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ABSTRACT 

 

The nucleotide substitution G1896A on the precore (pc) region has been implicated in virological 

and serological responses during treatment in hepatitis B virus (HBV)-infected patients.  

Whether this mutation affects the therapeutic course of HIV-HBV co-infected patients, especially 

from Western Africa, is unknown.  In this prospective cohort study, 86 antiretroviral (ARV)-naïve 

HIV-HBV co-infected patients from Côte d’Ivoire, initiating ARV-treatment containing lamivudine 

(n=53) or tenofovir (n=33), had available baseline pc sequences.  Association of the pcG1896A 

mutation with time-to-undetectable HBV-DNA, hepatitis B “e” antigen (HBeAg)-seroclearance (in 

HBeAg-positive patients), and hepatitis B surface antigen (HBsAg)-seroclearance was evaluated 

using Cox proportional hazards regression.  At ARV-initiation, median HBV-DNA was 6.04 log10 

copies/mL (IQR=3.70-7.93) with 97.7% harboring HBV genotype E.  Baseline pcG1896A 

mutation was identified in 51 (59.3%) patients, who were more commonly HBeAg-negative 

(p<0.001) and had basal core promotor A1762T/ G1764A mutations (p<0.001).  Patients were 

followed for a median 36 months (IQR=24-36).  Cumulative proportion of undetectable HBV-

DNA was significantly higher in patients with baseline mutation (pcG1896A=86.6% versus no 

pcG1896A=66.9%, p=0.04), but not after adjusting for baseline HBV-DNA levels and anti-HBV 

agent (p=0.2).  No difference in cumulative proportion of HBeAg-seroclearance was observed 

between mutation groups (pcG1896A=57.1% versus no pcG1896A=54.3%, p=0.7).  Significantly 

higher cumulative proportion of HBsAg-seroclearance was observed in patients without this 

mutation (pcG1896A=0% versus no pcG1896A=36.9%, p<0.001), even after adjusting for 

baseline HBsAg-quantification and anti-HBV agent (p<0.001).  In conclusion, lacking the 

pcG1896A mutation before ARV-initiation appeared to increase HBsAg-seroclearance rates 

during treatment.  The therapeutic implications of this mutation need further exploration in this 

setting.  

 



Keywords: antiviral treatment; basal core promotor; genetic variability; immunosuppression; 

precore.  

 

  



INTRODUCTION  

 

In sub-Saharan Africa (SSA), it is estimated that approximately 10% of HIV-infected patients 

have chronic hepatitis B virus (HBV) infection (1).  HIV-HBV co-infection is known to increase 

the risk of severe liver disease and accelerate progression to liver-related death compared to 

either infection individually (2,3).  Circulating HBV is a strong contributor of the increased risk in 

both liver-related and overall mortality (4,5), hence the importance of reducing serum HBV DNA 

viral loads through effective antiviral therapy (6,7).      

 

There are, however, certain virological factors of the HBV genome that might impact response 

during therapy with an anti-HBV nucleoside/nucleotide analogue (NA).  For example, patients 

harboring the precore (pc) G1896A mutation are less likely to achieve lower HBV DNA viral 

loads during treatment with lamivudine (LAM) (8).  Pc mutant variants have been shown in vitro 

to increase replication yields of LAM-resistant strains, which are normally deficient in replicative 

capacity (9), and have been clinically associated with faster development of LAM-resistance 

(10).  Importantly, the presence of pc mutations, even when existing as a minority quasi-species, 

hampers hepatitis B surface antigen (HBsAg) loss during treatment with the potent NA tenofovir 

(TDF) (11).  The pcG1896A mutation would then appear to impose serious consequences on the 

therapeutic course of NA-treated patients.  

 

Within the continent, data on the prevalence of pc mutations in both HBV mono-infected and 

HIV-HBV co-infected patients are certainly available (12–16).  However, their implications with 

respect to virological and serological response during anti-HBV NA therapy remain to be 

elucidated.  In the study herein, we used unique data from a cohort of antiretroviral treatment 

(ART)-naïve HIV-HBV co-infected patients from Côte d’Ivoire initiating treatment with an anti-

HBV containing regimen.  We first evaluated the distribution of mutations observed on the basal 



core promoter (BCP) and pc regions before treatment initiation, while examining risk-factors of 

harboring the pcG1896A mutation.  We then aimed to determine the effect of harboring this 

mutation on virological and serological response during LAM- or TDF-containing ART.       

  

 

MATERIALS AND METHODS 

 

Study design and visits 

 

The VarBVA study (17) is an observational cohort including patients from two prospective, 

randomized, open-label, multi-center trials in Abidjan, Côte d’Ivoire: Trivacan ANRS 1269 

(NCT00158405), aimed at evaluating the benefits and risks of structured treatment interruption; 

and Temprano ANRS 12136 (NCT00495651), aimed at evaluating the benefits and risks of 

starting ART earlier than current World Health Organization (WHO) recommendations.  Study 

randomization and follow-up procedures have been detailed elsewhere (18,19).  

 

Inclusion criteria were as follows – both studies: age ≥18 years, HIV-1 or mixed HIV-1/2 

infection, and ART-naïve (with the exception of short-course treatment for the prevention of 

mother-to-child HIV transmission); Trivacan: CD4 cell count between 150-350/mm3 or CD4 

percentage between 12.5%-20.0%; Temprano: CD4 cell count <800/mm3 and no concurrent 

criteria for ART-initiation according to most recent WHO guidelines.  Non-inclusion criteria are 

summarized in the Supplementary methods.  All participants gave written informed consent and 

approval of the study protocols were obtained by the Ministry of Health of Côte d’Ivoire and the 

French National Agency for Research on AIDS and Viral Hepatitis (ANRS, Paris, France).  

