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Abstract

The quasi-biennial oscillation (QBO) is the nearly periodic reversal of the large scale
�ow generated by internal waves in the equatorial stratosphere. Using a laboratory model
experiment, we study the instability that generates the QBO and investigate its nonlin-
ear regime. We report the �rst quantitative measurements of the nonlinearly saturated
velocity of the �ow. We show that the QBO is generated by a bifurcation that is ei-
ther supercritical or subcritical depending on the dominant dissipative process. This is
con�rmed by a nonlinear analysis in the vicinity of the instability threshold.

47.20.Ky, 47.55.Hd

The quasi-biennial oscillation (QBO) is the nearly periodic reversal of the wind in the
lower equatorial stratosphere. The period of the oscillation is 28 months on average, and is
not locked to the yearly seasonal forcing. This wind has a signi�cant in�uence on hurricanes
in North America [1], and a�ects winter conditions in Europe [15].

This wind is known to be forced by atmospheric waves, in particular internal gravity
waves that propagate in the stratosphere [10, 4, 23, 3, 14]. These waves generate a forcing at
zero frequency and zero wave vector through the quadratic nonlinearities of the Navier-Stokes
equation and therefore drive a �ow at the largest scale of the system (for other experimental
setups showing this phenomenon, see [9, 2]). This is an example of a large scale coherent
�eld driven by small scale waves, other examples being acoustic streaming [12], mean �ows
generated by pattern-forming instabilities [5, 22] mean-�eld dynamo due to helical waves of
velocity [16], to quote a few. This large scale �ow displays reversals, as also observed for other
types of large scale �elds driven on a turbulent background [7] such as the magnetic �eld of
the Earth or the Sun.

The mechanism responsible for the reversals was �rst identi�ed by Lindzen and Holton [13]
and a minimal model was proposed by Plumb [19]. It considers two internal waves propagating
in opposite direction azimuthally and in the same direction vertically. One of these waves forces
a mean �ow eastward and the other one westward. The competition between these two waves
results in a mean �ow pro�le that changes sign at a given altitude. The position where the
mean �ow changes sign drifts towards the location from where the waves are emitted, which
leads to a periodic reversal of the mean �ow. This mechanism was con�rmed experimentally
[20, 18] and numerically [26]. The mean �ow is oscillatory and its period is very large compared
to the period of the wave, so that the phase of the mean �ow oscillation is not locked to the
one of the waves. The generation of a mean �ow and its periodic reversals were observed
experimentally but no quantitative measurement of the amplitude of the mean �ow could be
achieved and the type of the bifurcation remained unknown. Yoden and Holton [27] have
shown that the reversals are generated by a supercritical Hopf bifurcation by numerically
integrating Plumb's model when the dissipation of the mean �ow is only due to bulk viscous
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e�ects. We are not aware of analytical predictions on the supercritical or subcritical nature
of the bifurcation.

Yet, knowing the nature of the bifurcation of the instability which leads to the QBO is
important to predict the possible scenarios if the forcing is modi�ed, for example due to global
warming. This is not only an academic exercise: an anomaly of the QBO has been recently
measured [17]. In addition, determining the nature of the bifurcation is important for general
circulation models in order to obtain the correct sensitivity to parameter changes.

In this letter, we investigate the nature of the bifurcation in a laboratory analogue of the
QBO and we understand our results by analytically solving the model of Plumb and McEvan.
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Figure 1: Schematic view of the experimental setup.

A schematic view of the experimental setup is shown in �gure 1 and has been described in
detail in [21]. It is made of two transparent concentric vertical cylinders. The outer diameter
of the inner cylinder is 365 mm, the inner diameter of the outer cylinder is 600 mm, and
the height is H = 410 mm. The gap h between these two cylinders is �lled with a linearly
density-strati�ed solution of NaCl or MgCl2 in water. The density pro�le is obtained from
conductivity measurements. The strati�cation is measured by the Brunt�Väisälä frequency,
N =

√
−(g/ρ0) dρ0/dz, where g is the acceleration of gravity, ρ0 is the background density

and z is the vertical axis. The typical value of N is 1.5− 2.2 Hz, the highest values been
obtained using MgCl2.

The �uid motion is forced using 16 silicone membranes which are in contact with the
top of the �uid and can move up and down in a nearly sinusoidal manner. Two neighboring
membranes are driven by motors in opposition of phase so that the forcing is a standing
wave whose azimuthal wavelength λx = 200 mm is twice the curvilinear distance between 2
motors. We note M the amplitude of the motion of the membranes and we report here on
measurements performed with a forcing period Tf = 15 s.

The �uid velocity is measured using particle image velocimetry (PIV) [25]. To wit, the
�uid is seeded with particles, whose density range is similar to the one of the �uid, so that
particles can be found in the whole liquid (see supplemental material I and [21]). The wave
(oscillation at the forcing angular frequency ω) and the mean �ow are deduced from these
measurements. The mean �ow is azimuthal and only depends on the height z, except close to
the boundaries.

