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Nonlinear saturation of the large scale ow in a laboratory model of the quasibiennial oscillation

The quasi-biennial oscillation (QBO) is the nearly periodic reversal of the large scale ow generated by internal waves in the equatorial stratosphere. Using a laboratory model experiment, we study the instability that generates the QBO and investigate its nonlinear regime. We report the rst quantitative measurements of the nonlinearly saturated velocity of the ow. We show that the QBO is generated by a bifurcation that is either supercritical or subcritical depending on the dominant dissipative process. This is conrmed by a nonlinear analysis in the vicinity of the instability threshold. 47.20.Ky, 47.55.Hd 

The quasi-biennial oscillation (QBO) is the nearly periodic reversal of the wind in the lower equatorial stratosphere. The period of the oscillation is 28 months on average, and is not locked to the yearly seasonal forcing. This wind has a signicant inuence on hurricanes in North America [START_REF] Baldwin | The quasi-biennial oscillation[END_REF], and aects winter conditions in Europe [START_REF] Marshall | Impact of the qbo on surface winter climate[END_REF]. This wind is known to be forced by atmospheric waves, in particular internal gravity waves that propagate in the stratosphere [START_REF] Michael | Experimental study of internal wave generation by convection in water[END_REF][START_REF] Dauxois | Instabilities of internal gravity wave beams[END_REF][START_REF] Sutherland | Internal Gravity Waves[END_REF][START_REF] Bühler | Waves and Mean ows[END_REF][START_REF] Lott | A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere[END_REF]. These waves generate a forcing at zero frequency and zero wave vector through the quadratic nonlinearities of the Navier-Stokes equation and therefore drive a ow at the largest scale of the system (for other experimental setups showing this phenomenon, see [START_REF] King | Tidal ow over three-dimensional topography in a stratied uid[END_REF][START_REF] Bordes | Experimental observation of a strong mean ow induced by internal gravity waves[END_REF]). This is an example of a large scale coherent eld driven by small scale waves, other examples being acoustic streaming [START_REF] Lighthill | Acoustic streaming[END_REF], mean ows generated by pattern-forming instabilities [START_REF] Davey | Nonlinear evolution of 3-dimensional disturbances in plane poiseuille ow[END_REF][START_REF] Siggia | Pattern selection in rayleigh-benard convection near threshold[END_REF] mean-eld dynamo due to helical waves of velocity [START_REF] Moatt | Magnetic Field Generation in Electrically Conducting Fluids[END_REF], to quote a few. This large scale ow displays reversals, as also observed for other types of large scale elds driven on a turbulent background [START_REF] Gallet | Reversals of a large-scale eld generated over a turbulent background[END_REF] such as the magnetic eld of the Earth or the Sun.

The mechanism responsible for the reversals was rst identied by Lindzen and Holton [START_REF] Lindzen | A theory of the quasi-biennial oscillation[END_REF] and a minimal model was proposed by Plumb [START_REF] Plumb | The interaction of two internal waves with the mean ow: implications for the theory of the quasi-biennial oscillations[END_REF]. It considers two internal waves propagating in opposite direction azimuthally and in the same direction vertically. One of these waves forces a mean ow eastward and the other one westward. The competition between these two waves results in a mean ow prole that changes sign at a given altitude. The position where the mean ow changes sign drifts towards the location from where the waves are emitted, which leads to a periodic reversal of the mean ow. This mechanism was conrmed experimentally [START_REF] Plumb | The instability of a forced standing wave in a viscous stratied uid : A laboratory analogue of the quasi-biennial oscillation[END_REF][START_REF] Otobe | Visualization and WKB analysis of the internal gravity wave in the QBO experiment[END_REF] and numerically [START_REF] Wedi | Direct numerical simulations of the Plumb-McEwan laboratory analog of the QBO[END_REF]. The mean ow is oscillatory and its period is very large compared to the period of the wave, so that the phase of the mean ow oscillation is not locked to the one of the waves. The generation of a mean ow and its periodic reversals were observed experimentally but no quantitative measurement of the amplitude of the mean ow could be achieved and the type of the bifurcation remained unknown. Yoden and Holton [START_REF] Yoden | A new look at equatorial quasi-biennial oscillation models[END_REF] have shown that the reversals are generated by a supercritical Hopf bifurcation by numerically integrating Plumb's model when the dissipation of the mean ow is only due to bulk viscous eects. We are not aware of analytical predictions on the supercritical or subcritical nature of the bifurcation.