 



For this study, we included patients testing HBsAg-positive at study inclusion (Mini Vidas® 

assay; Biomerieux, Marcy l’Etoile, France), confirmed by the HBsAg Qual II Architect assay 

(Abbott Laboratories, Rungis, France), and who started ART containing LAM and/or TDF at 

inclusion or any time during participation in the trial (Supplementary Methods).  We defined the 

“baseline” visit at ART-initiation and “follow-up” visits at each yearly visit thereafter until the date 

of last follow-up (with available frozen sample), study termination, permanent treatment 

discontinuation, or treatment switch.  In the Temprano study, if the last follow-up visit was not on 

the yearly interval, the closest 6-month visit was used instead. 

 

HBV-related parameters 

 

Plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were 

quantified at baseline.  From frozen samples stored at -80°C, HBV-DNA viral loads were 

quantified at baseline and every follow-up visit using an in-house PCR-based assay (QuantiFast 

SYBR® Green PCR kit, Qiagen, Courtaboeuf, France; Light Cycler 480, Roche, Boulogne-

Billancourt, France) with a detection limit of 12 copies/mL (17).  Qualitative HBsAg was detected 

using the HBsAg Qual II test (detection limit=0.03 IU/mL, Architect, Abbott Laboratories, Rungis, 

France) at baseline and during follow-up.  Qualitative HBeAg and anti-HBe antibodies (anti-

HBeAb) were detected using the Elecsys assay (Roche Diagnostics, Meylan, France) for the 

same visits.  HBeAg-seroclearance was defined as HBeAg-loss from the previous visit in 

HBeAg-positive patients.  HBsAg-seroclearance was defined as loss of HBsAg from the previous 

visit for all patients.   

 

HBeAg quantification (qHBeAg) and HBsAg quantification (qHBsAg) were quantified for HBeAg 

and HBsAg positive samples, respectively, using the Elecsys assay with the Modular E170 

analyzer (Roche Diagnostics, Meylan, France).  qHBeAg levels were provided as a semi-



quantitative result and were interpreted as the ratio of sample relative light units to a cut-off 

value.  These units were converted to Paul Ehrlich Institute units (PEI U/mL) from a previously 

established protocol (20).  

 

Detection of HBV mutations on viral genome sequences 

 

Genotypic analysis was performed at baseline for all patients with an HBV DNA viral load >1000 

copies/mL (17).  Nucleotide (nt) sequences from the BCP and pc regions were examined by 

direct sequencing after nested-PCR amplification of the preC/C gene (nt 1743-2362).  Individual 

sequences were aligned using the ClustalW full multiple alignment program with 1000 

bootstraps in BioEdit (v7.0.5.3, Carlsbad, CA) and were compared to a consensus sequence 

from 454 genotype E and 500 genotype A preC/C nucleotide sequences retrieved from the 

HBVdb (21).   

 

Amino acid sequences of the pol and S-genes were also examined after PCR amplification of 

the reverse transcriptase (rt) and surface antigen (s) encoding regions (between rt107-rt385 and 

s99-s226, respectively).  Mutant variants were detected using similar methods as described 

above (17).   

 

Phylogenetic analysis  

 

HBV genotypes were determined via phylogenetic analysis conducted on aligned sequences of 

the pc region (nt 1814-2452), which were compared to several referent sequences of HBV 

genotypes A-H (GenBank accession numbers listed in Supplementary Table 1).  The neighbor-

joining method was employed with 1000 bootstrap replications using a Kimura-2 parameter 

substitution model that included transitions and transversions (d).  A discrete gamma model with 



mean equal to one was also used to incorporate rate variation among sites.  The resulting 

phylogenetic tree was constructed using MEGA6 software (22) and is provided in 

Supplementary Figure 1. 

 

Statistical analysis 

 

The distribution of specific mutations of the preC/C gene (13) at baseline was described.  We 

chose to focus further analysis on the pcG1896A mutation due to its strong association with 

virological and serological responses (23).  Determinants of harboring this mutation at inclusion 

were examined using logistic regression.  Demographic, treatment, and clinical characteristics 

related to HIV and HBV-infection with a p≤0.1 in univariable analysis were retained and used to 

create a predictive, multivariable model.  A backwards-stepwise selection process was then 

performed, removing any co-variable greater than this p-value threshold.        

 

We then assessed the effect of harboring the pcG1896A mutation at inclusion on virological and 

serological parameters during treatment.  The cumulative probability of time until undetectable 

HBV, time until HBeAg-seroclearance (for patients with positive HBeAg at baseline), and time 

until HBsAg-seroclearance was calculated using Kaplain-Meier curves.  Survivor functions were 

stratified on mutation groups and compared using the log-rank test.  Cox proportional hazards 

regression was also used to compare rates of these events, both unadjusted and adjusted for 

baseline quantified parameter (HBV DNA, qHBeAg or qHBsAg) and anti-HBV treatment (LAM 

versus TDF).   

 

Additionally, qHBsAg levels were summarized for each study visit.  Changes in antigen levels 

from baseline were modeled using a mixed-effect linear regression with a random-intercept to 

account for between-patient variability.  The model included time and mutation group as 



independent variables along with the interaction between the two, which was tested in order to 

determine differences in overall on-treatment antigen decline between mutation groups.  

 

All analyses were performed using STATA (v12.1, College Station, TX, USA).  All statistical tests 

were two-sided and a p-value of <0.05 was considered significant.   

 

 

RESULTS  

 

Description of the study population 

 

Among the 259 HBsAg-positive patients enrolled in both trials, 173 were not included in analysis 

for the following reasons: did not have confirmed HBsAg-positive serology (n=31) or had 

suspected acute HBV-infection (n=1), never initiated ART (n=30), had only one follow-up visit 

(n=16), discontinued ART <6 months due to pregnancy (n=3) or adverse event (n=2), had 

missing data on HBV viral loads (n=8) or missing data on BCP or pc genetic variability (n=82).  

