive” materials. This difficulty will be settled by including only, in the volume
considered, the domain - a hollow sphere - occupied by the plastically deforming mother-
phase; the internal mechanism just mentioned will then simply become an additional
loading condition imposed on the inner boundary of this volume. The presence of this extra
loading will constitute the sole difference with elementary cells and loadings considered
in theoretical analyses of porous plastic materials (with traction-free voids); and this will
permit to use, with some adaptations, the results of some previous works on the ductile

necessary to apply the model, are often scarce.
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rupture of metals (Gurson, 1977; Monchiet et al., 2011).

The benefits to be expected from the new approach are three-fold:

• Use of the variational framework of limit-analysis will permit to dispense with some
of Leblond et al. (1989)’s most criticizable hypotheses. Also, the greater rigour of the
treatment will be seen to lead to a finite value of the transformation plastic strain rate
at the onset of the transformation without demanding incorporation of the effect of
elasticity.

• More importantly, the wider generality of the treatment will permit to address not
only small external stresses like before, but also stresses comparable in magnitude to
the yield stress of the weaker mother-phase. The experimentally well-known nonlinear
dependence of the transformation plastic strain rate upon the external stress tensor will
thus be given a theoretical interpretation, apparently the first of its kind.

• But perhaps the most important benefit will not lie in the improvement of the treatment
of the problem of spherical growth of nuclei of daughter-phase, but in the perspectives
opened, thanks to the versatility of the method, for future extensions to more complex
situations. Such situations could include for instance growth of spheroidal rather than
spherical nuclei of daughter-phase; the treatment of such a problem could permit to
study and model effects arising from anisotropies of morphological type (tied to devel-
opment of domains of daughter-phase of anisotropic, for instance elongated shape).

The paper is organized as follows:

• As a necessary prerequisite, Section 2 recalls some elements of Leblond’s general theory
of transformation plasticity (Leblond et al., 1986a) and approximate treatment of the
model problem of growth of a spherical nucleus of daughter-phase within a spherical
RVE of mother-phase (Leblond et al., 1989).

• Section 3 then presents the limit-analysis of a spherical cell subjected to conditions of
homogeneous boundary stress (Mandel, 1964; Hill, 1967) on both its outer and inner
boundaries. The treatment makes an extensive use of Monchiet et al. (2011)’s gener-
alization - based on trial velocity fields of Eshelby (1957)’s type - of Gurson (1977)’s
classical analysis of the same problem but in the absence of internal loading.

• Section 4 explains how the results derived may be used to predict the value of the
transformation plastic strain rate, assumed to arise only from Greenwood and Johnson
(1965)’s mechanism. An analytical, albeit somewhat complex expression of this strain
rate is derived in general, and shown to reduce to simple forms in two special cases:
(i) small external stresses; (ii) beginning of the transformation, whatever the external
stresses.

• Finally Section 5 compares the new theoretical predictions to (i) those of Leblond et
al. (1989)’s former theory; (ii) some experimental results of Desalos (1981); Coret et
al. (2002, 2004) for the A533 steel; and (iii) the results of some new finite element
micromechanical simulations of the mechanism studied, considering the same typical
spherical geometry as the theory.
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2 Elements of Leblond’s classical theory of transformation plasticity

2.1 Generalities

We consider, within some metal or alloy, a RVE Ω containing “mother-” and “daughter-”
phases occupying respectively the domains ΩM and ΩD, separated by an interface I (Fig.
1). The volume fraction f of the daughter-phase is defined as

f ≡
vol(ΩD)

vol(Ω)
(1)

where the symbol “vol” denotes the volume of a domain. The mother-phase may transform
into the daughter-phase through motion of the interface I in the direction of ΩM .

Ω
D

Ω
M

I

Fig. 1. The general RVE considered.

Use is made of the Mandel (1964) - Hill (1967) homogenization theory assuming conditions
of homogeneous boundary stress or strain.

2.2 Decomposition of microscopic strains

The behaviour of both phases is thermo-elastic-plastic. The microscopic strain ǫk in phase
k (k = M,D) thus splits into thermal, elastic and plastic parts:

ǫk = ǫ
th
k + ǫ

e
k + ǫ

p
k (k = M,D). (2)

• The thermal strain ǫ
th
k of phase k, depending on the temperature T , is defined as

the “free strain” which would exist in a small, unstressed volume of this phase at this
temperature, measured in reference to a given phase - in dilatometric diagrams generally
the daughter - and a given reference temperature T0. It is of the form

ǫ
th
k (T ) = [αk(T − T0) + βk] 1 (k = M,D), (3)

where αk is the thermal expansion coefficient of phase k and βk is related to its free strain
at the temperature T0. The relative change of specific volume ∆V

V
from the mother-
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to the daughter-phase (volumetric part of the transformation strain) depends on the
temperature T and is given by

∆V

V
(T ) ≡ tr

[

ǫ
th
D (T )− ǫ

th
M(T )

]

= 3 [(αD − αM)(T − T0) + βM − βD] . (4)

Further comments on these strains and their macroscopic counterpart Ethm (see below)
are provided in Appendix A.

• The elastic strain ǫ
e
k of phase k is related to the local stress σk in this phase through

the relation
ǫ
e
k = S : σk (5)

where S is the (isotropic) elastic compliance tensor. No distinction is made here between
the compliance tensor of the mother-phase, that of the daughter-phase and the overall
compliance tensor; the idea being that the major factors influencing transformation
plasticity are the standard plastic strain in the weaker mother-phase (Greenwood and
Johnson (1965)’s mechanism), and the transformation strain (Magee (1966)’s mecha-
nism); not the difference of elastic moduli between the phases nor the anisotropic nature
of their crystal elasticity.

• The plastic strains ǫ
p
k (k = M,D) of the phases conventionally include, in Leblond et

al. (1986a)’s definition, not only standard, dislocation-induced plastic strains (arising
from Greenwood and Johnson (1965)’s mechanism), but also the deviatoric part of the
transformation strain, possibly oriented by the external stress applied (Magee (1966)’s
mechanism). (The inclusion of the latter strain in the plastic strain is admittedly illogical
because of its different, pseudo-elastic nature; but it is in line with the equally illogical
but widely accepted preservation of the wording “transformation plasticity” to designate
Magee (1966)’s pseudo-elastic mechanism). With this definition, the plastic strain is
discontinuous across the interface I separating the phases, its discontinuity

[[ǫp]] ≡ ǫ
p
D − ǫ

p
M (6)

being identical to the deviatoric part of the transformation strain.

2.3 Decomposition of macroscopic strains

With the hypothesis of identical elastic compliance tensors of the phases, the Mandel (1964)
- Hill (1967) “localization tensors” appearing in the formulae connecting the microscopic
thermal, elastic and plastic strains to their macroscopic counterparts, are identical to the
unit tensor. The macroscopic strain tensor E is thus given by

E ≡ 〈ǫ〉
Ω
= Ethm + Ee + Ep ,



























Ethm ≡ 〈ǫth〉Ω = (1− f)ǫthM(T ) + fǫthD (T )

Ee ≡ 〈ǫe〉Ω = S : Σ

Ep ≡ 〈ǫp〉Ω ,

(7)

where
Σ ≡ 〈σ〉Ω (8)
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is the macroscopic stress tensor (the symbol 〈 . 〉Ω denotes an average value over Ω).

The symbol “thm” in Ethm stands for “thermo-metallurgical”; the word “metallurgical” is
added to emphasize the fact that this strain does not only depend on the temperature T ,
but also on the volume fraction f of the daughter-phase, and hence on the “metallurgical
structure”. Some additional comments on this strain are provided in Appendix A.

Time-differentiation of the expression (7)4 of the overall plastic strain Ep yields, account
being taken of the discontinuity of ǫp across the interface I:

Ėp = 〈ǫ̇p〉Ω +
1

vol(Ω)

∫

I

[[ǫp]]Vn dS = 〈ǫ̇p〉Ω + ḟ 〈[[ǫp]]〉
I/Vn

, (9)

where

〈[[ǫp]]〉
I/Vn

≡

∫

I
[[ǫp]]Vn dS
∫

I
Vn dS

=

∫

I
[[ǫp]]Vn dS

ḟ vol(Ω)
(10)

denotes the average value of the discontinuity [[ǫp]] over the interface I, with a weight
identical to the normal velocity Vn of this interface.

The next step consists in distinguishing, in the local plastic strain rate ǫ̇
p, those parts

due to variations of the macroscopic parameters Σ, T and f :

ǫ̇
p =

δǫp

δΣ
: Σ̇+

δǫp

δT
Ṫ +

δǫp

δf
ḟ (11)

where the notations are self-evident. 2 The unusual term proportional to ḟ here arises
from the fact that even when the overall stress Σ and the temperature T are fixed,
the progress of the transformation induces a local plastic flow through Greenwood and
Johnson (1965)’s mechanism. Inserting the expression (11) of ǫ̇p in equation (9), we get

Ėp = Ėcp + Ėtp ,











Ėcp ≡ 〈 δǫ
p

δΣ
〉
Ω
: Σ̇+ 〈 δǫ

p

δT
〉
Ω
Ṫ

Ėtp ≡
[

〈 δǫ
p

δf
〉
Ω
+ 〈[[ǫp]]〉

I/Vn

]

ḟ .
(12)

The strain rate Ėcp here may be interpreted as corresponding to “classical plasticity”,
insofar as it arises from the sole variations of the external stress and the temperature. On
the other hand the strain rate Ėtp due to the sole variation of the fraction of the daughter-
phase, that is to the progress of the transformation, may be interpreted as corresponding
to “transformation plasticity”. Furthermore the latter strain rate naturally appears as
a sum of two terms, 〈 δǫ

p

δf
〉
Ω
ḟ and 〈[[ǫp]]〉

I/Vn
ḟ . The first corresponds to Greenwood and

Johnson (1965)’s mechanism since it arises from the standard (dislocation-induced) plastic
flow generated by the progress of the transformation, and the second to Magee (1966)’s
mechanism since it arises from the “plastic strain discontinuity” between the two phases,
that is the deviatoric part of the transformation strain. (The dependence of [[ǫp]] upon
the external stress is implicit in equation (12)3).

