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Abstract. In the context of post-hoc interpretability, this paper ad-
dresses the task of explaining the prediction of a classifier, considering
the case where no information is available, neither on the classifier it-
self, nor on the processed data (neither the training nor the test data).
It proposes an inverse classification approach whose principle consists
in determining the minimal changes needed to alter a prediction: in an
instance-based framework, given a data point whose classification must
be explained, the proposed method consists in identifying a close neigh-
bor classified differently, where the closeness definition integrates a spar-
sity constraint. This principle is implemented using observation gener-
ation in the Growing Spheres algorithm. Experimental results on two
datasets illustrate the relevance of the proposed approach that can be
used to gain knowledge about the classifier.

Keywords: post-hoc interpretability, comparison-based, inverse classification,
local explanation.

1 Introduction

Making machine learning systems interpretable, i.e. explaining to the user the
decision made by a classifier, can take multiple forms [6, 7], depending on the in-
tuition of what ’interpretable’ means and the way the explanation is expressed. A
basic characterisation distinguishes between in-model and post-hoc approaches:
the former modifies the learning process so as to obtain, by design, understand-
able classifiers. Among these, many methods have been proposed in the frame-
work of fuzzy systems, see e.g. [2, 3]: the use of fuzzy logic favors a fluid interface
to human beings, although raising many challenges.

Post-hoc approaches build a posteriori explainer systems, using the results
of a classifier to interpret its predictions for particular observations.

They can be further distinguished depending on the inputs they require and
on the forms of explanation they provide: some methods exploit the classifier



type [5, 12] or the training set [13, 1]. Regarding the outputs, some methods
offer visual [15] or linguistic [9, 12] explanations, others use observations as ex-
planations, in an instance-based framework [22, 19, 13]. Some other differences
relate to the very definition of interpretability: for instance, feature importance
analyzes [4, 21] identify the attributes that play a major role on the classifier
prediction, inverse classification [18, 5] identify the minimal change that would
change the prediction.

In this context, this paper proposes a method that can be characterised
as (i) a post-hoc approach, i.e. explaining individual predictions of a classifier,
(ii) in a model- and data-agnostic framework, i.e. considering that no information
about the classifier to be explained nor about the training data is made available
to the user, (iii) within the instance-based paradigm, i.e. explaining through
comparison, (iv) applying an inverse classification principle.

More precisely, the principle of the proposed approach to explain the pre-
diction for a given observation consists in exhibiting a close point classified
differently: the reasons for the obtained prediction are characterised through
the production of this neighbor counter-example. The closeness constraint inte-
grates a sparsity constraint, to match the interpretability requirement that the
explanation need to be simple and easy to understand for the user.

The paper is organised as follows: Section 2 presents related works in the
framework of post-hoc interpretability, comparison-based approaches and inverse
classification. Section 3 details the principle and formalisation of the proposed
approach, as well as the Growing Spheres algorithm that implements this prin-
ciple. Section 4 illustrates the results it obtains in two real-world applications.

2 Related Works

Post-hoc interpretability approaches aim at explaining the behavior of a classifier
around particular observations to let the user understand their associated pre-
dictions, generally disregarding the actual learning process. They have received
a lot of interest recently (see e.g. [14]), especially as black-box models such as
deep neural networks and ensemble models are being more and more used for
classification despite their complexity.

The variety of existing methods comes from the lack of consensus regarding
the definition, and a fortiori the formalization, of the very notion of interpretabil-
ity. Depending on the task performed by the classifier and the needs of the end-
user, explaining a result can take multiple forms. Interpretability approaches
rely on the meeting the following objectives to design explanations:

1. The explanations should be an accurate representation of what the classifier
is doing.

2. The explanations should be understandably read by the user.

This section briefly discusses the hypotheses that are made about available
inputs and details two categories especially related to the proposed method:
instance-based approaches and inverse classification.



Available Inputs To illustrate this discussion, let us consider the case of a
physician using a diagnostic tool. It is natural to speculate that (s)he does not
have any information about the machine learning model used to make disease
predictions, neither may (s)he have any idea about what patients were used to
train it. This raises the question of what knowledge (about the machine learning
model and the training or other data) an end-user has, and hence what inputs
a post-hoc explainer should use.