In total, 86 patients were included in analysis.  Demographic, HIV-related and HBV-related 

characteristics at baseline are summarized in Table 1.  These characteristics are compared 

between source studies in Supplementary Table 2, demonstrating a significantly lower CD4+ T-

cell count (p<0.001) and higher proportion with WHO clinical stage III/IV (p=0.007) among 

participants enrolled in the Trivacan versus Temprano study. 

 

Basal core promoter/precore mutant variants at baseline  

 

Table 2 describes specific BCP and pc mutations identified at baseline.  The most common 

mutations were A1850T and C1858T nt substitutions on the pc region.  Roughly two-thirds of 



patients (59.3%) harbored the G1896A or mixed G1896G/A pc mutation and almost one-quarter 

of patients harbored the A1762T (21.2%) or G1764A (24.7%) BCP mutations.  Almost all 

patients with a BCP mutation at these nt positions also had the pcG1896A mutation (n=19/21, 

90.5%).  

 

As shown in Table 3, the pcG1896A mutation at baseline was associated with HBeAg-negative 

status (p<0.001), anti-HBe antibody positive status (p<0.001), lower HBV DNA levels (p=0.001), 

and presence of BCP mutations (p=0.004).  Of note, median ALT/AST levels were not 

significantly different in patients with versus without the pcG1896A mutation (32/39 IU/mL versus 

25/40 IU/mL, respectively, p=0.10/0.6).  Only two patients harbored a genotype other than E 

(genotype A) in whom no pcG1896A mutation was detected.  In multivariable analysis, HBeAg-

negative status (p<0.001) and presence of BCP mutations (p<0.001) were significantly and 

independently associated with baseline presence of pcG1896A mutations (Table 3), while 

considering the strong collinearity between associated variables.   

 

Baseline pcG1896A mutation is not associated with virological response and antiviral 

resistance during treatment 

 

Patients were followed for a median 36 (IQR=24-36) months.  Of the 53 patients undergoing 

LAM-containing ART, 24 (45.3%) had per protocol treatment interruptions after a median 12 

(IQR=11-37) months of follow-up.  Median cumulative duration of treatment was 26 (IQR=19-34) 

months for all those undergoing LAM.  All 33 TDF-treated patients underwent continuous ART 

for a median 24 (IQR=17-30) months.  

 

Individual and median HBV DNA viral loads during ART containing an anti-HBV agent are 

provided in Figure 1A, while stratified on baseline pcG1896A status.  During follow-up, 



undetectable HBV DNA was achieved in 66 patients after a median 12 (IQR=11-23) months of 

follow-up (cumulative proportion=78.9%).  Time to undetectable HBV DNA was significantly 

faster for patients with versus without baseline pcG1896A (cumulative proportion= 86.6% versus 

66.9%, respectively, log rank test p=0.04) (Figure 1B).  However, this association was no longer 

significant after adjusting for baseline HBV DNA levels and anti-HBV agent (p=0.2).  At the end 

of follow-up, 31 (36.1%) patients had detectable HBV DNA, with no significant difference 

between mutation groups (with pcG1896A=31.4% versus without pcG1896A=42.9%, p=0.3).  

Thirteen (41.9%) of these patients had an HBV DNA viral load >10,000 copies/mL, only one of 

whom developed the LAM-resistance rtV173L+rtL180M+rtM204V mutation during treatment 

(without the pcG1896A mutation at baseline).  

 

Lack of baseline pcG1896A mutation is associated with HBsAg, but not HBeAg, 

quantification and serological response during treatment 

 

In the 35 HBeAg-positive patients at baseline, median qHBeAg levels decreased from 160.4 PEI 

U/mL (IQR=24.9-355.4) at treatment initiation to <0.05 PEI U/mL (IQR=<0.05-115.7) at the end 

of follow-up.  At baseline, qHBeAg levels were lower in patients with versus without the 

pcG1896A mutation (24.9 PEI U/mL, n=7 versus 164.6 PEI U/mL, n=27, respectively), yet this 

association was not significant (p=0.13).  No significant differences between mutation groups 

were observed in change of qHBeAg levels from baseline (p=0.9), owing to the low antigen 

levels overall during anti-HBV treatment (Figure 2A).  HBeAg-seroclearance occurred in 18 

patients after a median 12 months (IQR=11-23) of follow-up (cumulative proportion=55.3%), with 

no significant difference in time to HBeAg-seroclearance between patients with versus without 

the pcG1896A mutation (cumulative proportion=57.1% versus 54.3%, respectively, p=0.7) 

(Figure 2B). 

  



Overall, median qHBsAg levels decreased from 4.00 log10 IU/mL (IQR=3.36-4.36) at treatment 

initiation to 3.79 log10 IU/mL (IQR=3.10-4.15) at the end of follow-up.  qHBsAg levels at baseline 

were significantly lower in patients with versus without the pcG1896A mutation (3.81 versus 4.24 

log10 IU/mL, respectively, p=0.02).  Over time, change in qHBsAg levels from baseline was 

significantly faster in patients without the pcG1896A mutation (p<0.001) with substantial 

between-patient variability (Figure 2C).  HBsAg-seroclearance occurred in 12 patients after a 

median 12 months (IQR=12-21) of follow-up (cumulative proportion=14.5%).  Baseline and 12-

month characteristics of patients are compared between those with versus without HBsAg-

seroclearance in Table 4.  Ten and two of these patients were HBeAg-positive and HBeAg-

negative, respectively, with HBeAg-positive patients more likely to lose HBsAg (log-rank test 

p=0.001).  As shown in Figure 2D, only patients without the pcG1896A mutation exhibited 

HBsAg-seroclearance (p<0.001).  This significant association held when adjusting for baseline 

qHBsAg levels and anti-HBV treatment regimen (p<0.001).   

