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Abstract
We summarise different results on the diffusion of a tracer particle in lattice gases of hard-
core particles with stochastic dynamics, which are confined to narrow channels—single-
files, comb-like structures and quasi-one-dimensional channels with the width equal to 
several particle diameters. We show that in such geometries a surprisingly rich, sometimes 
even counter-intuitive, behaviour emerges, which is absent in unbounded systems. This is 
well-documented for the anomalous diffusion in single-files. Less known is the anomalous 
dynamics of a tracer particle in crowded branching single-files—comb-like structures, where 
several kinds of anomalous regimes take place. In narrow channels, which are broader than 
single-files, one encounters a wealth of anomalous behaviours in the case where the tracer 
particle is subject to a regular external bias: here, one observes an anomaly in the temporal 
evolution of the tracer particle velocity, super-diffusive at transient stages, and ultimately 
a giant diffusive broadening of fluctuations in the position of the tracer particle, as well as 
spectacular multi-tracer effects of self-clogging of narrow channels. Interactions between 
a biased tracer particle and a confined crowded environment also produce peculiar patterns 
in the out-of-equilibrium distribution of the environment particles, very different from the 
ones appearing in unbounded systems. For moderately dense systems, a surprising effect of a 
negative differential mobility takes place, such that the velocity of a biased tracer particle can 
be a non-monotonic function of the force. In some parameter ranges, both the velocity and the 
diffusion coefficient of a biased tracer particle can be non-monotonic functions of the density. 
We also survey different results obtained for a tracer particle diffusion in unbounded systems, 
which will permit a reader to have an exhaustively broad picture of the tracer diffusion in 
crowded environments.
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1. Introduction

Transport of molecules and small particles in pores, channels, 
or other quasi-one-dimensional systems has attracted a great 
deal of attention within several last decades [1]. On the one 
hand, this interest stems from the relevance of the problem 
to a variety of realistic physical, biophysical and chemical 
systems, as well as important applications in nanotechnology 
and nanomedicine, e.g. in the creation of artificial molecu-
lar nanofilters. Few stray examples include, e.g. transport in 
porins [2–4], through the nuclear pores in eukaryotic cells 
[5–7], or along the microtubules [8] and dendritic spines [9], 
transport of microswimmers in narrow pores [10–12], trans-
location of polymers in pores [13–18] and their sequencing in 
nanopore-based devices [19], ionic currents across nanopores 
[20, 21], ionic liquids in supercapacitors [22–29], nano- and 
microfluidics [30–33] and transport of inertial particles 
advected by laminar flows [34–36]. On the other hand, the 
diversity and the significance of the problems emerging in 
this field represent a challenging area of research for theoreti-
cians [37].

Molecular crowding has been recognised as an important 
factor (see, e.g. [38–53] and references therein), which strongly 
affects the behaviour of currents across the narrow channels, as 
well as the dynamics of individual molecules or probes, which 
move either due to thermal activation only, or are also sub-
ject to external constant forces. This latter case, i.e. dynamics 

of biased particles in crowded narrow channels is precisely 
the chief subject of this topical review. More specifically, we 
present here an overview of analytical and numerical work 
which deals with the behaviour observed in narrow channels—
single-files, ramified single-files (comb-like structures) and 
quasi-one-dimensional channels with the width equal to sev-
eral particle diameters—with rigid, structureless hard-walls, 
densely populated by a quiescent mixture of identical environ-
ment particles with purely repulsive short-ranged interactions. 
The environment particles undergo stochastic dynamics due 
to thermal noise resulting, e.g. from the interactions with the 
solvent present in the channel. In addition, there is a special 
tracer particle, which has the same size and the same interac-
tion potential as the environment particles, but is also subject 
to a regular constant force F pointing along the channel (see 
figure 1). As one may notice, these settings mimic the stand-
ard experimental set-up of the so-called active micro-rheology  
[31, 54–61] and hence, the tracer particle can be thought of as the 
probe designed to measure, at a molecular scale, the response of 
the confined passive molecular crowding environment.

The channel geometry on which we concentrate here is 
given by two particular examples (see figure  2)—2D ideal 
strips, such as ones printed on a substrate and used in micro-
fluidic devices [31], and 3D ideal capillaries; both types of 
systems are macroscopically large in the direction of the 
applied bias, and in the perpendicular to F direction have 
dimensions which are comparable to the diameters of the 
environment particles. The walls of the channels are perfect 
and do not contain any impurities or geometric corrugations, 
and the cross-section is constant across the channel. We note 
that a large amount of an available theoretical work concerns 
lattice systems with stochastic dynamics and interactions 
between the tracer particle and the environment particles, as 
well as between the environment particles themselves, being a 
mere hard-core exclusion. In realistic systems, of course, the 
particles evolve in continuous-space and the interactions may 
extend beyond the nearest-neighbouring particles, for exam-
ple because of hydrodynamic or electrostatic interactions. 
This simplification, however, permits to unveil some univer-
sal features of the dynamical behaviour beyond the linear in 
the force F regime. Whenever possible, we also compare the 
theoretical predictions against the results of numerical Monte 
Carlo or molecular dynamics simulations.

The purpose of this review is three-fold. First, we pro-
pose a complete and comprehensive picture of essentially 

Figure 1. Tracer particle, subject to a regular constant force F 
pointing along the channel, in a confined bath of crowding particles.
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non-equilibrium, cooperative phenomena emerging in crowded 
narrow channels in response to the passage of a biased intruder. 
We proceed to show that there is a large number of spectacu-
lar effects and some of them take place beyond the regime of 
the linear response. Strikingly, the behaviour appears to be dis-
tinctly different in extremely narrow channels—the so-called 
single-files and in somewhat broader channels, in which the 
particles can bypass each other. Second, we note that physical 
situations involving a single particle pulled by a constant force 
through a host medium composed of interacting mobile particles 
represents the typical settings for studying the linear-response 
Einstein relation (see, e.g. recent [62–64]), which links the dif-
fusion coefficient of this particle in the absence of the force, and 
the mobility in the presence of the latter. We comment on the 
validity of the Einstein relation throughout the review and show 
that, curiously enough, it may be associated with some subdomi-
nant contributions to the dynamics. Lastly, as it has been already 
understood for narrow channels in which all the particles experi-
ence a constant bias—the so-called driven diffusive systems (see, 
e.g. [38–41]), the explicit treatment of the multiple degrees of 
freedom of the environment is of an essential importance. Here, 
as well, we proceed to show that many interesting phenomena 
take place due to the interplay between these degrees of freedom 
and the dynamics of the tracer particle. These effects are over-
looked once one represents the environment in an integrated, 
effective form and studies a Markovian Langevin dynamics of 
the tracer particle in an effective environment.

2. Tracer diffusion in single-files, on infinite combs 
and on infinite (unbounded) lattices of spatial 
dimension d � 2

To set up the scene, we recall here some most prominent 
results on the tracer particle (TP) diffusion in interacting par-
ticles systems. We do not consider as our goal to provide an 
exhaustive review and to pay a due tribute to all the outstanding 
contributors to this field—this would require too much space. 
Instead, we merely list below some very significant achieve-
ments relevant to the subject of our review, which were spread 
across many different disciplines and journals within the last 
five decades. This will permit the reader to have a somewhat 
broader picture. In this way, as well, many remarkable and 
novel phenomena specific to the tracer diffusion in narrow 
channels will be made more apparent.

2.1. Unbiased tracer diffusion

It was understood for a long time that diffusion of a TP in 
a dynamical background formed by other interacting and 

mobile (randomly moving) particles is coupled in a non-triv-
ial way to the evolution of the environment itself (see, e.g. 
[65–67]). Clearly, in a sufficiently dense system, when a TP 
displaces in one unit of time over one unit of length away from 
its location occupied at the previous unit of time, it leaves a 
void of a clear space—a vacancy—behind it. Then, it is often 
more probable that the TP will return back to this location, 
than keep on going away from it where its motion will be 
hindered by other particles. This ‘anti-persistence’ of the TP 
motion and the circumstance whether it will be ‘permitted’ by 
the environment particles to return back depends essentially 
on how fast the environment can rearrange itself and close the 
void. In turn, this depends on plenty of physical factors—the 
density of the environment, the particle-particle interactions, 
the temperature and the viscosity of the embedding solvent, if 
any. Hence, the TP diffusion coefficient is expected to acquire 
some dependence on all the aforementioned parameters.

