T. Sato, T. Watanabe, and R. Otsuka, Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites, Clays Clay Miner, vol.40, pp.103-113, 1992.

T. Sato, T. Murakami, and T. Watanabe, Change in layer change of smectites and smectite layers in illite/smectite during diagenetic alteration, Clays Clay Miner, vol.44, pp.460-469, 1996.

F. C. Chang, N. T. Skipper, and G. Sposito, Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates, Langmuir, vol.11, pp.2734-2741, 1995.

A. H. Fuchs and A. K. Cheetham, Adsorption of guest molecules in zeolitic materials: Computational aspects, J. Phys. Chem. B, vol.105, pp.7375-7383, 2001.

E. J. Hensen and B. Smit, Why clays swell, J. Phys. Chem. B, vol.106, pp.12664-12667, 2002.

V. Marry, P. Turq, T. Cartailler, and D. Levesque, Microscopic simulation of structure and dynamics of water and counterions in a monohydrated montmorillonite, J. Chem. Phys, vol.117, pp.3454-3463, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00160601

B. Smit and R. Krishna, Molecular simulations in zeolitic process design, Chem. Eng. Sci, vol.58, pp.557-568, 2003.

T. J. Tambach, E. J. Hensen, and B. Smit, Molecular simulations of swelling clay minerals, J. Phys. Chem. B, vol.108, pp.7586-7596, 2004.

D. E. Smith, Y. Wang, A. Chaturvedi, and H. D. Whitley, Molecular simulations of the pressure, temperature, and chemical potential dependencies of clay swelling, J. Phys. Chem. B, vol.110, 2006.

J. Wang, A. G. Kalinichev, and R. J. Kirkpatrick, Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study, Geochim. Cosmochim. Ac, vol.70, pp.562-582, 2006.

N. T. Skipper, F. C. Chang, and G. Sposito, Monte carlo simulation of interlayer molecular structure in swelling clay minerals. I: Methodology. Clays Clay Miner, vol.43, pp.285-293, 1995.

B. J. Teppen, K. Rasmussen, P. M. Bertsch, D. M. Miller, and L. Schäfer, Molecular dynamics modeling of clay minerals. 1. Gibbsite, kaolinite, pyrophyllite, and beidellite, J. Phys. Chem. B, vol.101, pp.1579-1587, 1997.

E. Jaramillo and S. M. Auerbach, New force field for Na cations in faujasite-type zeolites, J. Phys. Chem. B, vol.103, pp.9589-9594, 1999.

S. Buttefey, A. Boutin, C. Mellot-draznieks, and A. H. Fuchs, A simple model for predicting the Na + distribution in anhydrous NaY and NaX zeolites, J. Phys. Chem. B, vol.105, pp.9569-9575, 2001.

C. I. Sainz-diaz, A. Hernández-laguna, and M. T. Dove, Modeling of dioctahedral 2:1 phyllosilicates by means of transferable empirical potentials, Phys. Chem. Miner, vol.28, pp.130-141, 2001.

R. T. Cygan, J. Liang, and A. G. Kalinichev, Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field, J. Phys. Chem. B, vol.108, pp.1255-1266, 2004.

D. Lella, A. Desbiens, N. Boutin, A. Demachy, I. Ungerer et al., Molecular simulation studies of water physisorption in zeolites, Phys. Chem. Chem. Phys, vol.8, pp.5396-5406, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00123934

M. C. Pitman and A. C. Van-duin, Dynamics of confined reactive water in smectite clayzeolite composites, J. Am. Chem. Soc, vol.134, pp.3042-3053, 2012.

J. J. Molina, S. Lectez, S. Tazi, M. Salanne, J. Dufrêche et al.,

, J. Chem. Phys, 2011.

S. Tazi, J. J. Molina, B. Rotenberg, P. Turq, R. Vuilleumier et al., A transferable ab initio based force field for aqueous ions, J. Chem. Phys, vol.136, p.114507, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01897599

P. Jungwirth and D. J. Tobias, Specific ion effects at the air/water interface, Chem. Rev, vol.106, pp.1259-1281, 2006.

P. E. Lopes, B. Roux, and A. D. Mackerell, Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: Theory and applications, Theor. Chem. Acc, vol.124, pp.11-28, 2009.

P. Cieplak, F. Dupradeau, Y. Duan, and J. Wang, Polarization effects in molecular mechanical force fields, J. Phys.: Condens. Matter, vol.21, p.333102, 2009.

C. M. Baker, Polarizable force fields for molecular dynamics simulations of biomolecules, WIREs Comput. Mol. Sci, vol.5, pp.241-254, 2015.

G. Lamoureux and B. Roux, Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm, J. Chem. Phys, vol.119, pp.3025-3039, 2003.