To investigate the bifurcation, the amplitude of the forcing is decreased step by step. We
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typically wait 8000 s for each value. The amplitude of oscillation of the mean �ow is obtained
by a �t using a sine function during the second half of each plateau of forcing.
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Figure 2: Space-time diagram of the mean �ow. The color code indicates the veloc-
ity in mm · s−1. N = 2.16 Hz (MgCl2) and Tf = 15 s. M changes every 8 000 s: M =
14.5, 14, 13.5, 13, 12.5, 12, 11.5, 10.5, 10 mm.

We �rst describe the results obtained for high density gradient. For N = 2.16 Hz, a space-
time diagram of the mean �ow is displayed in �gure 2. Since the �rst value of the forcing
amplitude is high (M = 14.5 mm), a mean �ow is generated. During its growth, the mean
�ow is oscillating, and then reaches an oscillating steady state with a period of order 3000 s
much larger than the period of the wave (Tf = 15 s).

We emphasize that we can keep the amplitude of oscillation constant on more than 20
periods whereas previous experiments did not report more than 2 periods. This results from a
small pumping used to maintain the strati�cation beneath the membranes (see supplemental
material II).

At �xed time, we observe that the �ow changes direction at a given height. The point
of zero mean �ow moves upwards with time. This is in agreement with the behavior of the
atmospheric QBO [1], where this point moves downwards: in the present experiment the waves
are forced from the top and in the atmosphere the waves are forced below the layer of interest
so that in both cases, the point of zero mean �ow drifts toward the source of the waves.

When the amplitude of the forcing is decreased below a given value (here Mc = 11 mm),
the mean �ow vanishes. This shows that there is a threshold in forcing amplitude below which
the zero mean �ow is stable.

To better visualize the time variation of the mean �ow, we show it at a given height as
as a function of time in �gure 3a. Recordings at other heights are similar. We observe that
the mean �ow decreases smoothly when decreasing the forcing amplitude. The square of the
amplitude A of the mean �ow (averaged in height) as a function of the forcing amplitude is
shown in �gure 4. The experimental data are well-�tted by a straight line which crosses the
x-axis at a value in agreement with the threshold valueMc, thus showing that A ∝

√
M −Mc.

The oscillation period varies withM from T ' 2200 s forM = 14.5 mm to T ' 2900 s slightly
above Mc. These two features characterize a supercritical Hopf bifurcation, i.e. the transition
to an oscillatory regime with �nite frequency at onset and continuously increasing amplitude
of oscillation from zero. This transition to the QBO is observed when the Brunt�Väisälä
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Figure 3: Mean �ow as a function of time, for two di�erent values of N , at height h = 376 mm.
M changes every 8 000 s (shown by vertical lines);M = 14.5, 14, 13.5, 13, 12.5, 12, 11.5, 10.5, 10
mm. Inserts: details. ( 3a): N = 2.16 Hz (MgCl2). (3b): N = 1.55 Hz (NaCl).

frequency is large enough, here N = 2.16 Hz.
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Figure 4: Square of the mean �ow amplitude, A2, as a function of M (•). A is deduced from
sine �ts of the data of �gure 2. Best �t (full line). N = 2.16 Hz (MgCl2).

Results at a lower value of the Brunt�Väisälä frequency are shown in �gure 3b for N =
1.54 Hz, where the forcing is changed in the same manner as in �gure 3a. Compared to the
results at large N , we observe the following. (i) the time series contains more harmonics (see
insets of �gure 3). (ii) The decrease of the mean �ow with the forcing amplitude is much
sharper. A plot similar to the one of �gure 4 (not shown) displays a discontinuous jump of the
amplitude to zero. (iii) In some experiments, the system remains in the zero mean �ow state
for long duration (we observed values up to 2× 104 s ' 5.5h for M = 13.5 mm) and then
suddenly transitions to an oscillation of large amplitude. All these observations show that at
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low value of N the bifurcation is subcritical.
For the sake of completeness we add that the period of the oscillation is of order 4000 s

and decreases with M . Earlier works used NaCl and water as a �uid and it is likely that the
parameters used were in the regime of subcritical bifurcation. Subcriticality, together with the
weakening of the strati�cation due to mixing, explain the di�culty in achieving reproducible
and quantitative measurements of the mean �ow.

We have shown experimentally that a change of N changes the nature of the bifurcation.
In the following, we will show using theoretical considerations that this change is due to a
modi�cation of the dominant dissipative term for the mean �ow. We use the model proposed
by Plumb and McEwan [20]. This model has been shown to describe quantitatively the
generation of a mean �ow by a single progressive internal wave in the setup used here (see
Semin et al. [21]).

The equation for the dimensionless azimuthal mean �ow ũ(z, t) is

∂ũ

∂t̃
= −

2∑
n=1

∂F̃n

∂z̃
+ Λ1

∂2ũ

∂z̃2
− Λ2ũ. (1)

F̃n are the �uxes of impulsion per unit mass due to the waves

F̃n(z̃, t̃) = exp

[
−
∫ z̃

0

1

(ũ− c̃n)4
dz̃′
]

(2)

where c̃1 = −c̃2 = 1 give the sign of the horizontal phase velocity of the wave. The amplitude
of the �ux at z̃ = 0 is 1, which is a way to make the equation dimensionless.