2.1.1. Single-files. The single-file concept was introduced 
first in biophysical literature [68] to describe diffusion 
through pores in membranes, which are so narrow such that 
the initial order of particles is preserved at all times. In mid 
60 s it was realised that in single-files the effect of interactions 
with the environment can be even stronger than a mere renor-
malisation of the diffusion coefficient—it was shown that the 
single-file constraint can change the very temporal evolution 
of the TP mean-squared displacement X2

t . Analysing the TP 
dynamics in a single-file of interacting diffusions, it was dis-
covered in [69] that X2

t  obeys, in the asymptotic limit t → ∞, 
a slower than diffusive law, X2

t ∼
√

t , i.e. X2
t  exhibits not a 

linear Stokes–Einstein but an anomalous sub-diffusive growth 
with time. The point is that in single-files—an extreme case of 
narrow channels—due to the constraint that the environment 
particles cannot bypass each other, in order to explore a dis-
tance Xt the TP has to involve in a cooperative motion  ∼ρXt  
particles of the environment, with ρ being their mean density6. 
In consequence, the effective frictional force exerted by the 
medium on the TP also scales with the distance travelled by 
the TP, which entails a sub-diffusive motion7. In a way, this 
resembles (and in fact, it is linked on the level of the underly-
ing mathematics) dynamics of a tagged bead in an infinitely 
long Rouse polymer chain; in order to explore progressively 

Figure 2. Two-dimensional strip-like lattice with width L  =  3 and a 3D, ‘capillary’-like simple cubic lattice with side L  =  3.

6 See, e.g. the discussion after equation (2.22) in [70] for more details.
7 The situation is, of course, different in ‘single-files’ in contact with a 
vapour phase such that the environment particles can desorb from and 
re-adsorb back to the channel. In this case the order is not preserved and 
the TP undergoes a standard diffusive motion with, however, the diffusion 
coefficient dependent on all the system’s parameters [71, 72].
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longer and longer spatial scales the tagged bead has to involve 
in motion more and more other beads of the chain [73].

This remarkable result has been subsequently re-derived in 
different settings by using a variety of analytical techniques 
[74–82] (see also recent [83, 84] for a more extensive review) 
to show that the exact leading asymptotic behaviour of X2

t  
obeys

X2
t ∼

t→∞

(1 − ρ) a2

ρ

√
2
π

t
τ

, (1)

where a is the lattice spacing and τ is the mean waiting time 
between jumps. When ρ → 1, (i.e. the space available for dif-
fusion shrinks), the right-hand-side of equation (1) vanishes, 
since the system becomes completely blocked. In turn, in 
the limit ρ → 0 the right-hand-side of equation (1) diverges, 
meaning that a faster growth has to take place—in this limit, 
of course, one expects the standard Brownian motion result 
X2

t ∼ t to hold. For arbitrarily small, but finite ρ, the result in 
equation  (1) will describe the ultimate long-time behaviour, 
while the diffusive law will appear as a transient.

The time dependence of equation  (1) was also observed 
experimentally (see, e.g. [85–88] and also [83, 84]), which is 
not surprising given its universal nature. The TP dynamics in 
single-files still represents a challenging playground for test-
ing different analytical techniques and probing other proper-
ties: convergence of the distribution of Xt to a Gaussian [78], 
explicit form of the distribution of Xt at arbitrary, not neces-
sarily large times in dense systems [89], the TP dynamics 
in the presence of a slower-than-diffusive environment [90], 
large deviations properties [91–95] and emerging correlations 
[70, 96–100]. Surprisingly, some unexpected features of this 
seemingly exhaustively well-studied process keep on being 
revealed: it was shown recently [101] (see also [92, 102, 103]) 
that the preservation of the initial order implies, in fact, an 
infinite memory of the process on the specific initial condi-
tions—in systems, in which the particles of the environment 
are initially out-of-equilibrium (also called a‘quenched’ initial 
condition), the growth of the mean-squared displacement of 
the TP proceed a factor of 

√
2 slower, than in systems with an 

equilibrium (also called ‘annealed’ or uniform) initial distri-
bution of the environment particles8. In [92] such a dichotomy 
in dynamics under annealed and quenched initial conditions 
has been also shown to persist for higher-order cumulants of 
the TP position, for which it becomes even more striking.

2.1.2. Comb-like structures. Before we pass from single-files 
to the behaviour on unbounded regular lattices of dimension 
d higher than 1, it seems relevant to focus on some geometri-
cally ‘intermediate’ situation, in which a variety of anomalous 
diffusions emerge. Recently [105] studied the dynamics of a 
TP in the presence of hard-core environment particles on a 
comb-like lattice, i.e. a 1D backbone (see figure 3) connected 
at each site to a tooth—an infinite 1D lattice, with passages 
of particles between the teeth being allowed only along the 
backbone. Dynamics of a single isolated particle in such a 

system has been widely studied in the past as a toy model 
of dynamics in a geometrically disordered system [106]. It is 
well known that the mean-squared displacement of a single 
TP (in the absence of the environment particles) obeys, at suf-
ficiently long times, X2

t ∼
√

t  [106, 107], i.e. the TP moves 
sub-diffusively along the x-axis due to progressively longer 
and longer excursions on the teeth. [105] thus analysed a natu-
ral extension of this model by adding stochastically moving 
environment particles and considering two situations: (a) the 
environment particles can move everywhere, i.e. both along 
the backbone and along the teeth, while the TP can go along 
the backbone only, and (b) both the TP and the environment 
particles are permitted to go everywhere.

At the first glance, the case (a) seems to be very close to 
the situation discussed in [71, 72], i.e. a 1D lattice attached to 
a reservoir of particles. Hence, one may expect essentially the 
same ‘diffusive’ behaviour, i.e. X2

t ∼ Dt, where the diffusion 
coefficient D captures the combined effect of the geometry and 
dynamics. In reality, the behaviour appears to be more com-
plicated. Bénichou et al [105] focused on densely populated 
systems and analysed the TP mean-squared displacement in 
the leading in the density ρ0 = 1 − ρ of vacancies order, in 
the limit ρ0 → 0. It was shown that, when the vacancies are 
initially uniformly spread across the comb with mean density 
ρ0, the mean-squared displacement of the TP along the x-axis 
obeys, for times t sufficiently large but less than a certain large 
cross-over time t1 ∼ 1/ρ4

0 ln
8(1/ρ0):

lim
ρ0→0

X2
t

ρ0
=

1
25/4Γ(7/4)

t3/4, (2)

where Γ(x) is the gamma-function, which crosses over for 
t  >  t1 to the diffusive behaviour of the form

lim
t→∞

X2
t

t
= ρ2

0

(
ln

1
ρ0

)2

. (3)

The results in equations  (2) and (3) reveal two interesting 
features: first, it is the existence of a transient regime with a 
sub-diffusive behaviour, which is more extended in time the 
denser the system is. Second, in the ultimate diffusive regime, 

Figure 3. Unbiased tracer particle (red filled circle) on a comb-like 
lattice populated by hard-core environment particles (blue filled 
circles). The x axis is a backbone, whereas the orthogonal lines are 
the infinitely long teeth of the comb.

8 Note that this result has been obtained earlier in [104], but was not explic-
itly mentioned in this work.
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the diffusion coefficient of the TP exhibits a rather unusual 
non-analytic dependence on the density of vacancies.

Bénichou et  al [105] described an interesting out-of-
equilibrium situation when the vacancies are all initially 

placed on the backbone only, with a linear density ρ(lin)
0 � 1. 

Interestingly enough, in this case the mean-squared displace-
ment of the TP grows sub-linearly

X2
t =

ρ
(lin)
0

27/4Γ(5/4)
t1/4, (4)

for any (sufficiently large) time t, without any crossover to 
an ultimate diffusive regime. We note, as well, that all even 
cumulants of the TP displacement follow the dependences 
in equations (2) and (3) in case of a uniform distribution of 
vacancies on the comb, and the dependence in equation (4) in 
case of their placement on the backbone only, which signals 
that the distribution of the TP position is a Skellam distribution 
(see, [105] for more details). This means that the distribution 
converges to a Gaussian at long times, with an appropriately 
rescaled TP position.

Lastly, in the case (b) when both the environment particles 
and the TP can go along the teeth, the following dynamical 
scenario has been predicted and confirmed through an exten-
sive numerical analysis [105]. For an extended time interval 
0 � t � t(1) ∼ 1/ρ2

0, one has X2
t ∼ t3/4, in which regime the 

TP has not had enough time to explore any given tooth because 
its excursions were hindered by the environment particles. 
This regime is followed, on the time interval t(1) � t � t(2) 
(precise form of t(2) was not provided in [105]), by a rather 
unusual dependence X2

t ∼ t9/16, associated with the large-t 
tail of the corresponding distribution of the time spent by the 
TP on a given tooth. Ultimately, for t � t(2), one finds again 
X2

t ∼ t3/4. Note that the coincidence of the dynamical expo-
nent 3/4 characterising the initial and the final stages is occa-
sional; the underlying physics is completely different. Note, 
as well, that at all stages the growth of the TP mean-squared 
displacement proceeds faster than in case of a single isolated 
TP on an empty comb (X2

t ∼ t1/2). This is a consequence of 
interactions with the environment particles, which do not per-
mit the TP to enter too often into the teeth and also to travel 
too far within each tooth.