Several approaches rely specifically on the knowledge of the algorithm used
to make predictions, taking advantage of the classifier structure to generate ex-
planations [5, 12]. However, in other cases, no information about the classifier is
available (the model might be only accessible as an oracle for instance): model-
agnostic interpretability methods that can explain predictions without making
any hypotheses on the classifier are then required [4, 1, 21]. These approaches,
sometimes called sensitivity analyzes, generally try to analyze how the classifier
locally reacts to small perturbations: they for instance perform local approxima-
tion of the classifier decision boundary, e.g. using linear functions (LIME [21])
or Parzen window-based gradients [4].

Instance-based Approaches Instance-based approaches constitute a family
of post-hoc methods that bring interpretability by comparing an observation to
relevant neighbors [22, 13, 1]. They use other observations, from the train set,
from the test set or generated ones as explanations to bring transparency to a
prediction of a black-box classifier.

One of the motivations for instance-based approaches lies in the fact that
in some cases the two aforementioned objectives 1 and 2 are contradictory and
cannot be both reached in a satisfying way. In these complex situations, finding
examples is an easier and more accurate way to describe the classifier behavior
than trying to force a specific inappropriate explanation representation, which
would result in incomplete, useless or misleading explanations for the user.

As an illustration, the Parzen window-based approach [4] is shown to not
succeed well in providing explanations for individual predictions that are at the
boundaries of the training data, giving explanation vectors (gradients) actually
pointing in the (wrong) opposite direction from the decision boundary. In such a
case, seeing this problem as an instance-based one, and more particularly using
comparisons with observations from the other class, would probably make more
sense and give more useful insights.

Inverse Classification Inverse classification (see e.g. [16]) is a machine learning
task that aims at identifying the minimal changes that can be applied to an
observation to as to modify its associated prediction: it has been introduced
as an approach to perform sensitivity analysis [18] and later formulated as an
interpretability approach [5]. In this view, it belongs to the post-hoc framework
and approaches can be categorised using the same characteristics, in particular
regarding the assumptions about the available inputs: they can for instance use
specific knowledge of the model [5, 16] or the training data [18].



Existing approaches for inverse classification consider modifications on the
data features, making them related to the feature importance family of meth-
ods. In the specific case of text classification, where texts are represented by
possibly weighted bags of words, a related approach studies the terms whose re-
moval would lead to modify the observation classification [19], whereas removing
features cannot be considered in a general setting.

It can be underlined that inverse classification can also be related to the task
of adversarial learning [23], which aims at ’fooling’ a classifier by generating
close variations of observations to change their predictions. However, adversarial
learning focuses on the classifier robustness and exploits its sensitivity.

3 Proposed Approach

This section presents the principles and formalisation of the proposed approach,
as well as its implementation in the Growing Spheres algorithm.

3.1 Motivations and Characteristics of the Proposed Approach

Motivations In the light of the axes of discussion presented in the previous
section, the justifications for the proposed approach are the following:

First regarding the available inputs, we consider a model- and data-agnostic
approach, not requiring any knowledge from the user about the model nor pro-
cessed data. The only hypotheses we make is that the numerical representation
of the data as a feature vector is known, as well as the meaning of the attributes,
and that the user can use the classifier to make predictions at will. These weak
assumptions seem realistic: for instance, in the aforementioned example of a
physician using a diagnostic tool, (s)he is supposed to know what features the
system requires to be run, regardless whether the system used performs attribute
rescaling or combinations (e.g. through PCA).

Secondly, we consider the instance-based framework and add to the motiva-
tions detailed in the previous section the strong justification provided by cogni-
tive sciences of learning through examples [24, 20, 10]. For instance in [24], it is
shown through experiments that generated examples help students ’see’ abstract
concepts that they had trouble understanding with more formal explanations.

Finally, we propose to apply this paradigm to the task of inverse classification
in a hybrid approach to take advantage of their respective benefits.

It is important to note that our primary goal here is to give insights about
the classifier, not the reality it is approximating. This approach thus aims at
understanding a prediction regardless of whether the classifier is right or wrong,
or of the distribution of the original data.

Principle Given a black-box classifier and an observation, the explanation we
propose to provide is based on a data point, in the light of instance-based in-
terpretability; furthermore, in the light of inverse classification, this data point



must belong to the other class. The final explanation is expressed in the form of
the displacement vector between the observation and the identified data point.

Following the dual objective of interpretability mentioned in Section 2, the
explaining data point must additionally be close to the considered observation.
The closeness definition, discussed in the next section, is a key factor for the
relevance of the proposed method.