 

Low incidence of pcG1896A mutation during treatment     

 

Of the 35 patients without the pcG1896A mutation at baseline, two patients developed incident 

pcG1896A mutations during treatment (IR=2.5/100 person-years).  The first patient had high 

HBV DNA levels at treatment initiation (7.57 log10 copies/mL).  The patient was undergoing LAM-

containing ART with CD4+ T-cell guided therapeutic interruptions.  The G1896G/A mutation was 

detected at the month-24 visit with an HBV DNA viral load at 228,000 copies/mL, which 

gradually declined to 9260 copies/mL at the last study visit.  The patient remained HBeAg-

positive and HBsAg-positive during follow-up.  The second patient also had high HBV DNA at 

treatment initiation (7.93 log10 copies/mL).  After initiating continuous LAM-containing ART, HBV 

DNA viral loads steadily decreased to 1074 copies/mL at month-24, when the G1896G/A 

mutation was detected, and finally to 810 copies/mL at the last study visit.  The patient lost both 



HBeAg and HBsAg during follow-up, while no apparent mutations on the “a” determinant of the 

S-gene emerged.  No LAM-resistance mutations were observed for either patient. 

 

 

DISCUSSION 

 

The pcG1896A mutation is frequently observed around the time of HBeAg-seroconversion, 

allowing abrogated HBeAg-production with persistent HBV DNA replication and possibly immune 

escape from HBeAg-directed immune responses (23).  Since most patients in Western Africa 

are HBeAg-negative and infected with HBV genotypes prone to the G1896A nt substitution 

(24,25), it is assumed that a substantial proportion with detectable HBV DNA replication would 

be infected with this mutation.   

 

At treatment initiation, we did indeed identify pcG1896A mutant variants in almost two-thirds of 

co-infected patients harboring genotype E, reflecting other studies in this region (26–28).  The 

presence of this mutation was associated with widely-recognized determinants of more inactive 

forms of HBV infection, such as low HBV DNA replication and HBeAg-negative status.  Since the 

G to A substitution at position pc1896 replaces tryptophan for a stop codon during translation of 

the HBeAg and thereby limits its production (23), it is unsurprising that this mutation was not 

frequently observed in HBeAg-positive individuals.  BCP mutations at either nt 1762 or 1764 

were almost always present with the pcG1896A mutation in our study and are also associated 

with reduced HBeAg production and HBeAg-negative status (29).  Meanwhile, CD4+ T-cell 

concentrations failed to show an association with baseline pc mutation and would suggest that 

HIV-induced immunosuppression might not play an essential role on the genetic variability of the 

pc region (30).  

 



We further our understanding on the therapeutic role of the pcG1896A mutation in genotype E 

infection, while clearly demonstrating that patients with this mutation at treatment initiation will 

likely have difficulty in clearing HBsAg during NA-based therapy.  Reduced HBsAg-

seroclearance rates have been described with this mutation, as well as with increased genetic 

diversity of the pc encoding region, during TDF-treatment in HBV mono-infected patients (11).  

The importance of this mutation was further evidenced when deep-sequencing was applied, in 

which pcG1896A mutant strains detected as even minority variants (>1% of the HBV 

quasispecies pool) were able to produce greater sensitivity in predicting HBsAg-seroclearance 

(11).  Interestingly, these results originated from a study population with HBV genotypes A-D, 

high transaminase levels, and male and HBeAg-positive predominance.  The fact that our study 

comprised mostly HBeAg-negative women with genotype E would suggest the robustness of this 

association across different HBV-infected populations. 

 

The pathophysiological explanations of this result remain largely unknown.  HBsAg-

seroclearance is mainly viewed as the consequence of complex and appropriate immune 

responses during the course of infection (31).  NA-based therapy does not have substantial 

immunomodulatory effects compared to other treatment options, such as pegylated-interferon 

(32).  Regardless, higher rates of HBsAg-seroclearance are often observed during HBeAg-

positive phases of HBV when patients are undergoing treatment with any antiviral agent (33). 

When replacing HBeAg-positive status with the lack of pcG1896A mutation, we were able to 

obtain a marginally higher sensitivity associated with loss of HBsAg in our study.  Two HBeAg-

negative individuals had HBsAg-seroclearance, both of whom did not harbor the pcG1896A 

mutation.  From our data, it is difficult to determine if these individuals recently had HBeAg-

seroclearance prior to study inclusion or if the pcG1896A was present as a minority quasi-

species.  As increased pc genetic diversity during HBeAg-seroconversion spans over several 

years (34), perhaps the presence of pc mutations might be a more accurate reflection of later 



stages of HBV-infection when HBsAg-seroclearance is most difficult to clear.  Whether this 

means that earlier treatment prior to pc mutant emergence should be considered remains to be 

determined. 

 

Patients harboring the pcG1896A mutation at baseline did not have increased rates of HBeAg-

seroclearance, which was somewhat unexpected (8).  One reason could be the few patients with 

HBeAg-positive serology harboring this mutation at baseline, thereby reducing the power to 

establish any difference.  On the other hand, qHBeAg production did seem to persist for some 

patients with the pc mutation.  It could be speculated that the quasi-species make-up of 

pcG1896A mutant variants remained at consistent levels during follow-up.  Substantial 

evolutionary changes on the pc encoding region over time are needed in order for HBeAg-

seroconversion to occur, at least during the natural history of infection (34), which might not 

have been the case in our study.  This might also explain why there was no significant 

association with this mutation and qHBeAg at treatment initiation and during treatment, despite 

the well-established impact that the pcG1896A mutation has on HBeAg-production in clinical 

settings (35,36).  This hypothesis could be further clarified by examining the specific viral 

subpopulations during treatment using next-generation sequencing technologies.   