2.1.3. Unbounded lattices with d � 2. On lattices of spa-
tial dimension d � 2, the ultimate long-time dynamics of the 
TP is diffusive9, such that X2

t = 2dDt. As we have already 
remarked, here the main issue is the calculation of the effec-
tive diffusion coefficient which embodies the full dependence 
on both the rates of the TP and of the environment particles, 
their density and the type of the lattice (if any), on which 
the evo lution takes place. It was fairly well understood that 
calcul ation of the diffusion coefficient is a genuine many-
body problem, which is unsolvable in the general case and 
one has to resort to either density expansions or some other 
approx imations, verified by numerics. Numerous approaches 

have been developed and a large number of different results, 
both analytical and numerical, have been obtained (see, e.g. 
[111–121] for a few stray examples, [122] for some early 
review and [123] for a more recent summary). We focus 
below par ticularly on two approaches, proposed in [112] and  
[120, 121], respectively, which will be used in what follows 
for the analysis of the TP dynamics in narrow channels.

In [112], the self-diffusion constant of a tracer on regular 
lattices partially populated by identical hard-core particles has 
been analysed using an approximate approach, based on a per-
turbative expansion in powers of ρ(1 − ρ), which is exact at 
the two extrema of the volume fraction, ρ = 0 and ρ = 1. This 
approach gives, in particular, for an unbounded d-dimensional 
hyper-cubic lattice the following expression for the TP diffu-
sion coefficient

D =
(1 − ρ)a2

2dτ
f (ρ,ω), (5)

where 1/τ  is the jump frequency of the TP, a is the lattice 
spacing, and ω = τ∗/τ with 1/τ∗ being the characteristic 
jump frequency of the environment particles. Lastly, f (ρ,ω) 
is the correlation factor which is explicitly given by

f (ρ,ω) =
(ω(1 − ρ) + 1) (1 − α)

ω(1 − ρ) + 1 − α (1 + ω(1 − 3ρ))
, (6)

with α being one of the Watson integrals [124]

α =
1

(2π)d

∫ π

−π

dk1 . . .

∫ π

−π

dkd
sin2 (k1)∑d

j=1 (1 − cos (kj))
. (7)

This latter factor relates D to the propagator of a special type 
of random walk on a d-dimensional hyper-cubic lattice. For 
d  =  1, one has α ≡ 1 and hence, D vanishes, as it should, 
since here we enter into the realm of a single-file diffusion. 
On comparing the analytical predictions against available at 
that time results of Monte Carlo simulations in d  =  3 systems, 
the authors demonstrated that their approximation gives a 
good interpolation formula in between of the two extrema. In  
[125, 126] and [127], the expression in equation (5) has been 
generalised, using a similar approach based on a decoupling 
of the TP-particle-particle correlation function into a product 
of two TP-particle correlation functions, for situations when 
the density ρ of the environment particles is not explicitly 
conserved (unlike, e.g. the case of a monolayer in a slit-pore, 
confined between two solid surfaces) but the particles undergo 
continuous exchanges with a reservoir maintained at a constant 
chemical potential. References [125, 126] focused specifically 
on such a situation in two dimensions, i.e. a monolayer on top 
of a solid surface exposed to a vapour phase, while [127] pre-
sented an explicit expression for the TP diffusion coefficient 
in three-dimensions, which case represents some generalised 
model of a dynamic percolation. The resulting expressions 
for the diffusion coefficient are quite cumbersome and we 
do not present them here, addressing an interested reader to 
the original papers [125–127]. We note parenthetically that in 
case when exchanges with the vapour are permitted, dynam-
ics becomes diffusive and D is well-defined [71, 72] even in 
single-files, since the initial order is destroyed.

9 See, however, [108–110] for the non-diffusive behaviour in case of an 
inhomogeneous crowding.
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A different line of thought has been put forth in [120, 121], 
which studied the TP dynamics in a very densely populated 
system of hard-core particles, assuming that a continuous 
‘reshuffling’ of the environment occurs due to the dynamics of 
the ‘vacancies’ (i.e. vacant sites, present on the lattice at mean 
density ρ0 = 1 − ρ), rather than of the particles themselves. 
Focussing on such a ‘vacancy-assisted’ dynamical model on a 
2D square lattice of a unit lattice spacing, the authors studied 
first the case of just a single vacancy, which moves in the discrete 
time n, n = 0, 1, 2, . . ., by exchanging its position, at each tick of 
the clock, with one of the neighbouring particles (including the 
TP, once it appears on the neighbouring site), chosen at random. 
In such a 2D model, any particle including the TP performs con-
certed random excursions and can, in principle, travel to infinity 
from its initial position. By counting all possible paths which 
bring the TP to position X at time moment n, the authors were 
able to calculate exactly the full probability distribution Pn(X) 
of finding the TP at this very site at time moment n. Surprisingly, 
this distribution appears to be non-Gaussian even in the limit 
n → ∞ and the mean-squared displacement X2

n  shows a striking 

sub-diffusive behaviour in the leading in n order [120]

X2
n =

ln(n)
π(π − 1)

, (8)

with a very non-trivial numerical amplitude (which depends, 
of course, on the lattice structure).

Brummelhuis and Hilhorst [121], focused on the case of a 
very small density of vacancies. Discarding the events when 
any two vacancies appear at the adjacent sites (whose proba-
bility is of order of ρ2

0), an analogous expression for Pn(X) has 
been derived, which does converge to a Gaussian in the limit 
n → ∞. The TP dynamics in this case appears to be diffusive, 
since now the TP displacement is a sum of many independ-
ent events. In consequence, the mean-squared displacement, 
at sufficiently large n, obeys

X2
n =

ρ0

π − 1
n, (9)

with, again, a very non-trivial numerical amplitude, which 
depends on the lattice structure. We emphasise that this result 
is only valid in the linear in the density of vacancies ρ0 order. 
There exist, of course, ρ0-dependent corrections to the diffu-
sion coefficient. Expanding the expression in equation (5) in 
Taylor series in powers of ρ0 and retaining only the leading 
term in this expansion, one may straightforward verify that it 
coincides with the expression in equation (9).

The result in equation (9) has been subsequently general-
ised in [128] for the situations where the TP interacts with 
the environment particles in a different way, than the parti-
cles interact between themselves, which situation mimics, 
e.g. dynamics of an intruder (e.g. an Indium atom) in the 
close-packed upper most layer of atoms in a metal (e.g. Cu), 
in the presence of one or a few naturally existing defects of 
packing—the vacancies [129, 130]. The expression derived in 
[128] revealed an interesting non-monotonic dependence of 
the self-diffusion coefficient on the strengths of these interac-
tions. Vacancy-assisted dynamics on different types of lattices 
has been amply discussed in [131–136].

By assuming the validity of the Einstein relation, a gener-
alisation of the expression in equation (9) for a hyper-cubic 
lattice of an arbitrary dimension d can be obtained from the 
expression for the TP mobility (see the supplementary infor-
mation to [137]). This gives the following expression

D =
ρ0

2d
1 − α

1 + α
, (10)

where α is defined in equation (7), τ∗ = τ = 1 and a  =  1. We 
note that equation (10) coincides with the leading term in the 
expansion in Taylor series in powers of ρ0 of the expression 
in equation (5).

2.2. Biased tracer diffusion

We turn to the situations when the particles of the environ-
ment still experience no other regular force except for random 
thermal ones, but the TP is subject to some regular constant 
force F pointing along the X-axis. It should be emphasised 
that the presence of a constant bias exerted on the TP only 
does not merely add another dimension to the parameter 
space, but crucially changes the dynamical behaviour in the 
system under study. Within the context of the aforementioned 
experimental technique—micro-rheology [31, 54–60]—the 
situations described in section 2.1 correspond to the so-called 
passive micro-rheology, when the TP, as well as the environ-
ment particles move solely due to thermal forces and the 
system is in thermal equilibrium. On the contrary, when the 
TP is biased by an external force, the situation corresponds 
to the typical settings of an active micro-rheology. Here, the 
TP entrains in motion the environment particles appearing in 
its vicinity, which produces micro-structural changes in the 
host medium and brings it out of equilibrium. This means that 
the system becomes characterised by highly asymmetric sta-
tionary density profiles of the environment particles, in the 
frame of reference moving with the TP. Except for the sin-
gle-files, which still exhibit a very particular dynamics (i.e. 
the TP creeps, instead of moving ballistically, Xt ∼

√
t , and 

the density profiles around it do not converge to a stationary 
form), in higher dimensions the TP attains a constant velocity 
V  which results from an interplay between the jamming of the 
medium, produced by the TP, and diffusive re-arrangements 
of the environ ment. Various aspects of this problem have been 
studied experimentally (see, e.g. [138–140]), using a combi-
nation of numerical simulations and theoretical approaches 
(see, e.g. [141, 142]) and by extensive numerical simulations 
(see, e.g. [143–145]). An inverse problem in which the TP is 
kept fixed (e.g. by an optical tweezer), while the environment 
particles are subject to a constant force has also been rather 
extensively studied [146–149]. Below we present some most 
important results for single-files and unbounded, infinite in 
all direction systems, obtained for the models of lattice gases 
with stochastic dynamics.