2 The rates Ṫ and ḟ are formally considered as independent here. In reality these rates are tied
through the kinetics of the transformation and latent heat effects; but it is not the object of this
paper to discuss such aspects.
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2.4 Additional hypotheses

Although the “classical plastic strain rate” Ėcp has been studied in detail by Leblond et
al. (1986b), we shall focus here on the sole “transformation plastic strain rate” Ėtp. The
reason is that numerous numerical calculations performed since Leblond et al. (1986a,b)’s
work have shown that Ėcp becomes much smaller than Ėtp as soon as the transformation
begins: in the former strain rate, the effect of the term 〈 δǫ

p

δΣ
〉
Ω
: Σ̇ roughly amounts to

a slight modification of the value of Young’s modulus (Leblond et al., 1986b), of minor
importance; and the other term 〈 δǫ

p

δT
〉
Ω
Ṫ is dominated by the term 〈 δǫ

p

δf
〉
Ω
ḟ in Ėtp, because

during the transformation, the difference in the thermal contractions of the phases is small
compared to the volume expansion due to the transformation (see Fig. A.1 of Appendix
A).

Also, for the detailed calculation of Ėtp, Leblond et al. (1989) considered only Greenwood
and Johnson (1965)’s mechanism, and we shall follow the same path here. Two points of
view are possible with regard to such a simplification.

• One may consider that the paper of Leblond et al. (1989) and the present one only
provide a partial treatment of the problem, which should be completed by an additional
independent modelling of Magee (1966)’s mechanism. (It must be stressed, however,
that the theoretical treatment of this mechanism is much more difficult than that of
Greenwood and Johnson (1965)’s mechanism; indeed in contrast to Greenwood and
Johnson (1965)’s mechanism which is of purely “mechanical” nature, that of Magee
(1966) involves complex couplings between metallurgical and mechanical aspects - so
it seems impossible, when modelling it, to avoid introduction of some adjustable ad
hoc parameter(s), thus impairing the practical application of the model, as explained
above).

• One may also consider that Leblond et al. (1989)’s paper and the present one apply
only to materials in which Greenwood and Johnson (1965)’s mechanism dominates.
The relative importance of the two mechanisms, according to the type of material
and situation considered, and their possible experimental separation, are discussed in
Appendix B; with the conclusion that although Magee (1966)’s mechanism is present
in different materials and situations, and may even completely dominate over that of
Greenwood and Johnson (1965), in many cases the converse is true and Magee (1966)’s
mechanism may safely be disregarded.

2.5 The spherical growth model and its approximate treatment

To evaluate the contribution of Greenwood and Johnson (1965)’s mechanism to the ex-
pression (12)3 of the transformation plastic strain rate Ėtp, Leblond et al. (1989) consider
the simplest possible model of growth of a spherical nucleus of daughter-phase within a
concentric spherical matrix of mother-phase, subjected to some overall stress tensor Σ.
Figure 2 shows the RVE; the external radius is denoted R, and that of the central core
of daughter-phase rf , where the lower index underlines the connection with the fraction
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f of this phase:

f =
r3f
R3

. (13)

r  =r  +   uδff
− r  +   rf δ

f

r  +   r  +   uf δ
f

δ

Ω
M

Ω
D

R

Σ

+

Fig. 2. The spherical RVE considered by Leblond et al. (1989).

Between times t and t + δt, the spherical layer lying between the radii rf and rf +
δrf transforms from the mother- to the daughter-phase; the accompanying expansion
generates increments of radial displacement δu−, δu+ of the inner and outer boundaries
of this layer. These displacements induce a plastic strain rate distribution within the RVE,
which must be evaluated.

Leaving aside the contribution of Magee (1966)’s mechanism, and introducing the sim-
plifying hypotheses of complete plastification of the weaker mother-phase and absence of
plasticity in the stronger daughter-phase (justified by the large difference between their
respective yield stresses), we transform the expression (12)3 of Ėtp into

Ėtp = (1− f)〈
δǫp

δf
〉
ΩM

ḟ , (14)

which reduces the problem to evaluating the average value 〈 δǫp

δf
〉
ΩM

. The task is made

more difficult by presence of the load Σ, which destroys spherical symmetry.

To obviate this difficulty, Leblond et al. (1989) write the local flow rule (for the von Mises
criterion) in the classical form δǫp

δf
= 3

2
δǫeq
δf

σ
′

σM
where δǫeq ≡ (2

3
δǫp : δǫp)1/2 denotes the

equivalent increment of plastic strain, σ′ ≡ σ − 1
3
(tr σ)1 the local stress deviator and

σM the yield stress of the mother-phase, assumed to be ideal-plastic. They also introduce
some approximations:

• Approximation (1): correlations between the quantities δǫeq
δf

and σ
′ are negligible so that

9



〈 δǫeq
δf

σ
′〉
ΩM

≃ 〈 δǫeq
δf

〉
ΩM

〈σ′〉ΩM
in equation (14);

• Approximation (2): the average value of σ′ over the mother-phase differs little from
that over the entire RVE, so that 〈σ′〉ΩM

≃ Σ′ where Σ′ ≡ Σ− 1
3
(tr Σ)1 is the overall

stress deviator.

Equation (14) then becomes

Ėtp =
3

2

1− f

σM
〈
δǫeq
δf

〉
ΩM

Σ′ḟ . (15)

Whereas the tensorial average value 〈 δǫp

δf
〉
ΩM

appearing in equation (14) vanished with

Σ, the scalar average value 〈 δǫeq
δf

〉
ΩM

appearing in equation (15) does not. Thus a good

estimate of this new average value, applicable to small overall stresses, may be derived by
taking Σ = 0 - thus restoring spherical symmetry.

Elasticity being neglected, the radial increments of displacement δu−, δu+ of the bounding
surfaces of the transforming shell are given by

δu− = 0 ; δu+ =
∆V

V
δrf (16)

where the first value results from complete rigidity (no elasticity, no plasticity) of the core
of daughter-phase, and the second from the known variation of volume of the transforming
shell. Then, with Σ = 0 and spherical symmetry, plastic incompressibility in the mother-
phase implies (in the absence of elasticity) that the purely radial increment of displacement
there is given by

δur(r) = δu+ r2f
r2

=
∆V

V

r2f
r2

δrf . (17)

It is then easy to calculate the local value of δǫeq and the average value 〈 δǫeq
δf

〉
ΩM

through

integration over r, and the result reads

〈
δǫeq
δf

〉
ΩM

= −
2

3

∆V

V

ln f

1− f
. (18)

The final expression of Ėtp then follows by equation (15): 3

Ėtp = −
1

σM

∆V

V
(ln f)Σ′ ḟ [Leblond et al. (1989)]. (19)

Remarks

(1) Equation (19) predicts an infinite “slope” dEtp/df at the beginning of the trans-
formation (f = 0). This prediction does not seem to be confirmed by experiments
(see e.g. Desalos (1981), among many other works), and has been repeatedly criti-
cized (see e.g. Taleb and Sidoroff (2003) and Weisz-Paltrault (2017)), on the grounds

3 Since various formulae for Ėtp will be given, an indication of the authors or context of appli-
cation of each one will be provided between brackets.
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that it is a consequence of the over-simplifying hypothesis of instantaneous complete
plastification of the mother-phase, tied to the disregard of elasticity.

(2) Leblond et al. (1989) have assessed Approximations (1) and (2) above through finite
element micromechanical simulations. They found that whereas Approximation (1)
is reasonable (see their Fig. 6), Approximation (2) gives a good value of 〈σ′〉ΩM

only during the first half of the transformation, the approximation 〈σ′〉ΩM
≃ (1 −

f)Σ′ being in fact better (see their Fig. 7). With this improved approximation the
expression (19) of Ėtp becomes

Ėtp = −
1

σM

∆V

V
(1− f)(ln f)Σ′ ḟ [Leblond et al. (1989), improved]. (20)

3 Limit-analysis of a hollow sphere subjected to external and internal load-
ings

3.1 Preliminary remarks

Since Leblond et al. (1989)’s approach of Greenwood and Johnson (1965)’s mechanism
is based on disregard of elasticity, it seems natural to use the theory of limit-analysis -
in which elasticity plays no role either, see e.g. Leblond et al. (2018)’s review - for an
alternative treatment. 4 But this raises two difficulties.

• In Greenwood and Johnson (1965)’s interpretation, the “driving force” of transfor-
mation plasticity is an “internal active mechanism” (the gradual growth of nuclei of
some new phase with a different specific volume), in practice due to the variation of
the temperature. But limit-analysis considers only “passive” materials devoid of such
mechanisms.