Yet, knowing the nature of the bifurcation of the instability which leads to the QBO is important to predict the possible scenarios if the forcing is modied, for example due to global warming. This is not only an academic exercise: an anomaly of the QBO has been recently measured [START_REF] Newman | The anomalous change in the QBO in 2015-2016[END_REF]. In addition, determining the nature of the bifurcation is important for general circulation models in order to obtain the correct sensitivity to parameter changes.

In this letter, we investigate the nature of the bifurcation in a laboratory analogue of the QBO and we understand our results by analytically solving the model of Plumb and McEvan. A schematic view of the experimental setup is shown in gure 1 and has been described in detail in [START_REF] Semin | Generation of a mean ow by an internal wave[END_REF]. It is made of two transparent concentric vertical cylinders. The outer diameter of the inner cylinder is 365 mm, the inner diameter of the outer cylinder is 600 mm, and the height is H = 410 mm. The gap h between these two cylinders is lled with a linearly density-stratied solution of NaCl or MgCl 2 in water. The density prole is obtained from conductivity measurements. The stratication is measured by the BruntVäisälä frequency, N = -(g/ρ 0 ) dρ 0 /dz, where g is the acceleration of gravity, ρ 0 is the background density and z is the vertical axis. The typical value of N is 1.5 -2.2 Hz, the highest values been obtained using MgCl 2 .

The uid motion is forced using 16 silicone membranes which are in contact with the top of the uid and can move up and down in a nearly sinusoidal manner. Two neighboring membranes are driven by motors in opposition of phase so that the forcing is a standing wave whose azimuthal wavelength λ x = 200 mm is twice the curvilinear distance between 2 motors. We note M the amplitude of the motion of the membranes and we report here on measurements performed with a forcing period T f = 15 s.

The uid velocity is measured using particle image velocimetry (PIV) [START_REF] Taylor | Long-duration time-resolved PIV to study unsteady aerodynamics[END_REF]. To wit, the uid is seeded with particles, whose density range is similar to the one of the uid, so that particles can be found in the whole liquid (see supplemental material I and [START_REF] Semin | Generation of a mean ow by an internal wave[END_REF]). The wave (oscillation at the forcing angular frequency ω) and the mean ow are deduced from these measurements. The mean ow is azimuthal and only depends on the height z, except close to the boundaries.

To investigate the bifurcation, the amplitude of the forcing is decreased step by step. We typically wait 8000 s for each value. The amplitude of oscillation of the mean ow is obtained by a t using a sine function during the second half of each plateau of forcing. We rst describe the results obtained for high density gradient. For N = 2.16 Hz, a spacetime diagram of the mean ow is displayed in gure 2. Since the rst value of the forcing amplitude is high (M = 14.5 mm), a mean ow is generated. During its growth, the mean ow is oscillating, and then reaches an oscillating steady state with a period of order 3000 s much larger than the period of the wave (T f = 15 s).

We emphasize that we can keep the amplitude of oscillation constant on more than 20 periods whereas previous experiments did not report more than 2 periods. This results from a small pumping used to maintain the stratication beneath the membranes (see supplemental material II).

At xed time, we observe that the ow changes direction at a given height. The point of zero mean ow moves upwards with time. This is in agreement with the behavior of the atmospheric QBO [START_REF] Baldwin | The quasi-biennial oscillation[END_REF], where this point moves downwards: in the present experiment the waves are forced from the top and in the atmosphere the waves are forced below the layer of interest so that in both cases, the point of zero mean ow drifts toward the source of the waves.

When the amplitude of the forcing is decreased below a given value (here M c = 11 mm), the mean ow vanishes. This shows that there is a threshold in forcing amplitude below which the zero mean ow is stable.