2.2.1. Single-files. A model with a biased TP travelling in a 
lattice gas of particles with symmetric hopping probabilities 
has been studied in [150] in the particular limit when the force 
is infinitely large, such that the TP performs a totally directed 

J. Phys.: Condens. Matter 30 (2018) 443001



Topical Review

7

random walk in the direction of the applied bias, constrained 
by hard-core interactions with the environment particles. It 
was shown in [150] that when the TP jumps instantaneously to 
the neighbouring lattice site on its right, as soon as it becomes 
vacant, and does not jump in the opposite direction, its mean 
displacement obeys at sufficiently long times

Xt = γ
√

2D0t, (11)

where D0 is the Stokes–Einstein diffusion coefficient a single 
isolated environment particle and the amplitude γ is defined 
implicitly as the solution of the following transcendental 
equation

γI+(γ) = ρ0, I+(γ) =
√

π

2
exp

(
γ2

2

)(
1 − erf

(
γ√
2

))
,

 (12)
with erf(x) being the error function. Remarkably, the TP does 
not move ballistically, i.e. does not have a constant velocity, 
but rather creeps. This happens because the displacement of 
the TP becomes effectively hindered by the environment par-
ticles; at each step to the right, the TP ‘pumps’ a vacancy to 
the left, such that the density of the environment particles in 
the phase in front of the TP effectively grows. In turn, there 
appears a sort of a traffic jam in front of the TP, which also 
grows in size in proportion to the distance Xt travelled by the 
TP. This means that the system is out of equilibrium (in con-
trast to the situations described in section  2.1) at any time, 
the density profile of the environment is a step-like function 
propagating to the right away of the TP such that more and 
more of the environment particles are entrained by the TP in a 
directed motion. Viewing Xt as a random process described by 
a Langevin equation, one may argue [150] that in this situa-
tion there is an effective frictional force exerted on the TP due 
to the appearance of the propagating traffic jam in front of it, 
which grows in proportion to Xt.

In [151, 152] a more complicated situation has been ana-
lysed when the force F exerted on the TP is finite, such that it 
may perform jumps in both directions10. It was shown in [151, 
152] that the TP mean displacement still has a form in equa-
tion (11), but now the amplitude γ is determined by a more 
complicated transcendental equation

(
γI+(γ) +

e−βF − ρ0

1 − e−βF

)(
γI−(γ) +

1 − ρ0e−βF

1 − e−βF

)
=

ρ2
0e−βF

(1 − e−βF)
2 ,

 (13)
where β is the reciprocal temperature and

I−(γ) =
√

π

2
exp

(
γ2

2

)(
1 + erf

(
γ√
2

))
. (14)

References [151, 152] have also demonstrated that the density 
profiles of environment particles in front of and past the TP 
attain a stationary form in variable x = (X − Xt)/Xt  charac-
terised by a dense region in front of the TP and a depleted 
region in its wake. In consequence, in the laboratory frame, 
the environment particles progressively accumulate in front of 

the TP, and the size of the depleted region past the TP, which is 
devoid of particles, also grows progressively in time. Overall, 
the biased TP entrains in a directed motion the entire system, 
which is quiescent in the absence of the external bias. This is 
quite evident for the particles in front of the TP, but less triv-
ial for the particles in its wake. The explanation is, however, 
rather simple and relies on one of the results presented in [78]; 
namely, it was shown that in case of an asymmetric layout of 
the environment particles around an unbiased TP, such that 
they are initially present past the TP and are absent in front 
of it, the mean displacement of the TP follows Xt =

√
t ln(t), 

i.e. an unbiased TP moves faster than 
√

t  due to an additional 
logarithmic factor, which stems from the pressure exerted on 
the TP by the particle phase behind it. This means that in case 
of a symmetric placement of the environment particles around 
the biased TP, once the TP goes away from the phase behind 
it, the closest to the TP particle sees the void space in front of 
it and starts to move as 

√
t ln(t) catching eventually the TP, 

which moves as 
√

t .
The results in equations (11) and (13) permit to make the 

following, conceptually important conclusion: define a gener-
alised, time-dependent mobility µt  of the TP in the presence 
of the force as

µt = lim
F→0

Xt

Ft
, (15)

and the time-dependent diffusivity Dt in the absence of the 
external force as Dt = X2

t /2t. Our aim is now to check if the 
Einstein relation µt = βDt  holds. Note that, first, for stan-
dardly defined mobility and the diffusion coefficient, which 
requires going to the limit t → ∞, the Einstein relation trivi-
ally holds since 0  =  0. A legitimate and non-trivial question is 
if it holds as well for time-dependent µt  and Dt. Calculating 
Dt from equation (1) and µt—from equations (11) and (13), 
one realises that the Einstein relation holds exactly in the case 
when the initial distribution of the environment particles is 
random [151, 152], and does not hold when the latter is reg-
ular [101], which is a non-trivial result. The validity of the 
Einstein relation in single-file systems has been also investi-
gated via molecular dynamics simulations in models of granu-
lar (inelastic) particles in [158, 159].

Within the last decade many other characteristic features of 
biased TP diffusion in single-file systems have been studied. 
In particular, the mean displacement of a biased TP has been 
analysed in case when the initial distribution of the environ-
ment particles has a shock-like profile: a higher density of the 
environment particles from the left from the TP than from the 
right of the TP, and the TP is subject to a constant force F 
pointing towards the higher density phase, (which mimics an 
effective attraction towards this phase) [160]. It was shown 
that Xt  obeys equation (11) in which the amplitude γ is deter-
mined implicitly as the solution of a quite complicated tran-
scendental equation (see, [160]). Interestingly enough, the TP 
not always moves in the direction of the force but only when 
the latter exceeds some threshold value Fc. For F  <  Fc, the TP 
moves against the force and the high density phase expands. 
When the force is exactly equal to this threshold value, γ = 0 
such that the mean displacement vanishes; in this particular 

10 See also [153] for some applications in biophysics, [154–156] for a 
relevant analysis within the harmonisation approximation and [157] for the 
solution in a similar mathematical set-up.
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case, the mean-squared displacement is not zero, X2
t ∼

√
t  

with a prefactor dependent on the densities in both phases 
(see, [160]).

In recent [161] dynamics of a pair of biased TPs in a single-
file has been analysed in case when they experience action 
of the forces pointing in the opposite directions, such that 
the forces tend to separate the TPs. It was shown that in this 
situation, however, the TPs do indeed travel in the opposite 
directions only when the forces exceed some critical value; 
otherwise, the pair of TPs remains bounded.

The full distribution of the TP position as well as its cumu-
lants have been calculated exactly for an arbitrary time in the 
leading order in the density of vacancies ρ0 [89], upon an 
appropriate generalisation of the approach developed in [121]. 
The TP position distribution has been also determined in case 
of an arbitrary particles density within a certain decoupling 
approximation [162, 163], for the situation when exchanges 
of particles with a reservoir are permitted. It was shown that 
in the asymptotic limit t → ∞ the distribution converges to 
a Gaussian. Interestingly enough, it was realised that in the 
presence of a bias the diffusion coefficient can be a non-
monotonic function of the environment particles density ρ. 
Lastly, the emerging correlations in such systems have been 
analysed in [164, 165].

We close this subsection by noting that the models with 
a biased TP evolving in a single-file of particles with sym-
metric hopping probabilities appear also in different contexts 
(seemingly unrelated to the TP diffusion). In particular, they 
describe the dynamics of the front of a propagating precur-
sor film which emanates from a spreading liquid droplet  
[166–170] or a time evolution of a boundary of a monolayer 
on a solid surface [171].