• An ancillary difficulty is that the object of limit-analysis is to define the set of limit-
loads. Such loads are not arbitrary but lie on some hypersurface in their defining space.
In contrast, when looking for an expression of the transformation plastic strain rate,
we want the macroscopic stress to be arbitrary; how the two points of view can be
reconciled is not a priori clear.

In this work the first, major difficulty will be obviated by excluding the growing core of
daughter-phase from the volume considered. The internal mechanism just mentioned will
then become an inner boundary condition (some prescribed displacement arising from the
expansion of the embedded daughter-phase), perfectly accounted for by limit-analysis.
The same trick will be seen to also solve the second difficulty, albeit in a more subtle way.

The aim of the limit-analysis will be to derive the explicit equation of the set of limit-loads
of the RVE considered, together with the associated overall flow rule, that is the expression

4 In essence, the idea of employing such a theory could be found, in a sketchy form, in Abrassart
(1972)’s thesis. Unfortunately rough approximations made in the choice of typical geometry and
trial displacement fields led to large errors in the final result, the transformation plastic strain
rate being underestimated by a factor of the order of 3.
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of the various components of its overall deformation rate. How these results can be ap-
plied to the modelling of Greenwood and Johnson (1965)’s mechanism of transformation
plasticity will be explained in Section 4 below.

A final remark pertains to some important difference between the former treatment of
the problem, presented in Subsection 2.5, and the new one to be discussed now. The
old treatment relied on an assumption of small external stresses, since the average value
〈 δǫeq

δf
〉
ΩM

was evaluated at order 0 in Σ, that is for Σ = 0. In contrast the new treatment

will not make any hypothesis on the magnitude of the applied stress tensor Σ. This is the
keypoint that will permit to treat the case of external stresses of the order of the yield
stress of the weaker, mother-phase.

3.2 Generalities

We thus consider (Fig. 3) a hollow sphere made exclusively of mother-phase. In line
with the notations of Subsection 2.5, the outer and inner radii are denoted R and rf ,
respectively (with f given by equation (13)); the whole domain, Ω; the outer spherical shell
of mother-phase, ΩM ; and the inner empty sphere, ΩD. For commodity in the calculations
three sets of coordinates: Cartesian (x1, x2, x3) with origin at the centre O of the sphere;
cylindrical (ρ, φ, z) with z ≡ x3; spherical (r, θ, φ), will be used, together with the naturally
associated orthonormal bases (e1, e2, e3); (eρ, eφ, ez); (er, eθ, eφ). On the outer boundary
∂Ω, a single unit normal vector oriented outwards, n ≡ er, is considered. On the inner
boundary ∂ΩD, two unit normal vectors are considered, n+ ≡ er oriented toward the
exterior of ΩD, and n− ≡ −er oriented toward the exterior of ΩM .

Ω
M

n +

_
nΣ

Ω
D

x
3

.x
1

x
2

r f

Σ

n

R O

Fig. 3. The spherical RVE considered here.

The outer and inner boundaries of the RVE ΩM , identical to ∂Ω and ∂ΩD, are subjected
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to conditions of homogeneous stress (Mandel, 1964; Hill, 1967):











σ(x) .n(x) = Σ .n(x) on ∂Ω (r = R)

σ(x) .n−(x) = −Σ .n−(x) on ∂ΩD (r = rf)
(21)

where Σ and Σ are symmetric second-rank tensors, the first representing the macroscopic
stress applied onto the volume considered and the second some internal loading. The minus
sign in equation (21)2 is introduced conventionally so as to produce a more natural-looking
expression of the virtual power of external forces, see equation (24) below.

It should be noted that equations (21) do not define the only possible choice of boundary
conditions. It would be possible for instance to use, on the inner boundary, conditions
of homogeneous boundary strain rate (Mandel, 1964; Hill, 1967), compatible with the
kinematic conditions imposed in the transformation plasticity problem by the expansion
of the inner core of daughter-phase. The limit-analysis based on such boundary conditions
would be somewhat more involved but ultimately lead to the same results. The choice
of conditions of homogeneous boundary stresses is therefore made here for the sake of
simplicity, without any detrimental consequences on the results.

For any displacement field u(x) defined over the domain of mother-phase ΩM and extended
arbitrarily (but smoothly) over the void ΩD, we define some overall external and internal
strain tensors E, E through the natural formulae

E ≡ 〈ǫ(u)〉Ω ; E ≡ 〈ǫ(u)〉ΩD
, (22)

or equivalently by Green’s theorem:

Eij =
1

vol(Ω)

∫

∂Ω

1

2
(ui nj + uj ni) dS ; Eij =

1

vol(ΩD)

∫

∂ΩD

1

2

(

ui n
+
j + uj n

+
i

)

dS.

(23)
Equations (23) make it clear that E and E are in fact independent of the arbitrary
extension of the displacement field over ΩD.

With the boundary conditions (21), the virtual power Pe of external forces exerted on the
boundary of the RVE considered, that is the domain ΩM occupied by the sole mother-
phase, is given by

Pe ≡
∫

∂Ω
σij nj u̇i dS +

∫

∂ΩD

σij n
−

j u̇i dS =
∫

∂Ω
Σij nj u̇i dS +

∫

∂ΩD

Σij n
+
j u̇i dS

= Σij

∫

∂Ω

1

2
(u̇i nj + u̇j ni) dS + Σij

∫

∂ΩD

1

2

(

u̇i n
+
j + u̇j n

+
i

)

dS ,

that is by equations (23) and (13):

Pe = vol(Ω)ΣijĖij + vol(ΩD)ΣijĖij = vol(Ω)
(

Σ : Ė+ f Σ : Ė
)

. (24)
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3.3 Trial displacement fields and load parameters

The limit-analysis problem can in principle tolerate any macroscopic stress and strain
tensors Σ, Σ, E, E. However in the problem of transformation plasticity of interest here,
overall geometrical and material isotropy entails identity of the principal directions of
all 4 tensors. Indeed the prescribed quantities in this problem consist of the external
stress tensor Σ, which introduces 3 orthogonal planes of symmetry defined by its principal
directions, plus the internal strainE, a multiple of the unit tensor (see equation (45) below)
which does not modify the group of symmetries. The “responses” to these prescribed
quantities, consisting of the internal stress tensorΣ plus the external strain tensor E, must
respect the planes of symmetry defined by Σ, and therefore possess the same principal
directions.

This means that we may choose the x1-, x2- and x3-directions parallel to the common
principal directions of the tensors Σ, Σ, E, E; they are then all diagonal in the Cartesian
basis (e1, e2, e3), and their diagonal components may be denoted with a single index, Σi,
Σi, Ei, Ei (i = 1, 2, 3).

This being said, the first issue to be addressed is that of the minimum number of incom-
pressible trial displacement fields needed. The family of fields considered must account
for all possible values of the kinematic parameters E1, E2, E3, E1, E2, E3. But these 6
parameters are tied by the relation

trE = E1 + E2 + E3 = f trE = f
(

E1 + E2 + E3

)

(25)

resulting from incompressibility of the mother-phase. (This equation means that the vol-
umetric strain of the RVE arises exclusively from the expansion of the core of daughter-
phase). Thus there are only 5 independent kinematic parameters, so that a minimum of
5 independent incompressible trial displacement fields is required.

We shall exploit here an analogy with the problem of a spherical RVE containing a con-
centric spherical traction-free void; this problem has been considered many times, starting
with the pioneering work of Gurson (1977), for the derivation of models for porous plastic
materials, in the context of prediction of ductile rupture. The more complex boundary
conditions considered here, with the additional internal loading, are of no consequence
upon the space of kinematically admissible, incompressible displacement fields adapted to
the problem. We shall therefore use the elementary fields introduced by Gurson (1977),
completed by the more complex Eshelby (1957)-type fields proposed by Monchiet et al.
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(2011), which read as follows:















































































u(1)(x) =
R3

r2
er

u(2)(x) = −
x1

2
e1 −

x2

2
e2 + x3e3 = −

ρ

2
eρ + zez

u(3)(x) =
2

5f

r5f
r4

(

−
sin θ

2
eρ + cos θ ez

)

+
1

2f

r3f
r2

(

1−
r2f
r2

)

(

3 cos2 θ − 1
)

er

u(4)(x) = x1e1 − x2e2

u(5)(x) =
2

5f

r5f
r4

sin θ (cosφ e1 − sinφ e2) +
1

f

r3f
r2

(

1−
r2f
r2

)

sin2 θ cos(2φ) er.

(26)

The first three fields are axisymmetric: the first and second, proposed by Gurson (1977),
correspond to a radial incompressible expansion and a uniform deviatoric straining of the
spherical shell, respectively; the third, introduced by Monchiet et al. (2011), is of Eshelby
(1957)-type. The fourth and fifth fields are non-axisymmetric: again the fourth, proposed
by Gurson (1977), corresponds to a uniform deviatoric straining of the shell, whereas the
fifth, introduced by Monchiet et al. (2011), is of Eshelby (1957)-type. 5 Using Cartesian,
cylindrical or spherical coordinates to calculate the integrals of equations (23) providing
the overall external and internal strain tensors corresponding to these 5 fields, 6 we get
with obvious notations:











































































E
(1)
1 = E

(1)
2 = E

(1)
3 = 1 ; E

(1)
1 = E

(1)
2 = E

(1)
3 =

1

f

E
(2)
1 = E

(2)
2 = −

1

2
, E

(2)
3 = 1 ; E

(2)
1 = E

(2)
2 = −

1

2
, E

(2)
3 = 1

E
(3)
1 = E

(3)
2 = −

1

5
, E

(3)
3 =

2

5
; E

(3)
1 = E

(3)
2 = −

1

5f
, E

(3)
3 =

2

5f

E
(4)
1 = 1 , E

(4)
2 = −1 , E

(4)
3 = 0 ; E

(4)
1 = 1 , E

(4)
2 = −1 , E

(4)
3 = 0

E
(5)
1 =

2

5
, E

(5)
2 = −

2

5
, E

(5)
3 = 0 ; E

(5)
1 =

2

5f
, E

(5)
2 = −

2

5f
, E

(5)
3 = 0.