J. W. Ponder, C. Wu, P. Ren, V. S. Pande, J. D. Chodera et al., Current Status of the AMOEBA Polarizable Force Field, J. Phys. Chem. B, vol.114, pp.2549-2564, 2010.

S. Tesson, M. Salanne, B. Rotenberg, S. Tazi, and V. Marry, Classical polarizable force field for clays: Pyrophyllite and talc, J. Phys. Chem. C, vol.120, pp.3749-3758, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01515664

S. Tesson, W. Louisfrema, M. Salanne, A. Boutin, B. Rotenberg et al., Classical polarizable force field to study dry charged clays and zeolites, J. Phys. Chem. C, vol.121, pp.9833-9846, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01515667

S. Goedecker, M. Teter, and J. Hutter, Separable dual-space gaussian pseudopotentials, Phys. Rev. B, vol.54, issue.56, pp.1703-1710, 1996.

C. Hartwigsen, S. Goedecker, and J. Hutter, Relativistic separable dual-space gaussian pseudopotentials from H to Rn, Phys. Rev. B, vol.58, pp.3641-3662, 1998.

M. Krack, Pseudopotentials for H to Kr optimized for gradient-corrected exchangecorrelation functionals, Theor. Chem. Acc, vol.114, pp.145-152, 2005.

J. Vandevondele and J. Hutter, Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases, J. Chem. Phys, p.114105, 2007.

P. L. Silvestrelli, Maximally localized wannier functions for simulations with supercells of general symmetry, Phys. Rev. B, p.9703, 1999.

N. Marzari, I. Souza, and D. Vanderbilt, An introduction to maximally-localized wannier functions. Psi-K newsletter, vol.57, pp.129-168, 2003.

F. James and M. Roos, Minuit-a system for function minimization and analysis of the parameter errors and correlations, Comput. Phys. Commun, vol.10, pp.343-367, 1975.

R. W. Mooney, A. G. Keenan, and L. A. Wood, Adsorption of water vapor by montmorillonite

. Ii, Effect of exchangeable ions and lattice swelling as measured by x-ray diffraction, J. Am. Chem. Soc, vol.74, pp.1371-1374, 1952.

M. H. Fu, Z. Z. Zhang, and P. F. Low, Changes in the properties of a montmorillonite-water system during the adsorption and desorption of water: Hysteresis, Clays Clay Miner, vol.38, pp.485-492, 1990.

I. Bérend, J. M. Cases, M. François, J. P. Uriot, L. Michot et al., Mechanism of adsorption and desorption of water-vapor by homoionic montmorillonites

T. Li, +. , N. +. , K. +. Rb, +. et al., Clays Clay Miner, vol.43, pp.324-336, 1995.

J. M. Cases, I. Bérend, M. François, J. P. Uriot, L. J. Michot et al., Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 3. The Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+-exchanged forms, Clays Clay Miner, vol.45, issue.66, pp.8-22, 1997.

E. Ferrage, B. Lanson, B. A. Sakharov, and V. A. Drits, Investigation of smectite hydration properties by modeling experimental x-ray diffraction patterns: Part I. Montmorillonite hydration properties, Am. Miner, vol.90, pp.1358-1374, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00105756

E. Ferrage, B. Lanson, N. Malikova, A. Plançon, B. Sakharov et al., New insights on the distribution of interlayer water in bi-hydrated smectite from x-ray diffraction profile modeling of 00l reflections, Chem. Mater, vol.17, pp.3499-3512, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00193951

T. Melkior, E. C. Gaucher, C. Brouard, S. Yahiaoui, D. Thoby et al., Na + and HTO diffusion in compacted bentonite: Effect of surface chemistry and related texture, J. Hydrol, vol.370, pp.9-20, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00512714

R. Hånde, V. Ramothe, S. Tesson, B. Dazas, E. Ferrage et al., Classical polarizable force field to study hydrated hectorite: Optimization on DFT calculations and validation against XRD data, vol.8, p.205, 2018.

V. A. Drits, G. Besson, and F. Muller, An improved model for structural transformation of heattreated aluminous dioctahedral 2: 1 layer silicates, Clays Clay Miner, vol.43, pp.718-731, 1995.

J. L. Abascal and C. Vega, A general purpose model for the condensed phases of water: TIP4P, J. Chem. Phys, p.234505, 2005.

C. Vega and J. L. Abascal, Nezbeda, I. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice, J. Chem. Phys, p.34503, 2006.

J. L. Abascal and C. Vega, Widom line and the liquid-liquid critical point for the TIP4P/2005 water model, J. Chem. Phys, p.234502, 2010.