2.2.2. Density profiles of the environment particles. On 
unbounded lattices of spatial dimension d � 2, the biased 
TP attains ultimately a constant velocity V  along the direc-
tion of the force, whose dependence on system’s parameters 
is rather non-trivial and will be discussed below. At the same 
time, the TP alters the environment, involving in a directional 
motion some of the environment particles and hence, drives 
the environ ment out of equilibrium—it is no longer homo-
geneous and some density profiles emerge. In the frame of 
reference moving with the TP, these density profiles attain a 
steady-state form meaning that, (in contrast to the case of sin-
gle-files), here the entrainment is only partial, in the sense that 
upon an encounter with the TP an environment particle travels 
alongside the TP for some random time, leaving it afterwards 
and being replaced by another particle. The total amount of 
the entrained environment particles stays constant, on aver-
age, in time.

The emerging steady-state density profiles have been stud-
ied in detail in [125–127] for square and simple cubic lattices. 
It was realised that, in general, in front of the TP and in the 
direction perpendicular to the force, the approach of the per-
turbed (local) density to its average value is exponential, with 
the characteristic length dependent on the coordinates, such 
that they are asymmetric. In the wake of the TP, the form of 

these profiles depends essentially on whether one deals with 
the situation in which the number of the environment parti-
cles is explicitly conserved, or the system is exposed to some 
vapour phase and the environment particle may desorb from 
and re-adsorb into the system—in this latter case the particles 
number fluctuates in time around some average value. Then, 
the local density past the TP approaches the unperturbed value 
exponentially fast, but the characteristic length protrudes over 
much larger scales than in front of the TP. The situation is very 
different in the conserved number case. Here, the local den-
sity approaches its unperturbed value as a power-law, meaning 
that the environment remembers the passage of the TP over 
very large temporal and spatial scales. The approach of the 
local density ρ(λ) to the mean density ρ obeys [125–127]

ρ− ρ(λ) ∼ C
λ(d+1)/2 , (16)

where λ is the distance past the TP. The amplitude C in this 
decay law has been also calculated in [125–127].

We close this subsection with the following two remarks:
First, we note that such a spectacular behaviour of the den-

sity of the environment particles in the wake of a biased TP 
has been also seen in various continuous space settings (see, 
e.g. [138, 142, 143, 145, 172]), in granular media [173] and 
also in colloidal experiments (see, e.g. [139, 147]).

Second, we note that an interesting phenomenon may 
take place in situations where there is not a single biased 
TP, but there are a few or even a concentration of them. The 
point is that an out-of-equilibrium environment may medi-
ate long-ranged mutual interactions between intruders, which 
are non-reciprocal and violate Newton’s third law (see, e.g.  
[174, 175]). When several TPs are present, each of them will 
perturb the distribution of the environment particles in its 
vicinity and in order to minimise the micro-structural changes 
in the environment and to reduce the dissipation, they will 
start to move collectively. Stochastic pairing of two biased 
TPs has been observed in simulations in a model of a 2D lat-
tice gas [176], in experiments in colloidal suspensions [177, 
178], and also theoretically predicted for the relative motion 
of two TPs in a nearly-critical fluid mixture, due to emerging 
critical Casimir forces [179]. Formation of string-like clusters 
of TPs, or ‘trains’ of TPs, which reveals an emerging effec-
tive attraction between them has been evidenced for situa-
tions with a small concentration of TPs [180–182]. Lastly, in 
case when the concentration of the TPs is comparable to that 
of the environment particles, the TPs arrange themselves in 
lanes [183–187]. This self-organisation of the TPs resembles 
spontaneous lane formation in binary mixtures of oppositely 
charged colloids (see, e.g. [188]), in dusty complex plasmas 
[189] and also for such seemingly unrelated systems as pedes-
trian counter  flows [190].

2.2.3. Mean velocity of the tracer particle. The functional 
dependence of the TP ultimate velocity V  on physical param-
eters has been studied in details within the last two decades. 
In the most general case, these parameters are the magnitude 
of the external force, the density of the environment, the rates 
of the particles exchanges with a vapour phase, and the jump 
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rates of both the TP and of the environment particles. Sev-
eral analytical approaches have been used in this analysis—
an analytical technique based on a decoupling of correlations 
between the tracer particle and two given environment par-
ticles (see, [125–127]), and also a different approach based on 
an appropriate generalisation of the vacancy-assisted dynami-
cal model of [120, 121], in which a bias exerted on the TP has 
been taken into account explicitly [191].

References [125–127] studied the functional dependence of 
V  on all physical parameters, including the exchange rates of 
the environment particles with the vapour phase (which define 
the value of the density ρ), in the general case of unequal jump 
rates of the TP and of the environment particles. The result-
ing expressions appear very cumbersome, and we address the 
reader to the original papers. Here we merely mention some 
features of the expressions obtained in [125–127]:

First, in the limit of very small forces, V  attains a physi-
cally meaningful form

V = ξ−1F, (17)

which can be thought of as an analogue of the Stokes formula 
with ξ being the friction coefficient. This signifies that the fric-
tional force exerted on the TP by the environment is viscous 
at small values of F. In turn, the friction coefficient can be 
decomposed into two contributions [125–127]: a mean-field 
one, proportional to an effective density of voids, and the 
second one which has a more complicated form and stems 
from the cooperative behaviour emerging in such a system— 
de-homogenisation of the environment by the TP and forma-
tion of some asymmetric density profiles of the environment 
particles around the TP, which we will discuss later on.

Second, it was observed in [125–127] that in the systems 
with an explicitly conserved particle density, the mobility 
of the TP exactly equals βD with D defined in equation (5) 
meaning that the Einstein relation holds.

Third, we note that the expressions obtained in [125–127] 
have been re-examined recently in [192] and it was realised 
that for the environments which evolve on time scales larger 
than the one which defines the TP jump rates, the terminal 
velocity V  is a non-monotonic11 function of the force F. The 
velocity first increases with an increase of F, as dictated by 
the linear response theory, reaches a maximal value and then, 
upon a further gradual increase of F, starts to decrease. In con-
sequence, the differential mobility of the TP, defined beyond 
the linear response regime, becomes negative. In [192], a 
full phase chart has been presented indicating the region in 
the parameter space in which such a non-monotonic behav-
iour emerges. We note that the phenomenon of the so-called 
negative differential mobility is a direct consequence of an 
out of equilibrium dynamics. Various facets of this intriguing 
phenom enon have been studied in the past and it has been 
also observed in many realistic physical systems [34, 35, 
193–203].

A different approach to calculation of the terminal velocity 
of a biased TP in very densely crowded environments has been 
pursued in [191], which generalised the analytical technique 

originally developed in [120, 121], over the case when the 
TP is subject to an external constant force F. Bénichou and 
Oshanin [191] first focused on the case of a single vacancy-
mediated dynamics evolving in discrete time n and calculated 
exactly the mean displacement of a biased TP on an infinite 
square lattice to get

Xn =
1
π

sinh (βF/2)
(2π − 3) cosh (βF/2) + 1

ln(n), (18)

i.e. the TP displaces anomalously slowly (logarithmically) 
with time. Accordingly, the time-dependent mobility µn (see 
equation (15)) of the biased TP obeys

µn =
β

4π(π − 1)
ln(n)

n
. (19)

Determining from equation (8) the effective diffusivity of the 
TP in the absence of the force, Dn = X2

n/4n, one arrives at a 
surprising conclusion [191]: the Einstein relation µn = βDn 
holds exactly even for such an anomalously confined diffu-
sion! The full distribution function of the TP position has been 
also determined in [191] and it was shown that it does not 
conv erge to a Gaussian as n → ∞, similarly to the case with-
out an external bias [120].

Bénichou and Oshanin [191] extended this analysis over 
the case when vacancies are present on a square lattice at very 
small density ρ0, to find that in the lowest order in the density 
of vacancies the mean displacement of the biased TP obeys

Xn =
sinh (βF/2)

(2π − 3) cosh (βF/2) + 1
ρ0n, (20)

such that the TP now moves ballistically with a finite velocity 
V = Xn/n. Inspecting the mobility of the TP and the diffu-
sion coefficient of the TP in equation  (9), one realises that 
the Einstein relation holds [191]. The distribution of Xn has 
also been determined in [191] and it was shown that the latter 
conv erges to a Gaussian as n → ∞.

In more recent [137], the result in equation (20) has been 
generalised, using essentially the same technique as in [191], 
to calculate the mean velocity of a biased TP on a d-dimen-
sional hypercubic lattice (including the simple cubic one, 
d  =  3) in the presence of a small density of vacancies. The 
result of [137] (see the supplementary materials to this paper) 
reads

V = a0ρ0, a0 =
(1 − α) sinh (βF/2)

(d(1 + α)− 1 + α) cosh (βF/2) + 1 − α
,

 (21)
where the parameter α is defined in equation (7). For d  =  2, 
equation  (21), multiplied by n, reduces to the expression in 
equation (20). For d  =  1, the parameter α becomes equal to 1, 
such that V  vanishes, as it should.