3.2 Formalisation: Proposed Cost Function

We use the following classical notation: we consider a binary classifier f mapping
the input space X of dimension d to an output space Y = {0, 1} (extension to
multiclass classification is straightforward), and suppose that no information
is available about this classifier. Let x = (xi)i ∈ X be the observation to be
interpreted and f(x) ∈ Y its associated prediction. The goal of the proposed
approach is to explain x through another observation e ∈ X , belonging to another
class, i.e. such that f(e) 6= f(x). The final form of explanation is the difference
vector e− x.

For simplification purposes, in the following we call ally an observation be-
longing to the same class as x by the classifier, and enemy if it is classified
differently.

Recalling objective 1 mentioned earlier, the explanation e − x should be an
accurate representation of what the classifier is doing. This is why we decide to
transform this problem into a minimization problem by defining the function
c : X × X → R+ such that c(x, e) is the cost of moving from observation x to
enemy e.

Using this notation, we focus on solving the following minimization problem:

e∗ = arg min
e∈X

{c(x, e) | f(e) 6= f(x)} (1)

with c(x, e) = ||x− e||2 + γ||x− e||0 (2)

where ||.||2 the Euclidean norm, ||.||0 the l0 norm defined as the number of
non-zero coordinates, ||e − x||0 =

∑
i≤d 1xi 6=ei , and γ ∈ R+ a hyperparameter

weighting the two terms.
Indeed, looking up to [22], we choose to use the l2 norm of the vector e− x

as a component of the cost function to measure the proximity between e and x.
However, recalling objective 2, we need to make sure that this cost function
guarantees a final explanation that can be easily read by the user. In this regard,
we consider that users intuitively find explanations of small dimension to be
simpler. Hence, we decide to integrate vector sparsity, measured by the l0 norm,
as another component of the cost function c and combine it with the l2 norm as
a weighted average.

3.3 The Growing Spheres Algorithm

Due to the cost function c being discontinuous and the hypotheses made (black-
box classifier and no existing data) solving problem defined in Equation (1)



Fig. 1. Illustration of Growing Spheres: The red circle represents the observation to
interprete, the plus signs the generated observations (blue for allies, black for ennemies).
The white plus is the final enemy e∗ used to generate explanations.

is difficult. Hence, we choose to solve sequentially the two components of the
cost function and propose Growing Spheres, a two-step heuristic approach that
approximates the solution of this problem. These two steps, namely Generation
and Feature Selection, are described in turn below and illustrated in Figure 1.

Generation The instance generation, detailed in Algorithm 1, is performed
without relying on existing data. Thus, for the considered observation x, we
ignore in which direction the closest classifier boundary might be. A greedy
approach to find the closest enemy is to explore the input space X by generating
instances in all possible directions further and further until the decision boundary
of the classifier is crossed, thus minimizing the l2-component of function c. More
precisely, the algorithm generates observations in the feature space in l2-spherical
layers around x until an enemy is found.

Formally, given two positive numbers a0 and a1, we define a (a0, a1)-spherical
layer SL around x as: SL(x, a0, a1) = {z ∈ X : a0 ≤ ||x − z||2 ≤ a1}. To
generate observations following a uniform distribution over these subspaces, we
use the YPHL algorithm [11] which generates observations uniformly distributed
over the surface of the unit sphere. We then draw U[a0,a1]-distributed values and
use them to rescale the distances between the generated observations and x. As a
result, we obtain observations that are uniformly distributed over SL(x, a0, a1).

The first step of the algorithm consists in generating uniformly n observations
in the l2-ball of radius η and center x, which corresponds to SL(x, 0, η) (line 1
of Algorithm 1), with n and η hyperparameters of the algorithm.

In case this initial generation step already contains ennemies, we need to
make sure that the algorithm did not miss the closest decision boundary. This
is done by updating the value of the initial radius: η ← η/2 and repeating the
initial step until no enemy is found in the initial ball SL(x, 0, η) (lines 2 to 5).

However, if no enemy is found in SL(x, 0, η), we update a0 and a1 using η,
generate over SL(x, a0, a1) and repeat this process until the first enemy is found
(as detailed in lines 6 to 11).