 

We did not observe any association with the pcG1896A mutation at baseline and virological 

response or LAM-resistance, which is in contrast to other studies evaluating the use of NA-

based agents in HBV mono-infected patients (8,10).  Several noteworthy features of our cohort 

could explain this finding.  Persistent viremia observed in these patients was mostly due to 

insufficient follow-up, immunocompromised status, or for some, LAM-interruption (17).  TDF is 

also highly effective in suppressing HBV DNA among co-infected patients, even when 

pcG1896A mutations are present (37).  These factors would have eclipsed any purported role of 

pcG1896A mutations on HBV suppression.  In addition, HBV DNA viral loads and transaminase 



levels were for the most part low at treatment initiation.  These conditions might have been ideal 

to abate the emergence of LAM-resistance (38) and have appeared to be associated with low 

LAM-resistance rates in other treated, co-infected populations from SSA (39).  Considering that 

only one patient in this study had LAM-resistance, there was an insufficient number of events to 

appropriately address this question.   

 

As previously shown in treated co-infected patients (40), the pcG1896A mutation emerged 

infrequently during follow-up.  It is debatable, however, whether this pc mutation was truly 

incident.  Appearance of the G1896A nt substitution did not occur in concert with ALT increases, 

which is a common event in HBeAg-seroconversion when genetic alterations on the pc region 

are readily observed (34,41).  Furthermore, mixed wildtype and pcG1896A was observed in the 

two patients identified with incident mutation.  These patients potentially had minority variants at 

treatment initiation and displayed fluctuations in mutant populations detected with population 

sequencing during therapy.  This is an important consideration given that one of the patients with 

incident pcG1896G/A mutation lost HBsAg.  Had this mutant variant been detected by deep-

sequencing, it would have reduced the sensitivity in predicting HBsAg-seroclearance.  

Nevertheless, this patient had a unique progression of HBV infection with continuing HBV DNA 

replication despite negative HBsAg serology.   

 

Other limitations of our study need to be addressed.  First, we excluded patients with severely 

elevated transaminases or clinical signs of severe liver disease at study inclusion.  This criterion 

probably resulted in the lack of liver-related clinical events observed during follow-up and thus 

the relationship between BCP or pc mutations and liver-related morbidity was unable to be 

assessed.  Conversely, individuals with occult HBV infection, which is rather prevalent in SSA 

(16), were not included in our study.  Although the low levels of HBV DNA often observed in 

these patients make it difficult to conduct sequencing, the few reports of occult infection in SSA 



do not support high prevalence of the pcA1896G mutations during this infection “phase” (42).  

Second, almost all patients undergoing LAM were taking part in the Trivacan study, with most 

interrupting treatment during follow-up.  ART-interruptions could have affected time to 

undetectable HBV DNA (17) and some caution should be given when interpreting the 

association between pc mutations and virological response.  Third, almost all patients with the 

pcG1896A mutation also harbored mutations on the BCP.  Although previous research has 

shown differential clinical outcomes for patients with various BCP and pc mutation combinations 

(43), this stratification was unfeasible in our analysis.  Fourth, HBsAg was tested only once 

during study enrollment.  Chronic HBV infection (i.e. minimum 6 months of HBsAg-positive 

serology) was not firmly established at study inclusion and those with HBsAg-seroclearance 

could have had acute HBV infection.  Nevertheless, the vast majority of HBV-infected patients 

from SSA acquire HBV horizontally during childhood or adolescence (44), hence this scenario 

would be considered fairly unlikely.    

 

Another consideration worth mentioning is the higher rate of HBeAg- and HBsAg-seroclearance 

from what would be expected among treated HBV mono-infected patients (33).  Other studies in 

European and Asian co-infected cohorts have observed this phenomenon, which has been 

linked to accelerated ART-induced immunorestauration under severe immunosuppression 

(45,46).  Individuals with versus without HBsAg-seroclearance did have somewhat lower CD4 T-

cell count at baseline, yet the lack of difference in on-treatment CD4 increases would suggest 

that immunocompromised status might not explain most of the seroclearance events observed in 

our study.  

 

In conclusion, the lack of pcG1896A mutation at baseline, as determined by population 

sequencing, was strongly linked to HBsAg-seroclearance in this group of NA-treated co-infected 

patients.  However, rates of HBeAg-seroclearance and virological response were no different 



between patients with or without this pc mutation.  In light of these findings, there could be a 

strong rationale to initiate NA-based therapy in HBV-infected patients from this setting before the 

pcG1896A mutation emerges.  Nevertheless, future research would be needed to investigate the 

genetic diversity of the pc and BCP encoding regions of these strains and confirm its therapeutic 

and clinical utility.  
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TABLES 
 
Table 1. Description of the study population at treatment initiation  

 
    N=86 
Demographic characteristics  
Gender, male/female (% males) 27/59 (31.4) 
Age, years† 36 (31-40) 
BMI, kg/m²† 21.3 (19.2-23.4) 
Current smoker‡ [N=85] 9 (10.6) 
  
HIV characteristics  
WHO clinical stage III/VI‡ 30 (34.9) 
HIV-RNA >300 copies/mL‡ [N=85] 84 (98.8) 
HIV-RNA log10 copies/mL†§ 5.07 (4.53-5.70) 
CD4+ cell count, /mm3† 281 (195-364) 
CD4+ cell count† 15.0 (10.9-20.9) 
CD4+ count >350 cells/mm3‡ 23 (26.7) 
Initial antiretroviral regimen‡  
 LAM-based 53 (61.6) 
 TDF-based 33 (38.4) 
   
HBV characteristics  
HBeAg-positive‡ 35 (40.7) 
Anti-HBe antibody positive‡ 53 (61.6) 
HBV DNA log10 copies/mL† 6.04 (3.70-7.93) 
HBV genotype‡  
 A 2 (2.3) 
 E 84 (97.7) 
ALT, IU/L†  [N=76] 29 (21-48) 
AST, IU/L† [N=52] 40 (29-60) 
ALT or AST >40 IU/L‡ 36 (41.9) 

†Median (IQR).  ‡Number (%). 
§Only among patients with detectable HIV viremia.  
Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass 
index; HBeAg, hepatitis B “e” antigen; HBV, hepatitis B virus; HIV, human immunodeficiency virus; 
LAM, lamivudine; TDF, tenofovir; WHO, World Health Organization.  
 