2.2.4. Variance of the tracer particle displacement. We con-
centrate on the time-evolution and the density dependence of 
the variance σ2

x  of a biased TP displacement in the direction 

of the force F, σ2 = X2
t − X

2
t , on a 2D square and a 3D simple 

cubic lattices. This question has been raised only recently and 
several rather surprising results have been obtained. Note that 

11 See also section 3.2.3 below for the analogous behaviour of the velocity 
versus force in strip-like geometries.
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in the absence of the force F, the variance simply becomes 
σ2

x = 2dDt, where the forms of the diffusion coefficient have 
been discussed above.

We start with the case of a square-lattice, densely popu-
lated by the environment particles, and a biased TP, and focus 
on the vacancy-assisted dynamics in discrete time n, which 
was put forth in [120, 121]. The first observation of a ‘strange’ 
behaviour of the variance σ2

x  has been made in [204], in which 
it was predicted analytically and verified numerically that 
σ2

x ∼ n ln(n). Surprisingly, it appeared that in a dense system 
the spread of fluctuations in the TP position is (weakly) super-
diffusive. This question has been further inspected in [205] 
and the physical mechanism responsible for such a super-
diffusive growth of fluctuations has been explained—it was 
shown that it emerges due to correlations between the succes-
sive jumps of the TP, which originate from interactions with 
a single vacancy returning to the TP position many times and 
carrying it in the direction of the force.

Deeper analysis of this model has been presented in [137], 
and it was shown that this super-diffusive regime is only a 
transient one which prevails up to times of order of 1/ρ2

0. Not 
only the leading term but also the correction terms to the lead-
ing behaviour have been calculated, to provide the following 
exact expression

lim
ρ0→0

σ2
x

ρ0
∼ a0n

[
2a0

π

(
ln(n) + ln 8 + C − 1 +

π2(5 − 2π)
(2π − 4)

)

+ coth

(
βF
2

)]
,

 

(22)

where C is the Euler–Mascheroni constant, the parameter a0 is 
defined in equation (21) and the omitted terms do not depend 
on n, i.e. are unimportant for sufficiently large n. Recalling 
that a0 ∼ F for small forces, equation  (22) implies that the 
coefficient in front of the leading super-diffusive term is pro-
portional to F2, meaning that super-diffusion emerges beyond 
the linear response. Note that using equation (21) at small F 
and equation (22) at F  =  0, the Einstein relation is shown to 
be satisfied.

For times greater than 1/ρ2
0, the weakly super-diffusive 

regime crosses over to a standard diffusive growth of the vari-
ance, which emerges due to renewal events—arrivals of other 
vacancies to the location of the TP—which fade out the mem-
ory about interactions with a single vacancy and make succes-
sive jumps of the TP uncorrelated. In this ultimate regime, one 
finds that in the leading in ρ0 order the variance obeys [137]

lim
n→∞

σ2
x

n
∼ a0ρ0

[
coth

(
βF
2

)
+ 2a0

(
2
π
ln

(
1

a0ρ0

)

+
1
π
ln 8 +

π(5 − 2π)
2π − 4

)]
.

 

(23)

Here, again, one observes that the effective diffusion coeffi-
cient acquires some additional terms which are quadratic with 
the force in the limit of small forces. Note that for moder-
ate forces, however, these terms can become large due to the 

factor ln(1/ρ0). The validity of the Einstein relation in this 
ultimate regime is again ensured by the term a0n coth(βF/2).

For the TP dynamics on a simple cubic lattice, densely 
populated by the environment particles, the growth of the vari-
ance of the TP displacement obeys at all time scales [137]

lim
ρ0→0

σ2
x

ρ0
∼ a0n

[
coth

(
βF
2

)
+ Aa0

]
, (24)

where A is a numerical constant. Hence, the spread of fluctua-
tions in three- (and actually, higher-) dimensions is diffusive 
but the effective diffusion coefficient contains, as well, qua-
dratic with the force terms in the limit of small applied forces. 
The validity of the Einstein relation is again ensured by the 
term a0n coth(βF/2).

Lastly, we discuss the observations made in [206], which 
analysed the density-dependence of the variance of the TP 
displacement in a system of the environment particles evolv-
ing on a discrete lattice of an arbitrary dimension in continu-
ous time t. The approach of [206] was based on a decoupling 
of the TP-particle-particle correlation function, similar to the 
one employed in [125–127], and the results were verified 
numerically and in the high- and low-density of particles lim-
its, in which exact solutions are available [137, 207–209]. In 
particular, it was shown in [206] that in the ultimate regime 
(t → ∞) the effective diffusion coefficient can be a non-
monotonic function of the density, for forces which exceed a 
certain threshold value, well above the linear response regime, 
and is a monotonic function of ρ for F below the threshold. 
Moreover, in the case when the jump rate of the environment 
particles is substantially lower than the one characterising the 
jumps of the TP, this effective diffusion coefficient can be also 
a non-monotonic function of the force F—a behaviour we 
have already observed for the velocity of a biased TP.

3. Biased tracer diffusion in narrow channels

We turn eventually to the dynamics of a biased TP in narrow 
channels—strip-like or capillary-like lattices depicted in fig-
ure 2. These lattices have width L, (with L being an integer), 
in case of a strip, and a cross-section L × L in case of a capil-
lary, and are of an infinite extent in the direction of the force F 
acting on the TP only. As above, we will focus on the density 
profiles of the environment particles around a steadily moving 
TP, its velocity V , and the variance σ2

x  of the TP displacement 
at time t. We proceed to show that in such confined geometries 
the time-evolution of the system exhibits many remarkable 
features, which are absent on infinite lattices with d � 2.

3.1. Density profiles of the environment particles

The density profiles of the environment particles around 
a steadily moving TP in strip-like and capillary-like geom-
etries have been studied analytically, using a decoupling of 
the TP-particle-particle correlation functions into a product of 
two TP-particle correlation functions, and also numerically in 
recent [210, 211]. It was realised that, similarly to the case of 
lattices which have an infinite extent in all directions, these 
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density profiles attain a stationary form in the frame of refer-
ence moving with the TP. These profiles are asymmetric and 
are characterised by a dense, traffic jam-like region in front 
of the TP and a depleted by the environment particles region 
in the wake of the TP. The traffic jam-like region is more pro-
nounced than in an infinite space [211], which is not counter-
intuitive. This means that the frictional force exerted by the 
host medium on the TP is bigger and hence, the velocity is 
smaller in strips and capillaries than on infinite square and 
simple cubic lattices. The density, as a function of the dis-
tance from the TP in the direction perpendicular to the force, 
is described by an exponential function with the characteristic 
length that depends in a rather complicated way on the width 
L of the strip or the cross section of a capillary. When L → ∞, 
the results in [125–127] are recovered. The form of the sta-
tionary density profiles past the TP is more complicated: there 
is some characteristic length scale λ∗, λ∗ ∼ VL2/D, where V  
is the TP terminal velocity and D—the diffusion coefficient 
of the environment particles, such that at distances λ < λ∗ 
the evolution of the density profile in the wake of the TP is 
described by a power-law, equation  (16), where d  =  2 for 
strips and d  =  3 for the capillaries. Beyond this distance, the 
approach of the density to its unperturbed value ρ becomes 
exponential, with the characteristic length dependent on L 
and diverging when L → ∞. This overall behaviour has 
been confirmed numerically for lattice systems using Monte 
Carlo simulations [210, 211] and also for off-lattice, strip-like 
geometries with hard-core particles with Langevin dynamics 
[211]. Returning to the discussion of the entrainment proper-
ties, here, as in infinitely large systems, we encounter a partial 
entrainment of the environment particles by the biased TP but 
the amount of the entrained particles is bigger.

To close this subsection, we briefly mention recent obser-
vations made in [212], in which dynamics of several biased 
TPs in presence of the environment particles in strip-like 
geometries has been analysed via extensive molecular dynam-
ics simulations. It was observed that for sufficiently large driv-
ing forces, a strong clogging of the channel takes place—the 
biased TPs cluster together such that the particles of the traffic 
jam region in front of them cannot circumvent the cluster. In 
consequence, the cluster of the TPs propagates in proportion 
to 

√
t , i.e. the velocity of each individual TP vanishes, such 

that one is led back to an effectively single-file behaviour (see 
section 2.2.1).

3.2. Mean velocity of a biased tracer particle

In this subsection we present available analytical and numer-
ical results on the mean velocity V  of a biased TP in strip-like 
and capillary-like geometries. We note that the time-evolution 
of the TP displacement shows in such a confinement a bit 
richer behaviour than on infinite lattices with spatial dimen-
sion d � 2. A salient feature here is an emergence of a pla-
teau-like behaviour at intermediate time scales.