(27)

Note that all fields except u(1) have trE(i) = 0; that is, the volumetric strain of the RVE
is to be described through a single field, u(1).

We now consider an incompressible trial displacement field of the form

u(x) ≡
5
∑

i=1

qi u
(i)(x) (28)

5 The third field is obtained from Monchiet et al. (2011)’s expressions by taking, with their
notations, d∗11 = d∗22 = − 1

2f , d
∗

33 = 1
f , d

∗

12 = d∗13 = d∗23 = 0; the fifth, by taking d∗11 = −d∗22 = 1
f ,

d∗33 = d∗12 = d∗13 = d∗23 = 0.
6 The use of equations (23) rather than (22) permits to circumvent the problem of defining
smooth extensions of the fields u(i) (i = 1, ..., 5) over the void domain ΩD; a non-trivial task in
view of the singularity of some of these fields at the origin.
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where the qi’s (i = 1, ..., 5) are kinematic parameters. (Note that although any prescribed
values of the kinematic parameters E1, E2, E3, E1, E2, E3 obeying relation (25) may
be matched through some suitable choice of the qi’s, this does not mean that the fields
u(i) (i = 1, ..., 5) define a basis of the space of general admissible fields; equation (28)
just defines the projection of such fields onto the subspace generated by the fields u(i)

(i = 1, ..., 5)).

The components of the corresponding overall external and internal strain tensors read,
by equations (27):



























































































E1 = q1 −
q2
2
−

q3
5
+ q4 +

2q5
5

E2 = q1 −
q2
2
−

q3
5
− q4 −

2q5
5

E3 = q1 + q2 +
2q3
5

E1 =
q1
f

−
q2
2
−

q3
5f

+ q4 +
2q5
5f

E2 =
q1
f

−
q2
2
−

q3
5f

− q4 −
2q5
5f

E3 =
q1
f

+ q2 +
2q3
5f

.

(29)

The load parameters Qi (i = 1, ..., 5) “conjugate” to the kinematic parameters qi are de-
fined via the expression of the virtual power of external forces, Pe ≡

∑5
i=1Qiq̇i, applicable

to arbitrary values of the virtual velocities q̇i. By equations (24) and (29), they are given
by











































































Q1 ≡ vol(Ω)
(

Σ1 + Σ2 + Σ3 + Σ1 + Σ2 + Σ3

)

Q2 ≡ vol(Ω)

[

Σ3 −
Σ1

2
−

Σ2

2
+ f

(

Σ3 −
Σ1

2
−

Σ2

2

)]

Q3 ≡ vol(Ω) .
2

5

(

Σ3 −
Σ1

2
−

Σ2

2
+ Σ3 −

Σ1

2
−

Σ2

2

)

Q4 ≡ vol(Ω)
[

Σ1 − Σ2 + f
(

Σ1 − Σ2

)]

Q5 ≡ vol(Ω) .
2

5

(

Σ1 − Σ2 + Σ1 − Σ2

)

.

(30)

Remark. Although the family of trial displacement fields considered is directly borrowed
from the work of Monchiet et al. (2011), the fields u(3), u(5) of Eshelby (1957)-type play
different roles in the previous work and here. For a traction-free void, as considered by
Monchiet et al. (2011), there are only 3 independent kinematic parameters, E1, E2, E3,
so that no more than 3 displacement fields are strictly necessary; the fields u(3), u(5)

were added by Monchiet et al. (2011) to Gurson (1977)’s fields u(1), u(2), u(4) merely
as an improvement, to get a better approximation of the overall yield criterion and flow
rule (at the expense of an additional minimization of the overall dissipation). With the
internal loading considered here, the fields u(3), u(5) become indispensable since there are
5 independent kinematic parameters and therefore a minimum of 5 fields is required.
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3.4 Overall plastic dissipation

The local plastic dissipation in the mother-phase (rigid-ideal-plastic material obeying the
von Mises criterion with yield stress σM) is defined as the product σM ǫ̇eq where ǫ̇eq ≡
(2
3
ǫ̇ : ǫ̇)1/2 is the equivalent strain rate. For any incompressible trial velocity field u̇(x)

defined by the rates q̇i (i = 1, ..., 5), identical to the time-derivative of a trial displacement
field u(x) of type (28), the overall plastic dissipation D is then defined as

D(q̇1, ..., q̇5) ≡
∫

ΩM

σM ǫ̇eq dΩ. (31)

This dissipation is independent of the value of the tensor Σ characterizing the internal
loading. It follows that its value is exactly the same as in the case considered by Monchiet
et al. (2011) of a traction-free void. We shall therefore content ourselves with providing
their final, approximate result for this value, referring the interested reader to their paper
for details of their approximations and calculations:

D(q̇1, ..., q̇5) = vol(Ω) σM

∫ 1/f

1

{

q̇ 2
2 +

4

3
q̇ 2
4 +

[

4q̇ 2
1 +

6g(f)

25

(

q̇ 2
3 +

4

3
q̇ 2
5

)

]

x2

}1/2
dx

x2
(32)

where the change of variable x ≡ R3/r3 has been used, and g(f) is the positive function
defined by the formula

g(f) ≡ 1− 4f

(

1− f 2/3
)2

1− f
. (33)

(The integral in equation (32) may be calculated in closed form but the result will not be
needed here).

3.5 Overall yield criterion

The fundamental inequality of the kinematic approach of limit-analysis reads (Hill, 1951)

5
∑

i=1

Qi q̇i ≤ D(q̇1, ..., q̇5) (34)

for all quintuplets of sustainable loads 7 (Q1, ..., Q5) and rates of kinematic parameters
(q̇1, ..., q̇5). The set of limit-loads, that is the overall yield locus, is the boundary of the
domain defined in the space of quintuplets (Q1, ..., Q5) by inequalities (34) for all values
of the quintuplet (q̇1, ..., q̇5); that is the envelope of the family of hyperplanes of equa-
tion

∑5
i=1Qi q̇i = D(q̇1, ..., q̇5) parametrized by the quintuplet (q̇1, ..., q̇5). The parametric

equations of this envelope read

Qi =
∂D

∂q̇i
(q̇1, ..., q̇5) (i = 1, ..., 5) (35)

7 This expression designates loads that may be applied to the structure without inducing plastic
collapse.
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where the q̇i’s act as parameters; in these equations the quintuplets (Q1, ..., Q5) and
(q̇1, ..., q̇5) are no longer independent like in inequality (34), but tied through the macro-
scopic constitutive law - that is, the quintuplet of kinematic rates (q̇1, ..., q̇5) is that actually
generated by the load (Q1, ..., Q5).

In order to get the explicit equation of the overall yield locus, we must eliminate the
parameters q̇i (i = 1, ..., 5) in equations (35). This may be done by using Gurson’s lemma,
stated and proved with maximum clarity and economy by Madou and Leblond (2012):

Gurson’s lemma. Let I(α, β) denote the integral defined by

I(α, β) ≡
∫ x2

x1

√

α2 + β2x2
dx

x2
(36)

where x1 and x2 are fixed positive bounds. Then the partial derivatives of I are connected
through the following relation independent of α and β:

(

∂I

∂α

)2

+
2

x1x2
cosh

(

∂I

∂β

)

−
1

x2
1

−
1

x2
2

= 0. (37)

This lemma, applied here to equation (32) with

x1 ≡ 1, x2 ≡
1

f
, α ≡

√

q̇ 2
2 +

4

3
q̇ 2
4 , β ≡

√

4q̇ 2
1 +

6g(f)

25

(

q̇ 2
3 +

4

3
q̇ 2
5

)

, I(α, β) ≡
D

vol(Ω) σM
,

(38)
yields

(

∂D/∂α

vol(Ω) σM

)2

+ 2f cosh

(

∂D/∂β

vol(Ω) σM

)

− 1− f 2 = 0. (39)

But the definitions (38)3,4 of α and β imply that











































∂D

∂q̇1
=

4q̇1
β

∂D

∂β

∂D

∂q̇3
=

6g(f)q̇3
25β

∂D

∂β

∂D

∂q̇5
=

8g(f)q̇5
25β

∂D

∂β

;



















∂D

∂q̇2
=

q̇2
α

∂D

∂α

∂D

∂q̇4
=

4q̇4
3α

∂D

∂α

,

and it follows, using again these definitions, that



























1

4

(

∂D

∂q̇1

)2

+
25

6g(f)

(

∂D

∂q̇3

)2

+
25

8g(f)

(

∂D

∂q̇5

)2

=

(

∂D

∂β

)2

(

∂D

∂q̇2

)2

+
3

4

(

∂D

∂q̇4

)2

=

(

∂D

∂α

)2

.