To better visualize the time variation of the mean ow, we show it at a given height as as a function of time in gure 3a. Recordings at other heights are similar. We observe that the mean ow decreases smoothly when decreasing the forcing amplitude. The square of the amplitude A of the mean ow (averaged in height) as a function of the forcing amplitude is shown in gure 4. The experimental data are well-tted by a straight line which crosses the x-axis at a value in agreement with the threshold value M c , thus showing that A ∝ √ M -M c . The oscillation period varies with M from T 2200 s for M = 14.5 mm to T 2900 s slightly above M c . These two features characterize a supercritical Hopf bifurcation, i.e. the transition to an oscillatory regime with nite frequency at onset and continuously increasing amplitude of oscillation from zero. This transition to the QBO is observed when the BruntVäisälä frequency is large enough, here N = 2.16 Hz. Results at a lower value of the BruntVäisälä frequency are shown in gure 3b for N = 1.54 Hz, where the forcing is changed in the same manner as in gure 3a. Compared to the results at large N , we observe the following. (i) the time series contains more harmonics (see insets of gure 3). (ii) The decrease of the mean ow with the forcing amplitude is much sharper. A plot similar to the one of gure 4 (not shown) displays a discontinuous jump of the amplitude to zero. (iii) In some experiments, the system remains in the zero mean ow state for long duration (we observed values up to 2 × 10 4 s 5.5h for M = 13.5 mm) and then suddenly transitions to an oscillation of large amplitude. All these observations show that at low value of N the bifurcation is subcritical.

For the sake of completeness we add that the period of the oscillation is of order 4000 s and decreases with M . Earlier works used NaCl and water as a uid and it is likely that the parameters used were in the regime of subcritical bifurcation. Subcriticality, together with the weakening of the stratication due to mixing, explain the diculty in achieving reproducible and quantitative measurements of the mean ow.

We have shown experimentally that a change of N changes the nature of the bifurcation. In the following, we will show using theoretical considerations that this change is due to a modication of the dominant dissipative term for the mean ow. We use the model proposed by Plumb and McEwan [20]. This model has been shown to describe quantitatively the generation of a mean ow by a single progressive internal wave in the setup used here (see Semin et al. [START_REF] Semin | Generation of a mean ow by an internal wave[END_REF]).

The equation for the dimensionless azimuthal mean ow ũ(z, t) is

∂ ũ ∂ t = - 2 n=1 ∂ Fn ∂ z + Λ 1 ∂ 2 ũ ∂ z2 -Λ 2 ũ. ( 1 
)
Fn are the uxes of impulsion per unit mass due to the waves

Fn (z, t) = exp - z 0 1 (ũ -cn ) 4 dz (2) 
where c1 = -c2 = 1 give the sign of the horizontal phase velocity of the wave. The amplitude of the ux at z = 0 is 1, which is a way to make the equation dimensionless.

The parameters of the model are related to the experimental parameters according to

c = ω k x , d = N γ k x c 2 + N 3 ν k x c 4 -1 z = z d , ũ = u c , (3) 
where ν = 10 -6 m 2 • s -1 is the kinematic viscosity of the uid and γ = 10 -3 s -1 is the damping rate due to friction at the cylinder walls. The dimensionless control parameters are