  



Table 2. Distribution of specific basal core promotor (BCP) and precore (PC) mutations 
 

Mutation n (%) 
BCP mutation  
 A1762T or mixed A/T [N=85] 18 (21.2) 
 G1764A or mixed A/G or A/T [N=85] 21 (24.7) 
HBeAg start-codon PC mutation  
 A1814C 2 (2.3) 
HBeAg PC stop-codon apparition/pregenomic RNA 
encapsidation signal mutation 

 

 C1817T 0 (0) 
 A1850T 84 (97.7) 
 C1857T 0 (0) 
 C1858T 84 (97.7) 
 G1896A or mixed A/G 51 (59.3) 
Characteristic PC mutations  
 G1862C 2 (2.3) 
 G1862A 1 (1.2) 
Frequent PC mutations  
 G1899A or mixed A/G 24 (27.9) 

Abbreviations: BCP, basal core promoter; HBeAg, hepatitis B “e” antigen; PC, precore. 
 
  



Table 3. Determinants of precore G1896A mutation at baseline 
 
 Univariable Multivariable† 

OR (95%CI) p OR (95%CI) p 
Age per year 1.03 (0.97-1.09) 0.4   
Male versus female 1.00 (0.40-2.53) 0.9   
BMI  >25 kg/m² 2.63 (0.51-13.46) 0.2   
WHO Stage III or IV 0.69 (0.28-1.68) 0.4   
HIV RNA per log10 copies/mL 1.03 (0.63-1.68) 0.9   
CD4 cell count     
 >500 mm3 0.67 (0.13-3.51) 0.6   
 >350 mm3 1.41 (0.52-3.79) 0.5   
 >250 mm3 2.12 (0.88-5.12) 0.10   
HBeAg positive 0.04 (0.01-0.13) <0.001 0.02 (0.01-0.10) <0.001 
anti-HBe antibody positive 36.80 (10.65-127.18) <0.001   
HBV DNA     
 per log10 copies/mL 0.68 (0.54-0.86) 0.001   
 >7.0 log10 copies/mL 0.22 (0.09-0.55) 0.001   
qHBsAg per log10 IU/mL 1.00 (0.69-1.46) 0.9   
AST per ULN 1.39 (0.83-2.32) 0.2   
ALT per ULN 1.23 (0.81-1.85) 0.3   
AST/ALT > 40 IU/mL 1.39 (0.58-3.35) 0.5   
BCP mutations 9.50 (2.04-44.19) 0.004 28.94 (3.43-478.91) <0.001 

†In the multivariable model, variables on HBV-DNA viral load and anti-HBe antibody status were not 
included as they were highly collinear with HBeAg-serology.  Due to the limited numbers of patient 
groups, exact logistic regression was used to model parameter estimates.  
Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BCP, basal core 
promoter; BMI, body mass index; CI, confidence interval; HBeAg, hepatitis B “e” antigen; HBV, 
hepatitis B virus; HIV, human immunodeficiency virus; OR, odds ratio; qHBsAg, hepatitis B surface 
antigen quantification; WHO, World Health Organization. 

  



Table 4. Determinants of HBsAg-seroclearance  
   

  
No HBsAg-

seroclearance 
HBsAg-

seroclearance  
    (n=74) (n=12) p* 
Baseline characteristics      

 Gender, male/female (% males) 22/52 (29.7) 5/7 (41.7) 0.5 
Age, years† 35 (31-39) 36 (30-43) 0.5 
BMI, kg/m²† 21.6 (19.5-23.7) 20.3 (19.0-21.6) 0.13 
WHO clinical stage‡ 

  
0.5 

 
Stage I/II 47 (63.5) 9 (75.0) 

 
 

Stage III/IV 27 (36.5) 3 (25.0) 
 HIV-RNA, log10 copies/mL† 5.03 (4.52-5.68) 5.31 (4.98-5.73) 0.3 

CD4+ cell count, /mm3† 287 (206-369) 257 (157-287) 0.13 
Anti-HBV ART component‡ 

  
0.8 

 LAM 45 (60.8) 8 (66.7) 
 

 TDF/FTC 29 (39.2) 4 (33.3) 
 HBV-DNA, log10 copies/mL† 6.04 (3.59-8.05) 6.55 (4.54-7.86) 0.7 

HBV-DNA >7.0 log10 copies/mL‡ 32 (43.2) 6 (50.0) 0.7 
ALT, IU/mL† [N=76] 30 (21-47) 25 (22-51) 0.7 
AST, IU/mL† [N=52] 39 (29-60) 45 (32-60) 0.7 
ALT or AST >40 IU/mL‡ 30 (40.5) 6 (50.0) 0.5 
HBeAg-positive‡ 25 (33.8) 10 (83.3) 0.003 
qHBeAg, PEI U/mL† 173.1 (56.0, 349.3) 98.0 (4.6, 404.6) 0.6 
qHBsAg, log10 IU/mL† 4.07 (3.52-4.39) 2.45 (-0.29, 4.08) 0.005 
pcG1896A mutation‡ 51 (69.9) 0 (0) <0.001 
During follow-up (12 months)     

 ∆CD4+ cell count, /mm3† 133 (37, 254) 139 (40, 310) 0.8 
∆HBV-DNA, log10 copies/mL† -3.22 (-5.43, -2.04) -3.94 (-6.88, -3.44) 0.11 
∆qHBeAg, PEI U/mL† -88.0 (-238.4, -22.2) (-1140.1, -754.4)§ ntp 
∆qHBsAg, log10 IU/mL† -0.03 (-0.23, 0.08) -3.05 (-3.94, -0.53) <0.001 

†Median (IQR).  ‡Number (%). 
*Significance between HBsAg-seroclearance groups determined using Kruskal-Wallis test for 
continuous variables and Pearson χ² test or Fisher’s exact test for categorical variables. ntp – no 
test performed  
§Only two values were available as the other 8 patients were at undetectable levels on the 12-
month visit.  
 