Inserting these expressions into equation (39), then using equation (35) and the definitions
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(30) of the load parameters Qi, we get the equation of the overall yield locus in the form

1

σ 2
M

(

T3 −
T1

2
−

T2

2

)2

+
3

4σ 2
M

(T1 − T2)
2

+2f cosh







1

σM

[

(S1 + S2 + S3)
2

4
+

2

3g(f)

(

S3 −
S1

2
−

S2

2

)2

+
(S1 − S2)

2

2g(f)

]1/2






−1− f 2 = 0

(40)

where S1, S2, S3, T1, T2, T3 are the diagonal components of the tensors S and T defined by

S ≡ Σ+Σ ; T ≡ Σ+ fΣ. (41)

Re-expressing quantities in equation (40) in terms of the invariants of S and T, we get
the final form of the overall yield criterion:

Φ(Σ,Σ, f) ≡
T 2
eq

σ 2
M

+ 2f cosh
(

SH

σM

)

− 1− f 2 = 0 , SH ≡

[

1

4
(trS)2 +

2

3g(f)
S2
eq

]1/2

(42)

where Xeq ≡
(

3
2
X′ : X′

)1/2
denotes the von Mises norm of a given stress tensor X (X′ is

the deviator of X); Φ(Σ,Σ, f) is the overall yield function.

In the absence of an internal loading (Σ = 0), Seq and Teq become identical to Σeq, trS
to trΣ and the criterion (42) reduces to that of Monchiet et al. (2011) (their equation
(41)). In the general case, however, it is new.

3.6 Overall flow rule

We follow here Hill (1951)’s classical approach, adapted to the present situation. Let E
denote the space of pairs (X,X) of symmetric second-rank tensors, equipped with the
scalar product • defined by (X,X) • (Y,Y) ≡ X : Y +X : Y. Consider, within E :

• a pair (Σ,Σ) of overall stress tensors defining a limit-load;

• the pair (Ė, Ė) of overall external and internal strain rates generated by this limit-load;
• another pair (Σ∗,Σ

∗

) of overall stress tensors defining an arbitrary sustainable load.

Consider also the following fields:

• the stress field σ(x) resulting from application of the limit-load (Σ,Σ);
• the strain rate field ǫ̇(x) generated by this stress field through the local plastic flow
rule;

• a stress field σ
∗(x) statically admissible with the pair (Σ∗,Σ

∗

) and plastically admissible
(respecting the inequality σ∗

eq ≤ σM at every point) - the existence of such a field being
guaranteed by the very definition of a sustainable load.
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Then, by the expression (24) of the virtual power of external forces and the principle of
virtual work,

vol(Ω)
[

(Σ−Σ∗) : Ė+ f(Σ−Σ
∗

) : Ė
]

=
∫

ΩM

(σ − σ
∗) : ǫ̇ dΩ.

The integrand here is non-negative as a consequence of the local normality rule. It follows
that

(Σ−Σ∗) : Ė+ (Σ−Σ
∗

) : fĖ = (Σ−Σ∗,Σ−Σ
∗

) • (Ė, fĖ) ≥ 0

for every sustainable load (Σ∗,Σ
∗

).

It results from there, following a classical reasoning, that the pair (Ė, fĖ) is positively
collinear in the space E to the outer normal vector to the set of limit-loads, that is the
overall yield locus of equation Φ(Σ,Σ, f) = 0; thus there exists a non-negative scalar Λ̇ -
the overall plastic multiplier - such that

Ė = Λ̇
∂Φ

∂Σ
(Σ,Σ, f) ; fĖ = Λ̇

∂Φ

∂Σ
(Σ,Σ, f). (43)

Calculating the derivatives here, we get the final form of the two-part overall flow rule:


























Ė =
Λ̇

σ 2
M

{

3T′ + f
sinh(SH/σM)

SH/σM

[

1

2
(trS) 1+

2

g(f)
S′

]}

Ė =
Λ̇

σ 2
M

{

3T′ +
sinh(SH/σM)

SH/σM

[

1

2
(trS) 1+

2

g(f)
S′

]} , Λ̇ ≥ 0 (44)

where again a prime applied to a tensor denotes its deviatoric part.

Note that equations (44) are compatible with relation (25) connecting the traces of the
outer and inner strain tensors.

4 Application to Greenwood-Johnson’s mechanism of transformation plas-
ticity

4.1 Principle and preliminaries

An elementary volume in a metal or alloy undergoing a phase transformation under stress
is represented by the RVE defined in Subsection 3.2, subjected to a prescribed external

stress Σ plus an internal strain rate Ė resulting from the expansion of the gradually
growing core of daughter-phase. The elements of the problem are as follows:

• The data include the tensors Σ and Ė - the calculation of the second is presented just
below.

• The unknowns include the internal stress tensor Σ, the overall strain rate Ė and the
plastic multiplier Λ̇. What is looked for is Ė; Σ and Λ̇ are ancillary unknowns of no
intrinsic interest.
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• The equations available to determine the unknowns from the data are the overall yield
criterion (42) and two-part flow rule (44).

Note that this summary elucidates the second difficulty mentioned in Subsection 3.1,
in that it shows how an expression of the transformation plastic rate may be derived
for arbitrary values of the external stress from limit-analysis, even though this theory
concentrates only on special (limit-) loads. The keypoint is that the overall yield criterion
ties the external and internal stress tensors together but does not constrain their values
individually, so that the value of the former may still be chosen at will - the value of the
latter will simply “adjust” through the criterion.

The first, preliminary task is to determine the value of the internal strain rate Ė resulting
from the transformation. Consider the situation of Subsection 2.5 wherein the spherical
layer lying between rf and rf + δrf transforms from the mother- to the daughter-phase
within a small time-interval [t, t+ δt], generating a radial increment of displacement δu+

on its outer boundary. The diagonal components of the increment of the internal strain
tensor are then obviously

δE1 = δE2 = δE3 =
δu+

rf
=

∆V

V

δrf
rf

=
1

3

∆V

V

δf

f

where equations (13) and (16) have been used; the value of the internal strain rate tensor
follows:

Ė =
1

3

∆V

V

ḟ

f
1. (45)

A straightforward consequence of equation (45) is that the deviatoric part of the internal

strain rate tensor Ė is zero. By the flow rule (44)2 combined with the definitions (41) of
the tensors S and T, this implies that

Σ
′

= −

3 +
2

g(f)

sinh(SH/σM)

SH/σM

3f +
2

g(f)

sinh(SH/σM)

SH/σM

Σ′. (46)

A second preliminary task is to determine the relation between the transformation plastic
strain rate Ėtp and the overall strain rate Ė resulting from the limit-analysis. This limit-
analysis being carried out in the absence of elasticity and without any variations of Σ and
T , equations (7)1 in rate form plus (12)1 yield Ė = Ėthm + Ėtp. But Ėthm is a multiple
of the unit tensor by equation (7)2, and Ėtp is traceless by equation (12)3. It follows
that Ėtp identifies with the deviatoric part of the overall strain rate Ė obtained in the
limit-analysis: 8

Ėtp ≡ Ė′ =
Λ̇

σ 2
M

[

3T′ +
2f

g(f)

sinh(SH/σM)

SH/σM

S′

]

(47)

where the flow rule (44)1 has been used.

8 And, of course, Ėthm identifies with the hydrostatic part of Ė; this is confirmed by equations
(25) and (45) which yield the value 1

3
∆V
V ḟ 1 for this hydrostatic part.
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4.2 Special case: small external stresses

In a first step, we shall consider the case of small applied stresses (Σeq ≪ σM), in which a
simple and explicit formula for the transformation plastic strain rate may be obtained; Ėtp

will be formally calculated at order 1 in Σ′. Preliminary calculations of some quantities
at order 0 will however be necessary.

Calculations at order 0. At this order, Σ′ is considered as nil. It then follows from equation
(46) that Σ

′

is also zero, so that by equation (42)2, SH = 1
2
|trS|. The criterion (42)1 then

yields

2f cosh
(

SH

σM

)

− 1− f 2 = 0 ⇒ cosh
(

SH

σM

)

=
1

2

(

f +
1

f

)

⇒
SH

σM
= − ln f

where we have discarded the negative solution SH

σM
= ln f since SH is by definition non-

negative. From there follows that

sinh(SH/σM)

SH/σM
=

1− f 2

−2f ln f
. (48)

Combination of the flow rule (44)2 and the expression (45) of Ė then yields

Λ̇

σ 2
M

1− f 2

−4f ln f
trS =

1

3

∆V

V

ḟ

f
.

Since Λ̇ is positive and in practice so is also ∆V
V

(see Fig. A.1 of Appendix A), this equation
entails that trS > 0 and therefore, by what precedes, trS = 2SH = −2 σM ln f ; the value
of the plastic multiplier follows:

Λ̇

σ 2
M

=
2

3σM

∆V

V

ḟ

1− f 2
. (49)

Calculations at order 1. Equation (46) shows that Σ
′

is of order 1 in Σ′; more precisely,

using the value of sinh(SH/σM )
SH/σM

at order 0, equation (48), we get

Σ
′

= −
1− f 2 − 3fg(f) ln f

1 − f 2 − 3f 2g(f) ln f
Σ′

and therefore by the definitions (41) of S and T,

S′ =
3f(1− f)g(f) ln f

1− f 2 − 3f 2g(f) ln f
Σ′ ; T′ =

(1− f)2(1 + f)

1− f 2 − 3f 2g(f) ln f
Σ′.