3.2.1. Transient mean velocity. Before we proceed to the dis-
cussion of the forms of V  in narrow channels, we briefly recall 
one of the results of [121], which concerns the form of the 

diffusion coefficient DL for self-diffusion of an unbiased TP 
on an infinitely long strip of width L, densely populated by 
the environment particles. In [121], within the model with the 
vacancy-assisted dynamics, the following exact, in the first 
order in the density ρ0 of vacancies, result has been presented

DL =
ρ0

4
1 − α′

1 + α′ , (25)

where

α′ =
1
4

lim
z→1−

[P(0|0; z)− P(2ex|0; z)] , (26)

with ex being a unit vector in the positive x-direction and 
P(r|0; z)—the generating function associated with the propa-
gator of a symmetric random walk on a 2D strip of width L, 
starting at the origin and ending at position r = (n1, n2),

P(r|0; z) =
1

2πL

L−1∑
k=0

∫ π

−π

dq
e−in1q−2iπkn2/L

1 − z (cos q + cos(2πk/L)) /2
.

 (27)
Note that α′ here has essentially the same meaning as α 
in equation  (7), except that now it is defined for confined 
geometries.

This situation has been re-examined in [137] in case of a 
TP biased by a constant external force, to show that for both 
2D strips (d  =  2) and 3D capillaries (d  =  3) the velocity of the 
TP is given, in the same order in the density of vacancies, by

Ṽ = ρ0a′
0, a′0 =

(1 − α′) sinh (βF/2)
(1 + (2d − 1)α′) cosh (βF/2) + 1 − α′ ,

 (28)
where α′ is defined in equation  (26) (with the factor 1/4 
replaced by 1/(2d)) and with P(r|0; z) given in equation (27) 
in case of 2D strips, and by a bit more complicated expres-
sion describing the propagator of a random walk in case of 
3D capillaries (see [137] for more details). One may directly 
verify, upon comparing the diffusion coefficient defined in 
equation  (25) and the mobility deduced from equation  (28) 
with d  =  2, that the Einstein relation holds.

3.2.2. Terminal mean velocity. A surprising observation has 
been made subsequently in [213], in which it was realised 
that Ṽ  in equation (28) does not describe the true velocity of 
the biased TP in the limit n → ∞, but only a constant veloc-
ity appearing at some transient stage, for times less than the 
cross over time tx ∼ 1/ρ2

0 (which is however quite large when 
ρ0 � 1). The point is that in the underlying derivation the limit 
ρ0 is taken first and then the analysis focuses on the asymp-
totic behaviour in the limit n → ∞. It appears, however, that 
due to some very subtle circumstances these limits do not 
commute and, in essence, the velocity Ṽ  in equation (28) cor-
responds to the temporal regime when the TP interacts with 
just a single vacancy. Recall that we have already encountered 
this phenomenon while describing the behaviour of the vari-
ance of the TP displacement on an infinite square lattice. The 
key difference consists in the fact that for a fixed small ρ0 
the random walk performed by any of the vacancies between 
two successive visits to the TP position is a biased random 
walk, in the frame of reference moving with the TP, due to the 
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interactions of the TP with other vacancies. In consequence, 
to get the expression for the ultimate, terminal velocity V , one 
has to examine the general expressions taking the limit n → ∞ 
first, and only then to concentrate on the leading behaviour in 
the limit ρ0 → 0. In doing so, it was shown in [213] that for 
n � 1/ρ2

0 the true terminal velocity obeys

V = ρ0a′′0 ,
1

a′′0
=

1
a′0

+
2d

1 − α′
1

Ld−1 , (29)

where a′
0 is defined in equation (28) and α′—in equation (26).

The exact expression in equation (29) permits to draw sev-
eral important conclusions, which all were also confirmed in 
[213] by extensive Monte Carlo simulations:

 •  in strips and capillaries with a finite L the true terminal 
velocity is lower than the velocity Ṽ  at the transient stage; 

 •  this effect does not exist on infinite lattices when 
L → ∞, even for d  =  2 when the variance shows two 
distinct behaviours; 

 •  the effect is more pronounced in strip-like geometry than 
in the capillaries; 

 •  it requires quite long times (∼1/ρ2
0) to observe the ter-

minal velocity; 
 •  the jump of the velocities Ṽ − V ∼ F2 for small forces F, 

meaning that this anomaly takes place beyond the linear 
response regime; 

 •  the latter also ensures that the Einstein relation holds on 
both transient and terminal stages.

Lastly, the analysis in [213] culminated at the derivation of 
a complete expression for the time evolution of the TP mean 
displacement, which is valid at an arbitrary discrete time n:

Xn

ρ0n
∼ g

(
(a′′0 )

2
ρ2

0n
)

, (30)

with

g(τ) = a′
0

[
b

b2 − 1

(
erf

(√
τ
)
+

e−τ

√
πτ

)
+

b
2

b2 + 1

(b2 − 1)2
erf (

√
τ)

τ

− 1
b2 − 1

+
1
τ

(
b

b2 − 1

)2 (
e(b2−1)τerf

(
b
√
τ
)
− 1

)]
,

 (31)
where b = a′0/a′′

0 − 1. This scaling function reproduces cor-
rectly both regimes and has been numerically verified in [213] 
for both strip-like and capillary-like geometries.

3.2.3. General force-velocity relation. General force-veloc-
ity relation for a biased TP moving in crowded strip-like or 
capillary-like geometries, with an arbitrary density ρ of the 
environment particles and different characteristic jump times 
of the TP, τ, and of the environment particles, τ∗, has been 
derived in [210] using the decoupling approximation. In 
[210], the terminal velocity has been obtained as an implicit 
solution of a rather complicated non-linear equation  involv-
ing matrix determinants, which we do not present here. We 
merely depict in figure 4 the curves V  versus F for a particular 
case of strip-like geometries with the width L  =  3, for several 
densities ρ of the environment particles, fixed characteristic 

jump-time of the TP, τ = 1, and two different jump-times of 
the environment particles, τ∗ = 1 and τ∗ = 10. We observe 
that for the former case, when the characteristic jump-times 
of the TP and of the environment particles are equal to each 
other, the terminal velocity V  is a monotonic function of the 
force F, which was also noticed in [211]. Conversely, in case 
of a slowly varying environment, e.g. for τ∗ = 10, the veloc-
ity V  exhibits a strongly non-monotonic behaviour. For small 
F, a linear dependence V ∼ F is observed, as dictated by the 
linear response, then, V  reaches a peak value V∗ and then 
gradually decreases upon a further increase of F. This means 
that the negative differential mobility phenomenon takes place 
also in confinement.

3.3. Variance of the biased tracer particle displacement:  
from super-diffusion to giant diffusion

The first, to the best of our knowledge, analysis, which 
focused specifically on the time-evolution of the variance of 
the displacement of a biased TP in a crowded environment 
in a capillary-like geometry was performed in [144]. In stan-
dard settings of active micro-rheology, the authors tracked 
in molecular dynamics simulations trajectories of a single 
TP pulled by a constant, sufficiently large force F in a glass-
forming Yukawa mixture. To a great surprise, it was realised 
that the variance of the displacement of this driven TP along 
the direction of the force grows in proportion to tz with z very 
close to 1.5, i.e. the fluctuations in the position exhibit a super-
diffusive broadening. In [144], it was suggested that the physi-
cal mechanism underlying this remarkable broadening of 
fluctuations in the nonlinear scaling regime is associated with 
a hopping motion of the TP from cage to cage: it was indeed 
observed that the TP in such a system is localised for some 
time in a cage formed by the surrounding environment par-
ticles before it quickly moves to the next cage. Whereas in the 
cage the motion of the TP exhibits only small anisotropies, it 
becomes strongly anisotropic with respect to the motion out of 
the cages. It was also argued that the essential feature for the 
motion of the TP in the direction of force is a broad waiting 
time distribution, which was shown to exhibit a fat tail. The 
authors therefore suggested a scenario which is reminiscent of 
a certain class of trap models, relating it to the glass-forming 
properties of the binary Yukawa mixture and the ensuing com-
plex energy landscape.

This analysis has been revisited in the numerical simula-
tions performed in [137], which studied dynamics of a TP 
pulled by a constant force in mono-disperse dense fluids in 
a continuum strip-like geometry. More specifically, in [137], 
molecular dynamics simulations of colloidal fluids and 
Brownian dynamics of granular fluids (with only one value 
of the restitution parameter) have been performed, evidencing 
a super-diffusive broadening of fluctuations, σ2

x ∼ t1.5, over 
a very extended transient regime, which ultimately crossed 
over at longer times to a diffusive growth of fluctuations in 
the TP displacement, σ2

x ∼ t , with a prefactor—an effective 
diffusion coefficient—being much bigger than the diffusion 
coefficient of the environment particles. The mono-disperse 
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colloidal fluids, as well mono-disperse granular fluids are not 
glass-formers, and there are no complex energy landscape in 
these systems, but still the super-diffusive regime exists. This 
naturally questions the scenario proposed in [144] and calls 
for a different explanation.

