P. Nissen, J. Hansen, N. Ban, P. B. Moore, and T. A. Steitz, The structural basis of ribosome activity in peptide bond synthesis, Science, vol.289, pp.920-930, 2000.

T. A. Steitz and P. B. Moore, RNA, the first macromolecular catalyst: the ribosome is a ribozyme, Trends Biochem. Sci, vol.28, pp.411-418, 2003.

A. Ben-shem, L. Jenner, G. Yusupova, and M. Yusupov, Crystal structure of the eukaryotic ribosome, Science, vol.330, pp.1203-1209, 2010.

A. Ben-shem, N. Garreau-de-loubresse, S. Melnikov, L. Jenner, G. Yusupova et al., The structure of the eukaryotic ribosome at 3.0 A resolution, Science, vol.334, pp.1524-1529, 2011.

S. Klinge, F. Voigts-hoffmann, M. Leibundgut, S. Arpagaus, and N. Ban, Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6, Science, vol.334, pp.941-948, 2011.

S. Baouz, A. Woisard, S. Sinapah, J. P. Le-caer, M. Argentini et al., The human large subunit ribosomal protein L36A-like contacts the CCA end of P-site bound tRNA, Biochimie, vol.91, pp.1420-1425, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00451517

C. Hountondji, K. Bulygin, A. Woisard, P. Tuffery, J. B. Crechet et al., Lys53 of ribosomal protein L36AL and the CCA end of a tRNA at the P/E hybrid site are in close proximity on the human ribosome, Chembiochem, vol.13, pp.1791-1797, 2012.

T. M. Schmeing, P. B. Moore, and T. A. Steitz, Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit, RNA, vol.9, pp.1345-1352, 2003.

C. Hountondji, G. Fayat, and S. Blanquet, Transfer RNA labeling of Escherichia coli methionyl-tRNA transformylase, Eur. J. Biochem, vol.107, pp.403-407, 1980.

C. Hountondji, S. Blanquet, and F. Lederer, Methionyl-tRNA synthetase from Escherichia coli: primary structure at the binding site for the 3'-end of tRNAfMet, Biochemistry, vol.24, pp.1175-1180, 1985.

C. Hountondji, P. Dessen, and S. Blanquet, Sequence similarities among the family of aminoacyl-tRNA synthetases, Biochimie, vol.68, pp.1071-1078, 1986.

V. Heurgue-hamard, S. Champ, L. Mora, T. Merkulova-rainon, L. L. Kisselev et al., The glutamine residue of the conserved GGQ motif in Saccharomyces cerevisiae release factor eRF1 is methylated by the product of the YDR140w gene, J. Biol. Chem, vol.280, pp.2439-2445

P. Chandramouli, M. Topf, J. F. Menetret, N. Eswar, J. J. Cannone et al., Structure of the mammalian 80S ribosome at 8.7 A resolution, Structure, vol.16, pp.535-548, 2008.

W. C. Chu and J. Horowitz, Recognition of Escherichia coli valine transfer RNA by its cognate synthetase: a fluorine-19 NMR study, Biochemistry, vol.30, pp.1655-1663, 1991.

M. A. Rould, J. J. Perona, D. Soll, and T. A. Steitz, Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution, Science, vol.246, pp.1135-1142, 1989.

C. Hountondji, G. Fayat, and S. Blanquet, Complete inactivation and labeling of methionyl-tRNA synthetase by periodate-treated initiator tRNA in the presence of sodium cyanohydridoborate, Eur. J. Biochem, vol.102, pp.247-250, 1979.

D. Taylor, A. Unbehaun, W. Li, S. Das, J. Lei et al., Cryo-EM structure of the mammalian eukaryotic release factor eRF1-eRF3-associated termination complex, Proc. Natl. Acad. Sci. USA, vol.109, pp.18413-18418, 2012.

K. Bulygin, A. Malygin, C. Hountondji, D. Graifer, and G. Karpova, Positioning of CCA-arms of the A-and the P-tRNAs towards the 28S rRNA in the human ribosome, Biochimie, vol.95, pp.195-203, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01906394

L. Y. Frolova, R. Y. Tsivkovskii, G. F. Sivolobova, N. Y. Oparina, O. I. Serpinsky et al., Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis, RNA, vol.5, pp.1014-1020, 1999.

H. Song, P. Mugnier, A. K. Das, H. M. Webb, D. R. Evans et al., The crystal structure of human eukaryotic release factor eRF1-mechanism of stop codon recognition and peptidyl-tRNA hydrolysis, Cell, vol.100, pp.311-321, 2000.

A. Seit-nebi, L. Frolova, J. Justesen, and L. Kisselev, Class-1 translation termination factors: invariant GGQ minidomain is essential for release activity and ribosome binding but not for stop codon recognition, Nucleic Acids Res, vol.29, pp.3982-3987, 2001.
DOI : 10.1093/nar/29.19.3982

URL : https://academic.oup.com/nar/article-pdf/29/19/3982/9906095/293982.pdf

Y. Chadani, K. Ono, K. Kutsukake, and T. Abo, Escherichia coli YaeJ protein mediates a novel ribosome-rescue pathway distinct from SsrA-and ArfA-mediated pathways, Mol. Microbiol, vol.80, pp.772-785, 2011.
DOI : 10.1111/j.1365-2958.2011.07607.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2958.2011.07607.x

Y. Handa, N. Inaho, and N. Nameki, YaeJ is a novel ribosomeassociated protein in Escherichia coli that can hydrolyze peptidyltRNA on stalled ribosomes, Nucleic Acids Res, pp.39-1739, 2011.