We then see that in the expression (47) of Ėtp, we only need the values of sinh(SH/σM )
SH/σM

and
Λ̇
σ 2
M

at order 0; using equations (48) and (49), we finally get the desired value of Ėtp at

order 1:

Ėtp =
2

σM

∆V

V

(1− f)2

1− f 2 − 3f 2g(f) ln f
Σ′ḟ [Σeq ≪ σM ]. (50)
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Comments on this result will be made below, but it is worth noting immediately that the
“slope” dEtp/df at the onset of the transformation is no longer infinite like in Leblond et
al. (1989)’s work, but amounts to

dEtp

df
(f = 0) =

2

σM

∆V

V
Σ′ [Σeq ≪ σM ]. (51)

This shows that the infinite slope obtained in the previous work was primarily due to
the inadequacy of the “uncontrolled” Approximations (1) and (2) it relied upon, see
Subsection 2.5. (The disregard of elasticity however also contributed to this incorrect
result, see the works of Taleb and Sidoroff (2003) and Weisz-Paltrault (2017)).

4.3 General case: arbitrary external stresses

We shall now see that for arbitrary external stresses (Σeq comparable to σM), the trans-
formation plastic strain rate Ėtp still admits an analytical expression, but now involving
a quantity which must be evaluated numerically by solving a transcendental equation.

Let us define the following dimensionless quantities:

X ≡
Σeq

σM
; X ≡

Σeq

σM
; Y ≡

1
3
trS

σM
; Z ≡

SH

σM
, (52)

the first of which is supposedly known whereas the other three are not.

Let us first show how the values of Y and Z may be deduced from that of X. Equation
(46) implies that the tensors Σ′ and Σ

′

are negatively collinear so that

Σ
′

= −
Σeq

Σeq
Σ′ = −

X

X
Σ′. (53)

It then follows from the definition of S, equation (41)1, that S
′ = (1 − X/X)Σ′ so that

S2
eq = (1−X/X)2Σ2

eq = σ 2
M(X −X)2. The definition (42)2 of SH then implies that

Z =

[

9

4
Y 2 +

2

3g(f)
(X −X)2

]1/2

⇒ Y =
2

3

[

Z2 −
2

3g(f)
(X −X)2

]1/2

(54)

(the positivity of Y is justified below). Also, it follows from the definition of T, equation
(41)2, and equation (53) that T′ = (1 − fX/X)Σ′ so that T 2

eq = (1 − fX/X)2Σ2
eq =

σ 2
M(X − fX)2. The criterion (42) then yields

(X − fX)2 + 2f coshZ − 1− f 2 = 0 ⇒

Z = F (X − fX ; f) where F (x; f) ≡ arg cosh

(

1 + f 2 − x2

2f

)

. (55)

Thus, if the value of X is known, those of Z and Y follow from equations (55) and (54)2.
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To now derive an equation on X , combine equations (46) and (53) to get

3 +
2

g(f)

sinhZ

Z

3f +
2

g(f)

sinhZ

Z

=
X

X
⇒

3(X − fX) +
2

g(f)

sinh[F (X − fX ; f)]

F (X − fX ; f)
(X −X) = 0 (56)

where equation (55) has been used. The transcendental equation (56) on X permits to
deduce its value from that of X at least numerically.

Let us finally show how to calculate Ėtp once X , Y and Z are known. It follows from the

deviatoric part of the flow rule (44)2 and the fact that Ė
′

= 0 that 3T′+ 2
g(f)

sinhZ
Z

S′ = 0,

so that the expression (47) of Ėtp simplifies into

Ėtp = −
Λ̇

σ 2
M

2(1− f)

g(f)

sinhZ

Z
S′.

Now combination of the hydrostatic part of the flow rule (44)2 and the expression (45) of

Ė implies that

Λ̇

σ 2
M

sinhZ

2Z
trS =

1

3

∆V

V

ḟ

f
.

(Incidentally, since Λ̇ and ∆V
V

are positive, this equation shows that trS and therefore Y

are positive, as anticipated above). The preceding expression of Ėtp then becomes

Ėtp = −
4(1− f)

3fg(f)

∆V

V
ḟ

S′

trS
.

Using finally the relations trS = 3Y σM and S′ = (1 − X/X)Σ′, we get from there the
final expression of Ėtp:

Ėtp =
4

9σM

1− f

fg(f)

∆V

V

X/X − 1

Y
Σ′ḟ [General formula]. (57)

To summarize, the procedure to get the transformation plastic strain rate is as follows:
get X by solving the transcendental equation (56); then get Z and Y from equations (55)
and (54)2; finally get Ėtp from equation (57).

4.4 Explicit formula for the beginning of the transformation

As a particular case of formula (57), an explicit, remarkably simple expression of the
transformation plastic strain rate at the beginning of the transformation (f → 0+) may
be derived, even for arbitrary external stresses. The keypoint here is that provided that
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the quantity fX is assumed to be of order O(f) (which will be verified a posteriori), the
value of Z may be calculated directly from equation (55) independently of that of X:

Z = arg cosh

[

1−X2

f
(1 +O(f))

]

= ln

(

1−X2

f

)

+O(f),

implying that
sinhZ

Z
=

1−X2

2f ln
(

1−X2

f

) (1 +O(f)) .

One then gets from equations (56) (upon division by X) and (54)2:

X

X
− 1 =

3f ln
(

1−X2

f

)

1−X2
(1 +O(f)) ; Y =

2

3
ln

(

1−X2

f

)

+O(f).

(The first equation shows that X = O(1) and therefore fX = O(f), as announced).
Equation (57) then finally yields

Ėtp =
2

σM

∆V

V

Σ′

1− Σ2
eq/σ

2
M

(1 +O(f)) ḟ [f → 0+]. (58)

This formula evidences the amplifying effect of the factor 1
1−Σ2

eq/σ
2
M

upon the transforma-

tion plastic strain rate Ėtp, when the von Mises equivalent stress Σeq becomes comparable
to the yield stress σM of the mother-phase.

4.5 A composite approximation

Use of the general formula (57) for Ėtp is somewhat hampered by the necessity of solving
equation (56) numerically to get the value of X . It is therefore tempting to propose the
following simple “composite approximation” of Ėtp, based on a heuristic mix of formulae
(50), applicable for Σeq ≪ σM but arbitrary f , and (58), applicable for arbitrary Σeq but
f ≪ 1:

Ėtp =
2

σM

∆V

V

(1− f)2

1− f 2 − 3f 2g(f) ln f

Σ′

1− Σ2
eq/σ

2
M

ḟ [Approximation]. (59)

5 Comparison with other theories, experiments, and micromechanical simu-
lations

5.1 Elements of comparison - Generalities

The comparisons presented in this section are based on the following theoretical, experi-
mental and numerical elements:
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• Leblond et al. (1989)’s theoretical formula (19) for Ėtp and its supposedly improved
variant (20); our general formula (57) and its approximation (59);

• Desalos (1981)’s old, but high-quality experimental study of transformation plasticity
in the A533 steel, completed more recently with respect to multiaxial aspects by Coret
et al. (2002, 2004);

• new finite element micromechanical simulations of Greenwood and Johnson (1965)’s
mechanism, performed with the commercial programme SYSWELDr developed by
ESI-Group (SYSWELD, 2017).

Although it is not the object of this paper to present and discuss these new micromechan-
ical simulations in detail, a few comments on them are in order here. In principle, they
are analogous to many previous ones (see the pioneering work of Leblond et al. (1989)
and those of Ganghoffer et al. (1993); Barbe et al. (2007, 2008); Barbe and Quey (2011);
Otsuka et al. (2018), to cite just a few of its many successors). However they differ from
them through consideration of a RVE of spherical shape, exactly identical to that used in
the theoretical homogenization process; the aim being to provide the “cleanest” possible
assessment of the model predictions by eliminating all sources of discrepancies tied to
differences in the RVEs considered. A spherical volume made of elastic-plastic material
is thus meshed in concentric spherical layers, which are “transformed” one after another
from the centre to the external surface by artificially modifying the values of their specific
volume and yield stress from these of the mother-phase to those of the daughter-phase.
This volume is loaded externally 9 through conditions of homogeneous boundary stress
(HBStress) or homogeneous boundary strain (HBStrain) - the aim being to complete the
theoretical analysis based exclusively on HBStress conditions, by studying the effect of
boundary conditions.

The physical constants used correspond to the γ- and α- phases of the A533 steel em-
ployed in the experimental studies of Desalos (1981) and Coret et al. (2002, 2004), and
are as follows: Young’s modulus and Poisson’s ratio, E = 182, 000MPa and ν = 0.3
(identical values for both phases); yield stress, σM = 145MPa for the mother-phase,
σD = 950MPa for the daughter-phase; relative change of specific volume from the mother-
to the daughter-phase, ∆V

V
= 0.0252.

In the cases considered for comparison in Subsections 5.2 and 5.3, the RVE is subjected to
a uniaxial and constant stress denoted Σ, and the resulting transformation plastic strain
in the direction of the load is denoted Etp(f). (The other components are of no interest
since they are either zero or trivially tied to Etp(f) through incompressibility).

5.2 Comparison of evolutions of the transformation plastic strain

In a first step we focus on the evolution of the transformation plastic strain as the trans-
formation proceeds, characterized by the ratio Etp(f)/Etp(1) which increases from 0 to
1. Figure 4 shows this ratio as a function of the volume fraction f of the daughter-phase.