  



FIGURE LEGENDS  

 

Figure 1. HBV DNA viral loads during treatment and precore G1896A mutation 

 

HBV-DNA viral loads (A) and cumulative probability of achieving undetectable HBV DNA viral 

load (B) are compared between patients with and without the precore G1896A mutation at 

treatment initiation.  Individual levels of HBV DNA are expressed as gray lines, whereas median 

levels are given as dots.  HBV DNA was imputed at detection thresholds (12 copies/mL) when 

undetectable. 

 

Figure 2. HBV serological parameters during treatment and precore G1896A mutation 

 

The following end-points were compared between patients harboring the precore G1896A 

mutation at treatment initiation: (A) hepatitis B “e” antigen quantification (qHBeAg), (B) 

cumulative probability of hepatitis B “e” antigen seroclearance for patients with HBeAg-positive 

serology at baseline, (C) hepatitis B surface antigen quantification (qHBsAg), and (D) cumulative 

probability of hepatitis B surface antigen seroclearance.  Individual levels of qHBeAg and 

qHBsAg are expressed as gray lines, whereas median levels are given as dots.  Levels of these 

markers were imputed at detection thresholds (0.05 IU/mL or PEI U/mL) when their 

corresponding serological result was negative.   

  



Figure 1.  

A No pcG1896A 

 

pcG1896A 

 
B 

 

 

  

0

2

4

6

8

H
BV

 D
N

A 
(lo

g1
0 

co
pi

es
/m

L)

0 12 24 36
Treatment duration (months)

0

2

4

6

8

H
BV

 D
N

A 
(lo

g1
0 

co
pi

es
/m

L

0 12 24 36
Treatment duration (months)

0.00

0.20

0.40

0.60

0.80

1.00

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y 
of

 V
R

0 12 24 36
Treatment duration (months)

No pcG1896A
pcG1896A



Figure 2. 

A No pcG1896A 

 

pcG1896A 

 

B 

 

C No pcG1896A 

 

pcG1896A 

 

D 

 
 

0

250

500

750

1000

1250

1500

qH
Be

Ag
 (P

EI
 U

/m
L)

0 12 24 36
Treatment duration (months)

0

250

500

750

1000

1250

1500

qH
Be

Ag
 (P

EI
 U

/m
L)

0 12 24 36
Treatment duration (months)

0.00

0.20

0.40

0.60

0.80

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y 
of

 H
Be

Ag
-lo

ss

0 12 24 36
Treatment duration (months)

No pcG1896A
pcG1896A

-2

0

2

4

6

qH
Bs

Ag
 (l

og
10

 IU
/m

L)

0 12 24 36
Treatment duration (months)

-2

0

2

4

6
qH

Bs
Ag

 (l
og

10
 IU

/m
L)

0 12 24 36
Treatment duration (months)

0.00

0.20

0.40

0.60

0.80

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y 
of

 H
Bs

Ag
-lo

ss

0 12 24 36
Treatment duration (months)

No pcG1896A
pcG1896A



SUPPLMENTARY MATERIALS  
 
 
Supplement to: Boyd A, Moh R, Maylin S, et al. Precore G1896A mutation is associated 
with reduced rates of HBsAg-seroclearance in treated HIV-hepatitis B virus co-infected 
patients from Western Africa. 
 
 
 
 
TABLE OF CONTENTS 
 

SUPPLEMENTARY METHODS .................................................................................................. 2 

Non-inclusion criteria for the ANRS Trivican and Temprano studies ....................................... 2 

Antiretroviral treatment ............................................................................................................ 2 

SUPPLEMENTARY TABLES ...................................................................................................... 3 

Supplementary Table 1. GenBank referent hepatitis B virus sequences used in phylogenetic 

analysis .............................................................................................................................. 3 

Sequence references .............................................................................................................. 4 

Supplementary Table 2. Patient characteristics between source studies at ART-initiation ...... 7 

SUPPLEMENTARY FIGURES .................................................................................................... 8 

Supplementary Figure 1. Hepatitis B virus preC/C gene phylogenetic tree for baseline 

sequences .......................................................................................................................... 8 

 

  



2 
 

SUPPLEMENTARY METHODS 
 
Non-inclusion criteria for the ANRS Trivican and Temprano studies  
 
The study non-inclusion criteria were as follows – both studies: residence outside of Abidjan; 

unwillingness to participate; pregnancy; severe renal or hepatic disease; severe psychiatric 

disorder; or any ongoing severe clinical features of undiagnosed origin; Trivacan: severe 

hematological disorder or Karnofsky score <50; Temprano: breastfeeding, ongoing tuberculosis 

disease, or severe cardiac disorder.   

  
Antiretroviral treatment 
 
In the Trivacan trial, all patients started ART at inclusion, receiving zidovudine/lamivudine (LAM) 

in combination with either efavirenz or ritonavir-boosted lopinavir (“LAM-containing ART”).  After 

a 6 to 18 months phase of continuous ART, those who fulfilled randomization criteria (CD4 >350 

/mm3, plasma HIV-1 RNA <300 copies/mL) were randomized to one of three arms: continuous-

ART, CD4-guided ART interruptions (reintroduction when CD4 <250/mm3, interruption when 

CD4 >350/mm3), or fixed-schedule ART interruptions (2-months-off and 4-months-on).  Those 

who did not reach randomization criteria underwent continuous-ART.   