In [137] a different physical mechanism has been pro-
posed, which entails—for dense lattice gases in narrow 
channels (both strip-like and capillary-like)—a long-lived 
super-diffusive broadening of fluctuations with the dynamical 
exponent 3/2 which is ultimately followed by a crossover to 
the diffusive regime with a giant diffusion coefficient. This 
mechanisms is based on the diffusive motion of rare (in dense 
systems or at a sufficiently low temperatures) vacancies—
defects of packing—which are present at very low density12 
ρ0 and permit the particles to move by exchanging their posi-
tions with the vacancies. In other words, all the environment 
particles and the TP are completely blocked most of time and 
make a single jump only when any of the vacancies arrives 
to their location. It was claimed in [137] that the transient 
super-diffusive regime exists for times less than 1/ρ2

0 and is 
associated with the interactions of the TP with just a single 
vacancy, which may be the initially closest one. This vacancy, 
once it arrives to the TP position, is certain to return to it again 
many times, and the vacancy indeed keeps on returning to the 
TP carrying the latter along the direction of the force. It was 
emphasised in [137] that the statistics of these multiple returns 
of a given vacancy to the instantaneous position of the TP in 
quasi-one-dimensional systems is compatible with the obser-
vations made in [144]. In consequence, the displacements of 
the TP are correlated due to multiple interactions with this 
single vacancy which entails the super-diffusive broadening 
of fluctuations. At longer times, however, other vacancies will 
appear at the location of the TP and carry it along the direction 
of the force. These ‘renewal’ events de-correlate the consecu-
tive displacements of the TP, such that the fluctuations in its 
position will ultimately grow diffusively.

An exact solution of the model with vacancy-assisted 
dynamics on strip-like or capillary-like lattices has been pro-
vided in [137]. It was shown that in the linear in the density of 

vacancies order, the variance σ2
x  of the TP position along the 

direction of the force F obeys for sufficiently large (but less 
than 1/ρ2

0) discrete time n :

σ2
x ∼ 8(a′0)

2ρ0

3
√
πL

n3/2 + O (n) (32)

for strip-like geometries and for the capillary-like ones one 
has

σ2
x ∼ 4

√
2(a′

0)
2ρ0√

3πL2
n3/2 + O (n) , (33)

where the omitted terms grow linearly with n, parameter a′
0 is 

defined in equation (28) and is associated with the TP’s tran-
sient mean velocity in these systems.

These results demonstrate the super-diffusive growth of 
fluctuations with an exponent 3/2, which is in a perfect agree-
ment with the observations made in numerical simulations 
and also show that this striking behaviour emerges beyond the 
linear response regime. Indeed, the prefactor in front of n3/2 is 
proportional to the second power of F for small values of F. 
Interestingly, the validity of the Einstein relation is ensured 
here by the subdominant in time terms in equations (32) and 
(33), as verified in [137].

In turn, for times n � 1/ρ2
0, the variance σ2

x  attains a 
different form, which was also calculated exactly in [137]  
(see also recent [206]):

σ2
x ∼ 2

Ld−1

[
1
a′

0
+

2d
(1 − α′)Ld−1

]−1

n, (34)

where α′ is defined in equation (26), d  =  2 in case of the strip-
like geometries and d  =  3 for the capillary-like ones.

Remarkably, the effective diffusion coefficient in equa-
tion (34) is independent of the density of vacancies ρ0. The 
physical origin of such a behaviour has been explained in 
[137] and is a very peculiar feature of transport in crowded 
narrow (quasi-one-dimensional) channels. Note, as well, that 
the diffusion coefficient of the environment particles is lin-
early proportional to ρ0 in the low vacancy density limit. This 
means that the diffusion coefficient of the biased TP can be, in 
fact, orders of magnitude bigger than the diffusion coefficient 
of the environment particles. In consequence, one may claim 
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Figure 4. Strip-like geometry with L  =  3. Analytical predictions (continuous curves) in [210] against the results of numerical simulations 
(symbols). Left panel: the terminal velocity V  versus force F for different densities and τ = τ∗ = 1. Right panel: analogous results for 
τ = 1 and τ∗ = 10 (slowly evolving environment).

12 Note that there is no direct relation between ρ0, defined for lattice systems, 
and the specific free volume in continuous-space settings.
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that the super-diffusion in equations (32) and (33) paves the 
way to giant diffusion. We also note a recent [214], which 
studied dynamics of a biased passive tracer in a diffusive 
environment and revealed a similar super-diffusive transient 
behaviour.

4. Summary and outlook

In this review we have summarised numerous achievements 
made within the last several decades in the field of unbiased 
and biased tracer diffusion in lattice gases with stochastic 
dynamics on infinite in all directions lattices, and in crowded, 
infinitely long narrow channels with an embedded lattice 
structure and periodic boundary conditions in the directions 
perpendicular to the bias. For dense environments, a very good 
understanding of different facets of the dynamical behaviour 
has been achieved via a combined effort of exact theoretical 
and extensive numerical analysis, and in some instances, i.e. 
for the single-file systems, also via an experimental analysis. 
It was realised that in narrow channels surprisingly rich, some-
times quite unexpected and even counter-intuitive behaviours 
emerge, which are absent in unbounded systems. This is, of 
course, a well-known anomalous diffusion in single-files, both 
in the absence and in the presence of an external bias acting 
on the tracer particle only, in which the initial order in place-
ment of the particles is preserved at all times. Strikingly, in 
narrow channels which are broader than single-files permit-
ting thus for an effective mixing of the particles, as well, a 
wealth of anomalous behaviours takes place : these are the 
velocity anomaly of the biased tracer particle, super-diffusive 
at transient stages and ultimate giant diffusive broadening of 
fluctuations of the position of the tracer particle, spectacular 
multi-tracer effects resulting in self-clogging, and a variety 
of dynamic laws appearing in ramified channels, as exem-
plified here by the dynamics of a tracer particle on crowded 
comb-like structures. Interactions between biased tracer 
particles and a confined crowded environment also produce 
peculiar non-equilibrium patterns in the distribution of the 
environment particles, very different from the ones appearing 
in unbounded systems. For moderate density systems, similar 
effects have been evidenced via theories based on an appro-
priate decoupling of third-order correlation functions and 
numerical simulations. In particular, a surprising effect of a 
negative differential mobility has been unveiled showing that 
the ultimate velocity of a biased tracer particle can be a non-
monotonic function of the force. In some parameter ranges, 
both the velocity and the diffusion coefficient of a biased 
tracer particle can be non-monotonic functions of the density. 
Such a behaviour pertains, as well, in unbounded systems but 
becomes most apparent in confinement. Despite a general 
good understanding of the behaviour in confinement, there 
still remain some gaps and some room for a further research. 
In our view, several stray questions which still await answers 
are as follows:

 •  our presentation was focused entirely on the situations in 
which the walls can be considered as geometrically per-
fect. In reality, of course, the walls can be geometrically 

rough or contain some contaminants acting as temporal 
traps for the environment and for the tracer particle.

 •  the cross section of the channel may not be constant but be 
periodically varying along the channel. It is par ticularly 
interesting to analyse the case when this variation is 
sufficiently strong such that a channel consists of rather 
broad chambers separated by narrow passage tunnels. In 
this case, one expects interesting effects to emerge due to 
the hindered passages of the tracer particle through the 
bottlenecks (see, e.g. [215] for more details).

 •  an interesting and experimentally-relevant generalisation 
of the analysis presented here concerns the situations 
when the tracer particle is not subject to a constant external 
force but is active, being either a molecular motor which 
carries a cargo or is self-propelling itself in a crowded 
environment (see, e.g. [216] and references therein).

 •  dynamics in ramified narrow channels still remains rather 
poorly understood. In particular, it is not very clear what 
will happen in situations when a biased tracer particle 
moves in a quiescent environment evolving in branching 
narrow channels.

 •  the numerical analysis in [212] of the case when sev-
eral biased tracer particles move randomly in a narrow 
crowded channel seems to focus exclusively on the situa-
tions with a big driving force. On the other hand, there are 
all reasons to believe that self-clogging will not emerge 
at lower forces. The question of specifying appropriate 
conditions for an effective functioning of such narrow 
channel devices with respect to the driven component is 
certainly important for many applications.
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