9 There is no internal boundary - and therefore no internal loading - since the core of daughter-
phase is included in the mesh.
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Fig. 4. Comparison of evolutions of the transformation plastic strain.

Subfigure 4(a) compares the predictions of Leblond et al. (1989)’s original formula (19);
its supposedly improved variant (20); our general formula (57); its approximation (59);
and Desalos (1981)’s phenomenological formula Etp(f)/Etp(1) ≃ f(2−f), which he found
applicable to all his experimental results for the A533 steel irrespective of the value of
the stress applied. The predictions of equations (19), (20) and (59) are independent of the
value of the von Mises equivalent stress Σeq, but those of equation (57) are not; for this
equation the curve shown corresponds to the value Σeq ≡ Σ = 100MPa (to be compared
to the yield stress of the mother-phase, σM = 145MPa). Several points are noteworthy.

• All theoretical curves, except that corresponding to the supposedly improved variant
(20) of Leblond et al. (1989)’s original formula (19), provide reasonable representa-
tions of Desalos (1981)’s experimental results. However in all cases the increase of the
transformation plastic strain they predict is a bit fast during the first half of the trans-
formation.

• The infinite slope dEtp/df at the onset of the transformation (f = 0) predicted by both
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Leblond et al. (1989)’s original formula (19) and its supposedly improved variant (20),
is in clear contradiction with Desalos (1981)’s experimental results.

• In contrast our new formulae (57) and (59) both predict a finite slope at f = 0, in
better agreement with Desalos (1981)’s results. Nevertheless the predicted slopes are
still a bit too large. The discrepancy may be due to the total disregard of elasticity in
the theoretical treatment, which leads to an overestimation of the plastic strains in the
deforming mother-phase; see the works of Taleb and Sidoroff (2003) and Weisz-Paltrault
(2017) on this topic.

• Use, instead of Leblond et al. (1989)’s original formula (19), of its supposedly improved
variant (20), in fact results in a degradation of the agreement of model predictions and
experimental results. This observation is a bit surprising since formula (20) is based
on a better estimate of the mean value of the stress deviator in the mother-phase, and
underlines the limitations of Leblond et al. (1989)’s original approach based on the
specific Approximations (1) and (2), see Subsection 2.5.

• There is little difference between the predictions of our general formula (57) and its
simplified variant (59), in spite of the fact that the value of the ratio Σeq/σM is high
(0.69).

Subfigure 4(b) compares the predictions of our general formula (57) to the results of
micromechanical simulations obtained with HBStress and HBStrain conditions, this time
for a low stress, Σ = 20MPa. (The curve corresponding to Desalos (1981)’s heuristic
formula mentioned above, applicable to all values of the stress he considered, is also again
provided for reference).

• There is a non-negligible gap between the numerical results obtained with HBStress
and HBStrain conditions. This emphasizes the influence of boundary conditions, and
evidences the limitations of an approach based on such a simple and small RVE as a
spherical volume of mother-phase containing a single growing core of daughter-phase.

• The theoretical predictions agree extremely well with these numerical results obtained
with HBStress conditions, much less so with those obtained with HBStrain conditions.

• Desalos (1981)’s experimental results serving as a reference, the numerical simulation
based on HBStrain conditions predicts an evolution of the transformation plastic strain
which is too fast during the first half of the transformation, and too slow during the
second half.

5.3 Comparison of final values of the transformation plastic strain

We now study the “amplitude” of transformation plasticity, characterized by the value of
the transformation plastic strain after complete transformation, Etp(1). Figure 5 shows
this quantity as a function of the overall stress applied Σ.

Subfigure 5(a) compares the predictions of Leblond et al. (1989)’s original formula (19);
its variant (20); our general formula (57); its approximation (59); and Desalos (1981)’s
experimental results for the A533 steel up to a stress of 70MPa, which he found to be
well reproduced by the heuristic formula Etp(1) ≃ 10−4Σ (with Σ in MPa).
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Fig. 5. Comparison of transformation plastic strains after complete transformation.

• All theoretical curves provide acceptable representations of Desalos (1981)’s experimen-
tal results. In particular, the predictions of Leblond et al. (1989)’s original formula (19)
and its variant (20) are of comparable quality.

• For large stresses, there is a large difference between model predictions obtained with
our general formula (57) and its approximation (59). But Desalos (1981)’s experimental
results limited to moderate stress levels do not permit to decide which is the better one.

Subfigure 5(b) compares the predictions of our general formula (57) to the results of
micromechanical simulations obtained with HBStress and HBStrain conditions (Desalos
(1981)’s experimental results being again provided for reference).

• The numerical results obtained with HBStress and HBStrain conditions are again
markedly different. But the situation is opposite to that for the ratio Etp(f)/Etp(1),
see Subsection 5.2 above: the results corresponding to HBStrain conditions are here
better than those corresponding to HBStress conditions, Desalos (1981)’s experimen-
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tal results being taken as a reference. HBStress conditions clearly seem to lead to an
overestimation of the amplitude of transformation plasticity.

• The predictions of our general formula (57) agree quite well with the numerical results
obtained with HBStrain conditions; 10 they reproduce in particular the tendency of
numerical values of Etp(1) to increase nonlinearly with the stress applied.

• Numerical simulations permit to settle the question of the compared quality of our
general formula (57) and its simplified variant (59): the former formula is definitely
better, the latter leading to a clear overestimation of the transformation plastic strain
after complete transformation.

5.4 Comparison with multiaxial experiments and micromechanical simulations

Another interesting aspect deserving to be checked versus experiments and micromechan-
ical simulations is the prediction of our general formula (57) - in line with that of Leblond
et al. (1989)’s earlier one (19) - of collinearity of the transformation plastic strain rate
and the overall stress deviator. It will just be mentioned here that the said collinearity
has been approximately verified experimentally by Coret et al. (2002, 2004) for the A533
steel, and is also approximately confirmed by extra finite element micromechanical simu-
lations, analogous to those discussed above but with various multiaxial loadings instead
of uniaxial ones.

6 Synthesis and perspectives

The aim of this paper was to propose a new theoretical treatment of Greenwood and
Johnson (1965)’s mechanism of transformation plasticity of metals and alloys, based on
limit-analysis. The new approach rests upon the same basic elements as Leblond et al.
(1989)’s classical one, including in particular an approximate solution to the model prob-
lem of growth of a spherical core of daughter-phase within a concentric spherical volume
of mother-phase subjected to a general 3D loading. But use of the powerful variational
framework of the kinematic approach of limit-analysis makes it both more general and
versatile.

In a first step, we have developed an approximate limit-analysis of a hollow sphere sub-
jected to both external and internal loadings through classical conditions of homogeneous
boundary stress (Mandel, 1964; Hill, 1967). The internal loading is intended to repre-
sent the effect, upon the external shell of mother-phase, of the expansion of the core of
daughter-phase due to the volumetric part of the transformation strain. The treatment
is based on an extension of a work of Monchiet et al. (2011) on plastic porous materi-
als - containing traction-free voids - which itself stood as an extension of the classical

10 This is maybe not as surprising as it may seem. Indeed although the limit-analysis presented
in Section 3 was, strictly speaking, developed for HBStress conditions, it is probably also ap-
propriate, in some approximate sense, for HBStrain conditions insofar as the trial displacement
fields used satisfy the latter conditions in an average sense, if not exactly.
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work of Gurson (1977) supplementing this author’s elementary trial velocity fields with
more complex, Eshelby (1957)-type ones. The output consists of some approximate over-
all yield locus and associated plastic flow rule obeying the normality property, extending
those found by Monchiet et al. (2011) through incorporation of some additional internal
loading.

In a second step, we have shown how to apply these results to the treatment of Greenwood
and Johnson (1965)’s mechanism of transformation plasticity. An analytical formula for
the transformation plastic strain rate has been found for fully general 3D loading condi-
tions; this formula unfortunately contains an auxiliary unknown which must be determined
by numerically solving a transcendental equation. However it reduces to simpler ones free
of such complexities, in two distinct special cases: (i) small external stresses; (ii) beginning
of the transformation (whatever the magnitude of the external stress tensor). All these
theoretical results have been compared, with globally satisfying results, to experiments
performed on the A533 steel (Desalos, 1981; Coret et al., 2002, 2004), and also fresh finite
element micromechanical simulations of the mechanism investigated, based on exactly the
same spherical RVE as the theoretical analysis.

There are several advantages to the new approach. A minor one consists in dispensing
with some ad hoc technical hypotheses made in Leblond et al. (1989)’s classical treat-
ment, among which one of highly questionable validity. A more important one is that the
value of the transformation plastic strain rate at the onset of the transformation is no
longer infinite like in the previous treatment - a non-physical prediction which did not
fail to raise numerous criticisms. A third one lies in the possibility to consider external
stresses of arbitrary magnitude instead of small ones only; the new theory predicts a non-
linear increase of the transformation plastic strain with the stress applied, in line with
experimental observations (Greenwood and Johnson, 1965).

However the major advantage of the new approach probably lies in the new perspectives
it opens, thanks to the power and efficiency of the kinematic method of limit-analysis.

• Refining the approximate overall yield criterion and plastic flow rule by including extra
trial velocity fields, for instance, would not raise major difficulties.