S. Tazi, A. Bo¸tanbo¸tan, M. Salanne, V. Marry, P. Turq et al., Diffusion coefficient and shear viscosity of rigid water models, J. Phys.: Condens. Matter, vol.24, p.284117, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01896855

O. Kroutil, Z. Chval, A. A. Skelton, and M. Predota, Computer simulations of quartz (101)water interface over a range of pH values, J. Phys. Chem. C, vol.119, pp.9274-9286, 2015.

E. Ferrage, Investigation of the interlayer organization of water and ions in smectite from the combined use of diffraction experiments and molecular simulations. A review of methodology, applications, and perspectives, Clays Clay Miner, vol.64, pp.348-373, 2016.

N. Malikova, A. Cadène, V. Marry, E. Dubois, and P. Turq, Diffusion of water in clays on the microscopic scale: modeling and experiment, J. Phys. Chem. B, vol.110, pp.3206-3214, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00142561

N. Malikova, E. Dubois, V. Marry, B. Rotenberg, and P. Turq, Dynamics in clays-combining neutron scattering and microscopic simulation, Z. Phys. Chem, vol.224, pp.153-181, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00531710

D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications, Computational Science, vol.1, 2002.

H. Flyvbjerg and H. G. Petersen, Error estimates on averages of correlated data, J. Chem. Phys, vol.91, pp.461-466, 1989.

Y. Zheng and A. Zaoui, How water and counterions diffuse into the hydrated montmorillonite, Solid State Ionics, vol.203, pp.80-85, 2011.

I. C. Bourg and G. Sposito, Connecting the molecular scale to the continuum scale for diffusion processes in smectite-rich porous media, Environ. Sci. Technol, vol.44, pp.2085-2091, 2010.

M. Holmboe and I. C. Bourg, Molecular dynamics simulations of water and sodium diffusion in smectite interlayer nanopores as a function of pore size and temperature, J. Phys. Chem. C, vol.118, pp.1001-1013, 2014.

G. Sánchez, F. Jurányi, F. Gimmi, T. Van-loon, L. Unruh et al., Translational diffusion of water and its dependence on temperature in charged and uncharged clays: A neutron scattering study, J. Chem. Phys, p.174706, 2008.

L. Zhang, X. Lu, X. Liu, J. Zhou, and H. Zhou, )-montmorillonite: a molecular dynamics study, J. Phys. Chem. C, vol.118, pp.29811-29821, 2014.

W. P. Gates, H. N. Bordallo, L. P. Aldridge, T. Seydel, H. Jacobsen et al., Neutron time-of-flight quantification of water desorption isotherms of montmorillonite, J. Phys. Chem. C, vol.116, pp.5558-5570, 2012.

J. J. Tuck, P. L. Hall, M. H. Hayes, D. K. Ross, and J. B. Hayter, Quasi-elastic neutronscattering studies of intercalated molecules in charge-deficient layer silicates. Part 2. Highresolution measurements of the diffusion of water in montmorillonite and vermiculite, J. Chem. Soc. Faraday Trans. 1, vol.81, pp.833-846, 1985.

V. Marry and P. Turq, Microscopic simulations of interlayer structure and dynamics in bihydrated heteroionic montmorillonites, J. Phys. Chem. B, vol.107, pp.1832-1839, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00168681

P. L. Hall, J. J. Tuck, M. H. Hayes, and D. K. Ross, Neutron inelastic scattering, 1977.

O. Matsuoka, E. Clementi, and M. Yoshimine, CI study of the water dimer potential surface, J. Chem. Phys, vol.64, pp.1351-1361, 1976.

H. J. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem, vol.91, pp.6269-6271, 1987.

O. Teleman, B. Jönsson, and S. Engström, A molecular dynamics simulation of a water model with intramolecular degrees of freedom, Mol. Phys, vol.60, pp.193-203, 1987.

D. E. Smith, Molecular computer simulations of the swelling properties and interlayer structure of cesium montmorillonite, Langmuir, vol.14, pp.5959-5967, 1998.

R. Sutton and G. Sposito, Molecular simulation of interlayer structure and dynamics in 12.4 Å Cs-smectite hydrates, J. Colloid Interface Sci, vol.237, pp.174-184, 2001.

I. Yeh and G. Hummer, System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions, J. Phys. Chem. B, vol.108, pp.15873-15879, 2004.

M. L. Laury, L. Wang, V. S. Pande, T. Head-gordon, and J. W. Ponder, Revised parameters for the AMOEBA polarizable atomic multipole water model, J. Phys. Chem. B, vol.119, pp.9423-9437, 2015.