Algorithm 1 Growing Spheres Generation

Require: f : X → {−1; 1} a binary classifier
Require: x ∈ X an observation to be interpreted
Require: Hyperparameters: η, n
Ensure: enemy e
1: Generate (zi)i≤n in SL(x, 0, η) following a uniform distribution
2: while ∃ e ∈ (zi)i≤n | f(e) 6= f(x) do
3: η = η/2
4: Generate (zi)i≤n in SL(x, 0, η) following a uniform distribution
5: end while
6: Set a0 = η, a1 = 2η
7: while 6 ∃ e ∈ (zi)i≤n | f(e) 6= f(x) do
8: Generate (zi)i≤n uniformly in SL(x, a0, a1)
9: a0 = a1

10: a1 = a1 + η
11: end while
12: Return e, the l2-closest generated enemy from x

In the end, Algorithm 1 returns the l2-closest generated enemy e from the
observation to be interpreted x (as represented by the black plus in Figure 1).
Once this is done, we focus on making the associated explanation as easy to
understand as possible through feature selection.

Feature Selection In the second step, in order to make the difference vector
of the closest enemy sparse, we simplify it by reducing the number of features
used when moving from x to e (thus minimizing the l0 component of the cost
function c(x, e) and generating the final solution e∗), as explained in the Feature
Selection part. To do so, we consider again a naive heuristic based on the idea
that the smallest coordinates of e − x might be less relevant locally regarding
the classifier decision boundary and should thus be the first ones to be ignored.
Thus, the algorithm tries to align as many coordinates of e with x as possible,
as long as the predicted class does not change. The proposed feature selection
algorithm we use is detailed in Algorithm 2.

The final explanation provided to interprete the observation x and its asso-
ciated prediction is the vector x − e∗, with e∗ the final enemy identified by the
algorithms (represented by the white plus in Figure 1).

4 Experimental Results

Although many numerical criteria for interpretability have been proposed (see
e.g. [9]), there is no consensus about a global measure for the quality of an
explanation. Evaluations based on user satisfaction [4, 21, 7], although ideal, also
depend on the global task the explanations are integrated to and require difficult
definitions of experimental protocol. Moreover, the variety of interpretability



Algorithm 2 Growing Spheres Feature Selection

Require: f : X → {−1; 1} a binary classifier
Require: x ∈ X the observation to be interpreted
Require: e ∈ X | f(e) 6= f(x) the solution of Algorithm 1
Ensure: enemy e∗

Set e′ = e
2: while f(e′) 6= f(x) do

e∗ = e′

4: i = arg min
j∈[1:d], e′j 6=xj

|e′j − xj |

Update e′i = xi
6: end while

Return e∗

methods (see Sections 1 and 2), both in terms of required inputs and of result
forms, makes it difficult to compare them.

As a preliminary experiment, this section presents the results obtained when
applying the proposed approach to news and image classification. It illustrates
the explanations provided by Growing Spheres and shows, at a higher level, how
a user can exploit them to derive knowledge about the characteristics of the
considered classifier, including its possible weaknesses. It also examines whether
the explanations can be easily read by a user by measuring the sparsity.

4.1 Prediction of News Popularity

Experimental Protocol The news popularity dataset [8] is made of 39644
online articles from website Mashable, described by 58 numerical features. The
latter encode information about the format and content of the articles, they
for instance include the number of words in the title, a measure of the content
subjectivity or the popularity of the used keywords. The binary classification
task aims at predicting whether an article is popular or not, where popularity is
defined as having been shared more than 1400 times.

We apply Growing Spheres, to explain the predictions of a classifier. Although
it is of no importance for the proposed approach, the experimental protocol
consisted in training a random forest (RF) on 70% of the data, after applying a
grid search to select the best hyperparameters of RF (number of trees). Tested
on the rest of the data, the RF achieved 0.7 AUC and 0.69 accuracy.

Regarding Growing Spheres, we use γ = 1 to define the cost function c (see
Eq. 2) and set the hyperparameters of Algorithm 1 to η = 0.001 and n = 10000.

The hypothesis that no information is available about the classifier can be
illustrated considering an online journalist writing for Mashable, who would like
to predict whether the articles (s)he wrote are going to be popular or not and
understand why. The journalist uses a black-box machine learning tool to make
the prediction, and has hence no idea about what algorithm was used nor what
data was used to train it. The user thus decides to use Growing Spheres to
generate explanations for the prediction.



Article/class Feature Move

A1 Min. shares of referenced articles in Mashable +2016
Not Popular Avg. keyword (max. shares) +913

A2 Avg. keyword (max. shares) -911
Popular Min. shares of referenced articles in Mashable -3557

Rate of positive words (content) -0.01
Table 1. Output example of Growing Spheres

Illustrative Examples We consider two observations from the test set: Article
A1, entitled ’The White House is Looking for a Few Good Coders’, that is
predicted to be not popular by the considered classifier, and article A2, entitled
’8 Vendors You Didn’t Know Accepted Bitcoins’, predicted to be popular. The
explanation vector given by Growing Spheres are shown in Table 1.