• In this work the hypothesis was made, in line with Greenwood and Johnson (1965)’s
ideas, that internal stresses generating microplasticity in the weaker mother-phase es-
sentially arise from the difference of specific volume between the phases, that is the
volumetric part of the transformation strain. However in reality this transformation
strain is not a multiple of the unit tensor, and it is perfectly conceivable that its devia-
toric part also contributes to the microplasticity of the mother-phase. This effect could
be accounted for by modifying the expression of the overall strain rate imposed on
the inner boundary of the domain of mother-phase, without making the limit-analysis
significantly more complex. 11

• Another interesting extension would consist of considering growth of a spheroidal, in-
stead of spherical, core of daughter-phase, using Monchiet et al. (2014)’s extension of

11 Such an extension would however raise the difficult issue of accounting for the self-

accommodation of the transforming regions, that is the partial or complete compensation of
the deviatoric parts of the transformation strains from one region to another.
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their earlier work on plastic materials containing spherical voids (Monchiet et al., 2014)
to such a pore geometry. The spheroidal geometry would permit to represent, in an ap-
proximate way, growing nuclei of daughter-phase of elongated shape; such nuclei have
been observed in rolled plates and are known to result in a strong anisotropy of trans-
formation plasticity (see e.g. Desalos (1981), among other authors) - for instance, the
transformation plastic strain is no longer zero in the absence of external stress.

In addition, the notable gap found between the results of finite element micromechanical
simulations performed with conditions of homogeneous boundary strain and stress, under-
lines the influence of boundary conditions for such a small and simplistic RVE as a spher-
ical volume containing a single growing core of daughter-phase; and suggests to perform
more realistic simulations on much larger RVEs containing many cores of daughter-phase,
subjected to rigorous periodic boundary conditions. In addition to settling the issue of
the effect of boundary conditions, these simulations would permit to study the respective
influences of nucleation and growth of nuclei of daughter-phase, unlike those discussed
here which automatically ruled out nucleation of multiple nuclei through consideration of
a single one. Such simulations will be performed in the near future using Moulinec and
Suquet (1998)’s FFT-based method of numerical homogenization, much better adapted
to calculations of this type than the standard finite element method.
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mécaniques des alliages du système Fe-Ni-Cr-C. Ph.D. thesis, Université de Nancy I.
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d’un acier A533. IRSID Report 95349401.

Diani J.M., Sabar H., Berveiller M. (1995). Micromechanical modelling of the transforma-
tion induced plasticity (TRIP) phenomenon in steels. Int. J. Engng. Sci., 33, 1921-1934.

32



Eshelby J. (1957). The determination of the elastic field of an ellipsoidal inclusion, and
related problems. Proc. Roy. Soc. London A, 241, 376-396.

Fischlschweiger M., Cailletaud G., Antretter T. (2012). A mean field model for trans-
formation induced plasticity including backstress effects for non-proportional loadings.
Int. J. Plasticity, 37, 53-71.

Fukumoto M., Yoshizaki M., Imataka H., Okamura K. (2001). Three-dimensional FEM
analysis of helical gear subjected to the carburized quenching process. J. Soc. Mater.
Sci. Japan, 50, 598-605.

Ganghoffer J.F., Denis S., Gautier E., Simon A. (1993). Finite element calculation of the
micromechanics of a diffusional transformation. Eur. J. Mech. A/Solids, 12, 21-32.
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A Appendix : additional considerations on the thermal strains of individual
phases and the overall thermometallurgical strain

As a typical example, Fig. A.1 show the dilatometric diagram (free strain vs. temperature)
of the A533 steel heated at 30◦Cs−1 and cooled at −2◦Cs−1, determined experimentally
by Desalos (1981). The diagram evidences both transformations from the α-phase (ferrite,
bainite or martensite) to the γ-phase (austenite) during heating, and from the γ-phase to
the α-phase during cooling; but our focus in the present paper is on the latter transforma-
tion - the effect of transformation plasticity during heating being erased by the subsequent
vanishing of the stresses at high temperatures. Hence the mother- and daughter-phases
are considered to be the γ- and α-phases respectively. Note that the observed strains
are defined in reference to the daughter (α) phase at a temperature of 20◦C. The ther-
mal expansions of the two phases, with different coefficients αM and αD, are conspicuous
here; and the temperature-dependent relative difference of specific volume ∆V

V
(T ) between

them, given by equation (4), is apparent in the vertical gap between the two straight lines
corresponding to the pure phases.

Fig. A.1. The dilatometric diagram of the A533 steel (after Desalos (1981)).

During the transformations the two phases coexist so that the overall strain observed lies
between the thermal strains of individual phases at the temperature considered. Now by
definition the dilatometric diagram is obtained in the absence of any external load so that
the overall elastic and plastic strains Ee, Ep are zero; under such conditions the overall
strain coincides with the thermo-metallurgical strain Ethm defined by equation (7)2. The
geometrical interpretation of the simple “linear mixture rule” giving this strain in terms
of the thermal strains of individual phases is that the volume fraction f of the daughter-
phase may be obtained from the dilatometric diagram by a simple “lever rule”, f ≡ QR

PR

at a temperature of 800◦C in Fig. A.1.

A final remark is that as a consequence of equation (7)2, the rate Ėthm of the ther-
mometallurgical strain naturally splits into a “thermal part” proportional to Ṫ and a
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“transformation part” proportional to ḟ :

Ėthm = [(1− f)αM 1+ fαD 1] Ṫ +
[

ǫ
th
D (T )− ǫ

th
M(T )

]

ḟ .

But it must be stressed that the thermometallurgical strain Ethm itself cannot be decom-
posed in a similar way, as some authors have wrongly claimed; that is, it is not a simple
sum of a function of T and a function of f , as is obvious from equation (7)2.

B Appendix : on the relative importance of Greenwood and Johnson (1965)’s
and Magee (1966)’s mechanisms and their experimental separation

In some cases Magee (1966)’s mechanism is important and may even completely dominate
over that of Greenwood and Johnson (1965). The most obvious case is that of shape
memory alloys, in which the difference of specific volume between the phases is very small
so that Greenwood and Johnson (1965)’s mechanism is virtually absent. As a result, the
thermomechanical behaviour of such materials during phase transformations is governed
by the pseudo-elastic transformation strain; the origin of the “memory effects” observed
lies in the reversible nature of this strain.

Another example is that of “TRIP steels”. Although the acronym TRIP stands for
“TRansformation Induced Plasticity”, the situation it refers to is rather different from
that considered here. TRIP steels are characterized by the presence of a significant amount
of untransformed austenite at room temperature. When such steels are subjected to an in-
creasing stress at this temperature, this “retained” austenite is transformed into α-phase
with a significant accompanying deformation, and this generates an important increase
of ductility. Since the stress applied has a decisive impact upon the kinetics of the trans-
formation, 12 it is highly probable that it also has a large influence upon the orientation
of the transformation strain (Magee (1966)’s mechanism). This large impact of the stress
applied upon the transformation marks a significant difference with the case considered
here of transformations essentially governed by the decrease of the temperature, rather
than by application of a stress.

In the case considered here of transformations occurring during the cooling period of
thermomechanical processes, the situation is less clear. The classical metallurgical view is
that Greenwood and Johnson (1965)’s mechanism should dominate for diffusion-controlled
transformations, and that of Magee (1966) for martensitic ones. To go beyond these
qualitative ideas, one may try to experimentally distinguish between the two mechanisms
by using the different physical natures - plastic for Greenwood and Johnson (1965)’s
mechanism, pseudo-elastic for that of Magee (1966) - of the microscopic strains assumed
to be responsible for transformation plasticity. One possibility is to subject a stressed
specimen to repeated thermal cycles. The transformation plastic strain must be perfectly
cumulative with the number of cycles if it arises from Greenwood and Johnson (1965)’s
mechanism, because nothing prevents the accumulation of standard plastic strains; but

12 This is a consequence of the highly unstable character of retained austenite at room temper-
ature: a small increase of “driving force” is sufficient to trigger the transformation.
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it must “saturate” at some stage if it is due to Magee (1966)’s mechanism, because a
maximum value of the overall strain is obtained when the transformation strains of the
various transforming regions are all collinear. The experiment has been performed several
times on different metals and alloys (Greenwood and Johnson, 1965; Desalos, 1981; Taleb
and Petit, 2006) with the conclusion, for the materials considered, of perfect cumulation of
the transformation plastic strain with the number of cycles, and therefore of domination
of Greenwood and Johnson (1965)’s mechanism.

Another possibility is to exploit memory effects expected to arise, for Magee (1966)’s mech-
anism, from the reversibility of the transformation strain. This can be done by applying
some stress on the material during cooling, then eliminating this stress and reheating. If
Greenwood and Johnson (1965)’s mechanism prevails, the transformation plastic strain
obtained at the end of cooling must not be recovered during re-heating since standard
plasticity is irreversible; but if Magee (1966)’s mechanism dominates, this strain must
be at least partially recoverable. The experiment was performed at least once, by Gigou
(1985), with the result that the recoverable part of the transformation plastic strain did
not amount to more than 10% of this strain; the ensuing conclusion was again that Green-
wood and Johnson (1965)’s mechanism was dominant in the alloy considered.

The general conclusion is that for the materials and types of thermomechanical histories
considered in the present paper, although Magee (1966)’s mechanism cannot be ruled
out a priori without a dedicated experimental study, Greenwood and Johnson (1965)’s
mechanism often dominates.
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