P. Simonnin, B. Noetinger, C. Nieto-draghi, V. Marry, and B. Rotenberg, Diffusion under confinement: Hydrodynamic finite-size effects in simulation, J. Chem. Theory Comput, vol.13, pp.2881-2889, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01760231

, Database of zeolite structures, 2016.

M. Jeffroy, C. Nieto-draghi, and A. Boutin, Molecular simulation of zeolite flexibility, Mol. Simul, vol.40, pp.6-15, 2014.

W. Louisfrema, B. Rotenberg, F. Porcher, J. Paillaud, P. Massiani et al., Cation redistribution upon dehydration of Na 58 Y-faujasite zeolite: A joint neutron diffraction and molecular simulation study, Mol. Simul, vol.41, pp.1371-1378, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01284815

W. Louisfrema, J. Paillaud, F. Porcher, E. Perrin, T. Onfroy et al., Cation migration and structural deformations upon dehydration of nickelexchanged NaY-zeolite: A combined neutron diffraction and monte carlo study, J. Phys. Chem. C, vol.120, pp.18115-18125, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01485629

M. Jeffroy, E. Borissenko, A. Boutin, A. Di-lella, F. Porcher et al., Evidence of a framework induced cation redistribution upon water adsorption in cobalt exchanged x faujasite zeolite: A joint experimental and simulation study, Micropor. Mesopor. Mater, vol.138, pp.45-50, 2011.

C. Abrioux, B. Coasne, G. Maurin, F. Henn, A. Boutin et al., A molecular simulation study of the distribution of cation in zeolites, Adsorption, vol.14, pp.743-754, 2008.

W. J. Mortier, Compilation of extra frameword sites in zeolites

&. Butterworth, . Co, and . Ltd, , 1982.

M. Jeffroy, C. Nieto-draghi, and A. Boutin, New molecular simulation method to determine both aluminum and cation location in cationic zeolites, Chem. Mater, vol.29, pp.513-523, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01420911

L. Zhu and K. Seff, Reinvestigation of the crystal structure of dehydrated sodium zeolite X, J. Phys. Chem. B, vol.103, pp.9512-9518, 1999.

T. Hseu and . Microfilms, , 1972.

M. L. Costenoble, W. J. Mortier, and J. B. Uytterhoeven, Location of cations in synthetic zeolites X and Y. Part 4. Exchange limiting factors for Ca 2+ in zeolite Y, J. Chem. Soc., Faraday Trans. 1, vol.72, pp.1877-1883, 1976.

W. J. Mortier, E. Van-den-bossche, and J. B. Uytterhoeven, Influence of the temperature and water adsorption on the cation location in NaY-zeolites, Zeolites, vol.4, pp.41-44, 1984.

J. A. Rubio, J. Soria, and F. H. Cano, Influence of the dehydration pretreatment on the cation location in NaY-zeolite, J. Colloid Interface Sci, vol.73, pp.312-323, 1980.

C. E. Kirschhock, B. Hunger, J. Martens, and P. A. Jacobs, Localization of residual water in alkali-metal cation-exchanged X and Y type zeolites, J. Phys. Chem. B, vol.104, pp.439-448, 2000.

S. Ghosal, J. C. Hemminger, H. Bluhm, B. S. Mun, E. L. Hebenstreit et al., Electron spectroscopy of aqueous solution interfaces reveals surface enhancement of halides, Science, vol.307, pp.563-566, 2005.

S. Tesson, M. Salanne, B. Rotenberg, S. Tazi, and V. Marry, Classical polarizable force field for clays: Pyrophyllite and talc, J. Phys. Chem. C, vol.120, issue.1, pp.3749-3758, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01515664

S. Jahn and P. A. Madden, Modeling earth materials from crustal to lower mantle conditions: A transferable set of interaction potentials for the CMAS system. Phys. Earth Planet, vol.162, pp.129-139, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00532104

S. Tesson, W. Louisfrema, M. Salanne, A. Boutin, B. Rotenberg et al., Classical polarizable force field to study dry charged clays and zeolites, J. Phys. Chem. C, vol.121, pp.9833-9846, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01515667

E. Ferrage, B. Lanson, B. A. Sakharov, and V. A. Drits, Investigation of smectite hydration properties by modeling experimental x-ray diffraction patterns: Part I. Montmorillonite hydration properties, Am. Miner, vol.90, pp.1358-1374, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00105756

L. J. Michot, E. Ferrage, M. Jiménez-ruiz, M. Boehm, and A. Delville, Anisotropic features of water and ion dynamics in synthetic Na-and Ca-smectites with tetrahedral layer charge. A combined quasi-elastic neutron-scattering and molecular dynamics simulations study, J. Chem. Phys. C, vol.116, pp.16619-16633, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00819855