 

In the Temprano trial, patients were randomized at inclusion to either start ART immediately or 

defer ART until WHO ART-initiation criteria were met.  In both strategies, the first-line ART 

regimen was TDF/emtricitabine (FTC) in combination with one other antiretroviral agent: 

efavirenz, zidovudine, or ritonavir-boosted lopinavir (“TDF/FTC-containing ART”). 
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SUPPLEMENTARY TABLES 
 

Supplementary Table 1. GenBank referent hepatitis B virus sequences used in 
phylogenetic analysis 
 
Genotype Subtype GenBank accession number 
A A1 HM535200 (1); AF090842 (2). 

A2 AF090838 (2); AB014370 (3). 
A3 AB194950, AB194951 (4). 
A4 AM180623 (5). 
A5 FJ692594, FJ692596 (6). 

B - D00329, D00330 (7). 
C C1 AB697502, AB697510 (8). 

C2 AB642095, AB642097 (9). 
C3 X75656, X75665 (10). 
C4 AB048704, AB048705 (11). 
C5 EU410080, EU410081 (12). 
C6 GQ358157 (13). 
C7 EU670263 (12). 
C8 AP011104, AP011105 (14). 
C9 AP011108 (14). 
C10 AB540583 (15). 
C11 AB554019, AB554020 (16). 
C12 AB560662 (17); AB554025 (16). 
C13 AB644280, AB644281 (18). 
C14 AB644283, AB644284 (18). 
C15 AB644286 (18). 
C16 AB644287 (18). 

D - L27106 (19); AY090452 (20). 
D1 AF151735 (21); AF280817 (NR). 
D2 AB090268, AB090269 (22). 
D3 AJ132335 (NR); AJ131956 (23). 
D4 AB048701 (11); AJ627219 (NR). 
D5 AB033558 (7); DQ315779 (24). 
D6 AB493846, AB493848 (25). 
D7 FJ904436, FJ904439 (26). 
D8 FN594769, FN594771 (27). 

E - AB091255 (NR); DQ060830 (28); 
AB205191 (29); AB106564 (NR); 
FN594763, FN594749 (27). 

F - AB036905, AB036906 (30). 
G - AB056514, AB056515 (31). 
H - AB298362 (32); AB266536 (33). 
NR, no reference. 
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Supplementary Table 2. Patient characteristics between source studies at ART-initiation 

    

Source study 

p¶ 
Temprano 
n=34  

Trivacan 
n=52 

Demographic characteristics    
Gender, male/female (% males) 11/23 (32.4) 16/36 (30.8) 0.9 
Age, years† 36 (30-40) 35 (31-39) 0.6 
BMI, kg/m²† 21.0 (19.0-23.8) 22.0 (19.4-23.2) 0.5 
Current smoker‡ [N=85] 6 (17.7) 3 (5.9) 0.15 
    
HIV characteristics    
WHO clinical stage III/VI‡ 6 (17.7) 24 (46.2) 0.007 
HIV-RNA >300 copies/mL‡ [N=85] 34 (100) 50 (98.0) 0.9 
HIV-RNA log10 copies/mL†§ 5.00 (4.48-5.72) 5.14 (4.64-5.68) 0.4 
CD4+ cell count, /mm3† 348 (275-467) 226 (169-292) <0.001 
CD4+ cell count† 19.9 (14.5-22.9) 12.9 (9.4-18.5) <0.001 
CD4+ count >350 cells/mm3‡ 17 (50.0) 6 (11.5) <0.001 
     
HBV characteristics    
HBeAg-positive‡ 13 (38.2) 22 (42.3) 0.7 
Anti-HBe antibody positive‡ 20 (58.8) 33 (63.5) 0.7 
HBV DNA log10 copies/mL† 5.60 (3.59-8.20) 6.16 (3.71-7.80) 0.7 
HBV genotype‡   0.5 
 A 0 (0) 2 (3.9)  
 E 34 (100) 50 (96.2)  
pcG1896A mutation‡ 20 (58.8) 31 (59.6) 0.9 
ALT, IU/L†  [N=76] 28 (20-47) 30 (21-51) 0.7 
AST, IU/L† [N=52] -- 40 (29-60) ntp 
ALT or AST >40 IU/L‡ 10 (29.4) 26 (50.0) 0.08 

†Median (IQR).  ‡Number (%). 
§Only among patients with detectable HIV viremia.  
¶Significance between source studies determined using Kruskal-Wallis test for continuous variables 

and Pearson χ² test or Fisher’s exact test for categorical variables. ntp – no test performed 

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass 

index; HBeAg, hepatitis B “e” antigen; HBV, hepatitis B virus; HIV, human immunodeficiency virus; 

WHO, World Health Organization.  
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SUPPLEMENTARY FIGURES 
 
Supplementary Figure 1. Hepatitis B virus preC/C gene phylogenetic tree for baseline 
sequences 

 

Individual hepatitis B virus (HBV) sequences from patient samples taken prior to antiviral therapy 

(hollow diamonds) are compared with complete preC/C sequences from HBV referent strains of 

genotypes A-H (GenBank ascension numbers provided in Supplementary Table 1).  Since D7 

and D8 HBV subtypes have close evolutionary distances with genotype E and these subtypes 

have been identified as possible genotype E/D recombinants (1), all patients with phylogenies 

close to these referent strains were considered to have HBV genotype E.  In total, two patients 

harbored genotype A and 84 harbored genotype E.      

 

Reference:  
1.  Abdou Chekaraou M, Brichler S, Mansour W, Le Gal F, Garba A, Dény P, et al. A novel 

hepatitis B virus (HBV) subgenotype D (D8) strain, resulting from recombination between 
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genotypes D and E, is circulating in Niger along with HBV/E strains. J Gen Virol. 2010 

Jun;91(Pt 6):1609–20.  
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