B. R. Parry, The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity, Cell, vol.156, pp.183-194, 2014.

I. Golding and E. C. Cox, Physical nature of bacterial cytoplasm, Phys. Rev. Lett, vol.96, pp.14-17, 2006.

S. C. Weber, A. J. Spakowitz, and J. A. Theriot, Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm, Phys. Rev. Lett, vol.104, pp.27-30, 2010.

A. Javer, Short-time movement of E. coli chromosomal loci depends on coordinate and subcellular localization, Nat. Commun, vol.4, p.3003, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01528429

Z. Long, Microfluidic chemostat for measuring single cell dynamics in bacteria, Lab Chip, vol.13, pp.947-954, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01528419

A. Javer, Persistent super-diffusive motion of Escherichia coli chromosomal loci, Nat. Commun, vol.5, p.3854, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01528410

I. Yu, Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm, Elife, vol.5, p.19274, 2016.

S. R. Mcguffee and A. H. Elcock, Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm, PLoS Comput. Biol, vol.3, p.1000694, 2010.

T. Ando and J. Skolnick, Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion, Proc. Natl Acad. Sci. USA, vol.107, pp.18457-18462, 2010.

S. Hasnain, C. L. Mcclendon, M. T. Hsu, M. P. Jacobson, and P. Bandyopadhyay, A new coarse-grained model for E. coli cytoplasm: accurate calculation of the diffusion coefficient of proteins and observation of anomalous diffusion, PLoS ONE, vol.9, p.106466, 2014.

S. C. Weber, J. A. Theriot, and A. J. Spakowitz, Subdiffusive motion of a polymer composed of subdiffusive monomers, Phys. Rev. E, vol.82, p.11913, 2010.

K. E. Polovnikov, M. Gherardi, M. Cosentino-lagomarsino, and M. V. Tamm, Fractal folding and medium viscoelasticity contribute jointly to chromosome dynamics, Phys. Rev. Lett, vol.120, p.88101, 2018.

M. V. Tamm, L. I. Nazarov, A. A. Gavrilov, and A. V. Chertovich, Anomalous diffusion in fractal globules, Phys. Rev. Lett, vol.114, p.178102, 2015.

A. Amitai and D. Holcman, Polymer model with long-range interactions: Analysis and applications to the chromatin structure, Phys. Rev. E, vol.88, p.52604, 2013.

P. A. Wiggins, K. C. Cheveralls, J. S. Martin, R. Lintner, and J. Kondev, Strong intra-nucleoid interactions organize the Escherichia coli chromosome into a nucleoid filament, Proc. Natl Acad. Sci. USA, vol.107, pp.4991-4995, 2010.

M. C. Munder, A pH-driven transition of the cytoplasm from a fluid-to a solid-like state promotes entry into dormancy, Elife, vol.5, p.9347, 2016.

B. Okumus, Mechanical slowing down of cytoplasmic diffusion allows in vivo counting of proteins in individual cells, Nat. Commun, vol.7, p.11641, 2016.

E. H. Zhou, Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition, Proc. Natl Acad. Sci. USA, vol.106, pp.10632-10637, 2009.

R. P. Joyner, A glucose-starvation response regulates the diffusion of macromolecules, Elife, vol.5, p.9376, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01295659

S. C. Weber, A. J. Spakowitz, and J. A. Theriot, Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci, Proc. Natl Acad. Sci. USA, vol.109, pp.7338-7343, 2012.

J. Männik, R. Driessen, P. Galajda, J. E. Keymer, and C. Dekker, Bacterial growth and motility in sub-micron constrictions, Proc. Natl Acad. Sci. USA, vol.106, pp.14861-14866, 2009.

F. Si, B. Li, W. Margolin, and S. X. Sun, Bacterial growth and form under mechanical compression, Sci. Rep, vol.5, p.11367, 2015.

M. A. Unger, H. Chou, T. Thorsen, A. Scherer, and S. R. Quake, Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science, vol.288, pp.113-116, 2000.
DOI : 10.1126/science.288.5463.113

J. Sheats, B. Sclavi, M. Cosentino-lagomarsino, P. Cicuta, and K. D. Dorfman, Role of growth rate on the orientational alignment of Escherichia coli in a slit, Roy. Soc. Open Sci, vol.4, p.170463, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01652552

O. Espeli, R. Mercier, and F. Boccard, DNA dynamics vary according to macrodomain topography in the E. coli chromosome, Mol. Microbiol, vol.68, pp.1418-1427, 2008.

Z. Long, Measuring bacterial adaptation dynamics at the single-cell level using a microfluidic chemostat and time-lapse fluorescence microscopy, Analyst, vol.139, pp.5254-5262, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01528532

T. J. Lampo, S. Stylianidou, M. P. Backlund, P. A. Wiggins, and A. J. Spakowitz, Cytoplasmic RNA-protein particles exhibit non-gaussian subdiffusive behavior, Biophys. J, vol.112, pp.532-542, 2017.
DOI : 10.1016/j.bpj.2016.11.3208

URL : http://www.cell.com/article/S0006349516343223/pdf

É. Fodor, Activity-driven fluctuations in living cells, Europhys. Lett, vol.110, p.48005, 2015.

S. Bakshi, A. Siryaporn, M. Goulian, and J. C. Weisshaar, Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells, Mol. Microbiol, vol.85, pp.21-38, 2012.

F. Wu, A. Japaridze, X. Zheng, J. W. Kerssemakers, and C. Dekker, Direct imaging of the circular chromosome in bacteria, 2018.

Y. Deng, M. Sun, and J. W. Shaevitz, Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells, Phys. Rev. Lett, vol.107, p.158101, 2011.

A. Amir, F. Babaeipour, D. B. Mcintosh, D. R. Nelson, and S. Jun, Bending forces plastically deform growing bacterial cell walls, Proc. Natl Acad. Sci. USA, vol.111, pp.5778-5783, 2014.
DOI : 10.1073/pnas.1317497111

URL : http://www.pnas.org/content/111/16/5778.full.pdf

H. H. Tuson, Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity, Mol. Microbiol, vol.84, pp.874-891, 2012.

K. A. Dill, K. Ghosh, and J. D. Scmidt, Physical limits of cells and proteomes, Proc. Natl Acad. Sci. USA, vol.108, pp.17876-17882, 2011.

B. Lin, J. Yu, and S. A. Rice, Direct measurements of constrained Brownian motion of an isolated sphere between two walls, Phys. Rev. E, vol.62, pp.3909-3919, 2000.

D. C. Duffy, J. C. Mcdonald, J. A. Schueller, and G. M. Whitesides, Rapid prototyping of microfluidic systems in Poly(dimethylsiloxane), Anal. Chem, vol.70, pp.4974-4984, 1998.

A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, Computer control of microscopes using ?Manager, Curr. Protoc. Mol. Biol, vol.14, p.20, 2010.