For article A1, among the articles it refers, the least popular of them would
need to have 2016 more shares and the most popular article associated to its
keywords would need to have 913 more shares in order to change the prediction.
In other words, article A1 would be predicted to be popular by the considered
classifier if the references and the keywords it uses were more popular themselves.

As for article A2, its associated prediction can be explained by three charac-
teristics: to be predicted as unpopular, the same features relevant for A1 would
need to be reduced; moreover, the feature ’rate of positive words in the content’
would need to be reduced by 0.01. This means that a slightly less positive writing
angle would contribute to have article A2 predicted as being not popular.

Sparsity Evaluation In order to check whether the proposed approach fulfills
its goal of finding explanations that can be easily understood by the user, we
evaluate the global sparsity of the generated explanations. We measure sparsity
as the number of non-zero coordinates of the explanation vector ||x− e∗||0.

Figure 2 shows the smoothed cumulative distribution of this value for all
11893 test data points. We observe that the maximum value over the whole test
set is 20, meaning that each observation of the test dataset only needs to change
20 or less among the 58 available coordinates to cross the decision boundary.
Moreover, 80% of them only need to move in 10 directions or less, that is 17% of
the features only. This shows that the proposed method indeed achieves sparsity
in order to make explanations more readable. It is important to note that this
does not mean that only 20 features are needed to explain all the observations,
since nothing guarantees different explanations use the same features.

4.2 Applications to Digit Classification

Experimental Protocol We now use the MNIST handwritten digits database
[17] and apply Growing Spheres to the binary classification problem of recog-
nizing the digits 8 and 9 vs each other. The dataset contains 60000 instances
of 784 features (28 by 28 pictures of digits). We use a support vector machine



Fig. 2. Sparsity distribution over the news test dataset. Reading: ’40% of the observa-
tions of the test dataset have explanations that use 5 features or less’.

Fig. 3. Growing Spheres output examples. From left to right: example of the original
instance x, closest enemy found e∗, explanation vector x− e∗. First for an 8, then for
a 9. A white pixel indicates a 0 value, black a 1.

classifier with a RBF kernel and parameter C = 15. Once again, the choice of
this model is arbitrary, since Growing Spheres is model-agnostic. We train the
model on 50% of the data and test it on the rest (0.98 AUC score). As in the
first experiment, we use γ = 1, η = 0.001 and n = 10000.

Illustrative Example Given a picture of an 8, our goal is to understand,
according to the classifier, why it is predicted to be an 8 (and reciprocally).
Our intuition would be that closing the bottom loop of a 9 should be the most
influential change needed to make it become an 8, and hence features provoking
a class change should include pixels found in the bottom-left area of the digits.
Output examples to interprete an 8 and a 9 predictions are shown in Figure 3.

The first thing we observe is that the closest ennemies found by Growing
Spheres in both cases are not proper 9 and 8 digits respectively. In fact, a human
observer would probably still identify the generated enemies as noised versions
of the original digits: (i) the pixels involved in the move vector are not all located
around the digit but all accross the picture, and (ii) the pixels located in the
bottom-left area of the digits do not form a line, and are not ’dark enough’.

This is consistent with the principle of our proposed approach: as mentioned
in Section 3, Growing Spheres is trying to understand the classifier decision,
not the reality it is approximating. In this case, the fact that the classifier ap-
parently considers these pixels to be influential the classification of these digits



could be an evidence of the learned boundary inaccuracy. Contrary to feature
importances, these pixels are not an indication of the contribution of each pixel
to the prediction, but rather of the shape of the local decision bourder.

5 Conclusion and Future Works

The proposed post-hoc interpretability approach Growing Spheres provides ex-
planations of a single prediction through the comparison of its considered ob-
servation with its closest enemy. In the case where no information is available,
neither about the classifier nor about the data, it offers an instance-based in-
verse classification tool taking into account the objective of sparse explanations.
Preliminary experiments illustrate its relevance for explaining predictions and
providing insights about the classifier.

Ongoing works aim at experimentally studying the influence of the algorithm
hyperarameters and validating the relevance of the explanations it provides in the
framework of real-world applications. Another perspective consists in relaxing
some of the strong constraints Growing Spheres relies on, in particular so as
to cases where some information about the data is available: any knowledge
about the data distribution might help to guide the generation process, thus for
instance minimizing the risk of exploring irrelevant areas of the input space.
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