Λ 1 = νc F 0 d , Λ 2 = γcd F 0 (4) 
where F 0 is the dimensional wave ux. It is proportional to M 2 and depends on properties of the membranes [START_REF] Plumb | The instability of a forced standing wave in a viscous stratied uid : A laboratory analogue of the quasi-biennial oscillation[END_REF]. 1/Λ i are Reynolds numbers associated to dierent dissipative processes. We note that Λ 1 /Λ 2 measures the ratio between viscous dissipation in the bulk and friction at the wall. If we do not take into account the height H and the gap h, six parameters, N, ω, c, F 0 , ν, γ are involved in the experiment with two units of length and time, therefore leading to four dimensionless numbers. Plumb's model is based on the smallness of ω/N and c/(N d) and therefore involves two remaining dimensionless parameters Λ 1 and Λ 2 . The height H can be discarded because the damping length d of the waves is smaller than H and h is partly taken into account by the value of the friction γ. We note from the values reported in Table 1 that both the experiment and the stratosphere involve fairly small values of ω/N and c/(N d) and that the Reynolds number 1/Λ 1 is in the same range provided that a turbulent viscosity of the order of 0.1 m 2 • s -1 is chosen for the stratosphere. This is not too surprising since the oscillation of the mean ow is not chaotic and therefore not far from its bifurcation threshold in both cases. Note however that the dissipation length d involved in Λ 1 results from dierent dissipation mechanisms, because heat diusivity and radiative damping are involved in the case of the stratosphere. However, in both cases, cd/F 0 gives a good order of magnitude for the period of the ow reversals [START_REF] Plumb | The interaction of two internal waves with the mean ow: implications for the theory of the quasi-biennial oscillations[END_REF]. We consider the model given by equations ( 1) and ( 2) in a semi-innite domain (z ∈ [0, +∞[). The boundary conditions are vanishing ũ at innity and at the forcing boundary z = 0 (no-slip). The linear stability analysis shows that the mean ow is generated through a Hopf bifurcation with a normal mode given by integrals of Bessel functions. Weakly nonlinear analysis above threshold then gives the sign of the coecient of the cubic term in the amplitude equation for the mean ow. This predicts the super-sub-criticality of the bifurcation. In addition, the form of the amplitude equation is not aected by a possible asymmetry between the counter propagating waves, because it is constrained by translational invariance in time. Details of these calculations are presented in supplemental material (III). The parameter space is shown in gure 5. The solution ũ = 0 is linearly unstable at low values of Λ 1 and Λ 2 , and linearly stable for large values. The bifurcation is supercritical for small values of Λ 2 , and subcritical for large values. The result for small values of Λ 2 is consistent with the one of Yoden and Holton [START_REF] Yoden | A new look at equatorial quasi-biennial oscillation models[END_REF], who numerically observed a supercritical bifurcation when Λ 2 = 0. These two regimes are separated by a tricritical point located at Λ 1 1.87 and Λ 2 0.12. In the experiment, a change of M leaves Λ 1 /Λ 2 constant. The experimentally observed behaviors are in agreement with the results of the calculation.

In conclusion, we have shown using quantitative experiments and analytical calculations that the bifurcation in a QBO model is either supercritical or subcritical, depending on the dominant dissipative mechanism. A similar approach can be used to check that the transition to the atmospheric QBO described by Global Circulation Models also occurs through a Hopf bifurcation and to determine whether its super or sub-criticality also depends on the dominant dissipation mechanism. Finding the nature of the bifurcation can explain most qualitative features of the QBO. In particular, it shows why the phenomenon is not strongly aected by the asymmetry between waves traveling eastward and westward. In the astrophysical context, this approach could be applied to the QBO-like oscillations in atmospheres of planets such as Saturn [START_REF] Fouchet | An equatorial oscillation in Saturn's middle atmosphere[END_REF] or Jupiter [START_REF] Li | A mechanistic model of the quasi-quadrennial oscillation in Jupiter's stratosphere[END_REF] or in the interior of stars [START_REF] Kim | Gravity wave-driven ows in the solar tacholine[END_REF][START_REF] Talon | Angular momentum extraction by gravity waves in the sun[END_REF].

We gratefully acknowledge J. da Silva Quintas, C. Goncalves, E. Nicolau, C. Herrmann, and L. Bonnet for their technical support. This work has been supported by the Agence nationale de la recherche (Grants No. ANR-12-BS04-0005 and No. ANR-17-CE30-0004).

Figure 1 :

 1 Figure 1: Schematic view of the experimental setup.

Figure 2 :

 2 Figure 2: Space-time diagram of the mean ow. The color code indicates the velocity in mm • s -1 . N = 2.16 Hz (MgCl 2 ) and T f = 15 s. M changes every 8 000 s: M = 14.5, 14, 13.5, 13, 12.5, 12, 11.5, 10.5, 10 mm.

Figure 3 :

 3 Figure 3: Mean ow as a function of time, for two dierent values of N , at height h = 376 mm. M changes every 8 000 s (shown by vertical lines); M = 14.5, 14, 13.5, 13, 12.5, 12, 11.5, 10.5, 10 mm. Inserts: details. ( 3a): N = 2.16 Hz (MgCl 2 ). (3b): N = 1.55 Hz (NaCl).
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 24 Figure 4: Square of the mean ow amplitude, A 2 , as a function of M (•). A is deduced from sine ts of the data of gure 2. Best t (full line). N = 2.16 Hz (MgCl 2 ).
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Figure 5 :

 5 Figure 5: Parameter space displaying the transition between stable (no mean ow) and unstable regions. Instability threshold for large N (MgCl 2 ) and small N (NaCl). Supercritical ( ), subcritical (•) and tricritical ( ) transitions.