M. G. Gagnon, S. V. Seetharaman, D. Bulkley, and T. A. Steitz, Structural basis for the rescue of stalled ribosomes: structure of YaeJ bound to the ribosome, Science, vol.335, pp.1370-1372, 2012.

R. M. Voorhees, A. Weixlbaumer, D. Loakes, A. C. Kelley, and V. Ramakrishnan, Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome, Nat. Struct. Mol. Biol, vol.16, pp.528-533, 2009.

J. Remme, T. Maimets, M. Ustav, and R. Villems, The interaction of ribosomal protein L16 and its fragments with tRNA, FEBS Lett, vol.153, pp.267-269, 1983.

T. Maimets, J. Remme, and R. Villems, Ribosomal protein L16 binds to the 3'-end of transfer RNA, FEBS Lett, vol.166, pp.53-56, 1984.

S. Blanquet, M. Iwatsubo, and J. P. Waller, The mechanism of action of methionyl-tRNA synthetase from Escherichia coli, vol.1

, Fluorescence studies on tRNAMet binding as a function of ligands, ions and pH, Eur. J. Biochem, vol.36, pp.213-226, 1973.

P. S. Katsamba, S. Park, and I. A. Laird-offringa, Kinetic studies of RNA-protein interactions using surface plasmon resonance, Methods, vol.26, pp.95-104, 2002.
DOI : 10.1016/s1046-2023(02)00012-9

A. Von-mikecz, E. Neu, U. Krawinkel, and P. Hemmerich, Human ribosomal protein L7 carries two nucleic acid-binding domains with distinct specificities, Biochem. Biophys. Res. Commun, vol.258, pp.530-536, 1999.

C. Hountondji, F. Lederer, P. Dessen, and S. Blanquet, Escherichia coli tyrosyl-and methionyl-tRNA synthetases display sequence similarity at the binding site for the 3'-end of tRNA, Biochemistry, vol.25, pp.16-21, 1986.

C. Hountondji, J. M. Schmitter, C. Beauvallet, and S. Blanquet, Affinity labeling of Escherichia coli phenylalanyl-tRNA synthetase at the binding site for tRNAPhe, Biochemistry, vol.26, pp.5433-5439, 1987.

T. Budkevich, J. Giesebrecht, R. B. Altman, J. B. Munro, T. Mielke et al., Structure and dynamics of the mammalian ribosomal pretranslocation complex, Mol. Cell, vol.44, pp.214-224, 2011.

J. Soding, Protein homology detection by HMM-HMM comparison, Bioinformatics, vol.21, pp.951-960, 2005.
DOI : 10.1093/bioinformatics/bti125

URL : http://bioinformatics.oxfordjournals.org/content/early/2004/11/05/bioinformatics.bti125.full.pdf

A. Sali and T. L. Blundell, Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol, vol.234, pp.779-815, 1993.

S. B. Pandit and J. Skolnick, Fr-TM-align: a new protein structural alignment method based on fragment alignments and the TM-score, BMC Bioinformatics, vol.9, p.531, 2008.

N. B. Matasova, S. V. Myltseva, M. A. Zenkova, D. M. Graifer, S. N. Vladimirov et al., Isolation of ribosomal subunits containing intact rRNA from human placenta: estimation of functional activity of 80S ribosomes, Anal. Biochem, vol.198, pp.219-223, 1991.

G. Chinali and A. Parmeggiani, Properties of the elongation factors from Escherichia coli. Exchange of elongation factor G during elongation of polypeptide chain, Eur. J. Biochem, vol.32, pp.463-472, 1973.

J. B. Crechet, D. Canceill, V. Bocchini, and A. Parmeggiani, Characterization of the elongation factors from calf brain. 1. Purification, molecular and immunological properties, Eur. J. Biochem, vol.161, pp.635-645, 1986.

I. M. Krab, R. Te-biesebeke, A. Bernardi, and A. Parmeggiani, Elongation factor Ts can act as a steric chaperone by increasing the solubility of nucleotide binding-impaired elongation factor-Tu, Biochemistry, vol.40, pp.8531-8535, 2001.

L. Y. Frolova, T. I. Merkulova, and L. L. Kisselev, Translation termination in eukaryotes: polypeptide release factor eRF1 is composed of functionally and structurally distinct domains, RNA, vol.6, pp.381-390, 2000.

A. D. Kelmers, Preparation of a highly purified phenylalanine transfer ribonucleic acid, J. Biol. Chem, pp.3540-3545, 1966.
DOI : 10.1016/0006-291x(66)90629-2

A. L. Haenni and F. Chapeville, The behaviour of acetylphenylalanyl soluble ribonucleic acid in polyphenylalanine synthesis, Biochim. Biophys. Acta, vol.114, pp.135-148, 1966.

D. Sharifulin, E. Babaylova, O. Kossinova, Y. Bartuli, D. Graifer et al., Ribosomal protein S5e is implicated in translation initiation through its interaction with the N-terminal domain of initiation factor eIF2a, Chembiochem, vol.14, pp.2136-2143, 2013.