The parameters of the model are related to the experimental parameters according to

c =
ω

kx
, d =

(
Nγ

kxc2
+
N3ν

kxc4

)−1
, z̃ =

z

d
, ũ =

u

c
, (3)

where ν = 10−6 m2 · s−1 is the kinematic viscosity of the �uid and γ = 10−3 s
−1

is the damping
rate due to friction at the cylinder walls. The dimensionless control parameters are

Λ1 =
νc

F0d
, Λ2 =

γcd

F0
(4)

where F0 is the dimensional wave �ux. It is proportional to M2 and depends on properties of
the membranes [20]. 1/Λi are Reynolds numbers associated to di�erent dissipative processes.
We note that Λ1/Λ2 measures the ratio between viscous dissipation in the bulk and friction
at the wall.

If we do not take into account the height H and the gap h, six parameters, N,ω, c, F0, ν, γ
are involved in the experiment with two units of length and time, therefore leading to four
dimensionless numbers. Plumb's model is based on the smallness of ω/N and c/(Nd) and
therefore involves two remaining dimensionless parameters Λ1 and Λ2. The height H can be
discarded because the damping length d of the waves is smaller than H and h is partly taken
into account by the value of the friction γ. We note from the values reported in Table 1 that
both the experiment and the stratosphere involve fairly small values of ω/N and c/(Nd) and
that the Reynolds number 1/Λ1 is in the same range provided that a turbulent viscosity of
the order of 0.1 m2 · s−1 is chosen for the stratosphere. This is not too surprising since the
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oscillation of the mean �ow is not chaotic and therefore not far from its bifurcation threshold
in both cases. Note however that the dissipation length d involved in Λ1 results from di�erent
dissipation mechanisms, because heat di�usivity and radiative damping are involved in the
case of the stratosphere. However, in both cases, cd/F0 gives a good order of magnitude for
the period of the �ow reversals [19].

N d ω/N c/Nd 1/Λ1 cd/F0

Experiment 2 Hz 10 cm 0.2 0.07 3− 20 2000 s

Stratosphere 2× 10−2 Hz 10 km 10−4 0.15 30 1 year

We consider the model given by equations (1) and (2) in a semi-in�nite domain (z̃ ∈
[0,+∞[). The boundary conditions are vanishing ũ at in�nity and at the forcing boundary
z̃ = 0 (no-slip). The linear stability analysis shows that the mean �ow is generated through a
Hopf bifurcation with a normal mode given by integrals of Bessel functions. Weakly nonlinear
analysis above threshold then gives the sign of the coe�cient of the cubic term in the amplitude
equation for the mean �ow. This predicts the super-sub-criticality of the bifurcation. In
addition, the form of the amplitude equation is not a�ected by a possible asymmetry between
the counter propagating waves, because it is constrained by translational invariance in time.
Details of these calculations are presented in supplemental material (III).
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Figure 5: Parameter space displaying the transition between stable (no mean �ow) and
unstable regions. Instability threshold for large N (MgCl2) and small N (NaCl). Supercritical
(�), subcritical (•) and tricritical (�) transitions.

The parameter space is shown in �gure 5. The solution ũ = 0 is linearly unstable at
low values of Λ1 and Λ2, and linearly stable for large values. The bifurcation is supercritical
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for small values of Λ2, and subcritical for large values. The result for small values of Λ2 is
consistent with the one of Yoden and Holton [27], who numerically observed a supercritical
bifurcation when Λ2 = 0. These two regimes are separated by a tricritical point located at
Λ1 ' 1.87 and Λ2 ' 0.12. In the experiment, a change of M leaves Λ1/Λ2 constant. The
experimentally observed behaviors are in agreement with the results of the calculation.

In conclusion, we have shown using quantitative experiments and analytical calculations
that the bifurcation in a QBO model is either supercritical or subcritical, depending on the
dominant dissipative mechanism. A similar approach can be used to check that the transition
to the atmospheric QBO described by Global Circulation Models also occurs through a Hopf
bifurcation and to determine whether its super or sub-criticality also depends on the dominant
dissipation mechanism. Finding the nature of the bifurcation can explain most qualitative
features of the QBO. In particular, it shows why the phenomenon is not strongly a�ected
by the asymmetry between waves traveling eastward and westward. In the astrophysical
context, this approach could be applied to the QBO-like oscillations in atmospheres of planets
such as Saturn [6] or Jupiter [11] or in the interior of stars [8, 24].

We gratefully acknowledge J. da Silva Quintas, C. Goncalves, E. Nicolau, C. Herrmann,
and L. Bonnet for their technical support. This work has been supported by the Agence
nationale de la recherche (Grants No. ANR-12-BS04-0005 and No. ANR-17-CE30-0004).
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