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Abstract— Building a complex system requires the 

collaboration of different stakeholders. They work together to 

model the system keeping in mind the requirements described 

in specification documents. This complexity induces a large 

volume of requirements and models, i.e., artefacts that will be 

subject to frequent changes during the project lifetime. Since 

the artefacts are correlated with each other’s, each change has 

to be rigorously propagated. Identifying traceability links 

between system’s artefacts is then a critical step to reach this 

goal.  In Information Retrieval domain, many approaches have 

been already proposed to cope with traceability issues. Their 

main drawback is they introduce an important amount of false 

positive links making the traceability links validation phase 

time consuming and error-prone. In this paper, we propose an 

approach that identifies traceability links with a reduced 

amount of false positive links ranging from 20% to 30% while 

raising the amount of true links identified up to 70%.  The 

approach consists of three main steps: 1) we measure 

syntactical and semantic similarities between pairs of artefacts 

by combining the use of four major Information Retrieval 

techniques; 2) using these similarity measures, we identify the 

most likely true and false links and we build the so called 

training data set; 3) this training data set and the four IR 

techniques are used as input of a predictive model in order to 

classify between true and false links leading ultimately to a 

reduced amount of false positives. The output is given in the 

form of a confidence measure that will help the modeller 

validating the traceability links. We evaluated our approach 

using four well-known public case studies. Each one comes 

with a clear identification of true traceability links which 

allowed us to compare with the outcome of our approach and 

validate its effectiveness. 

Keywords—traceability, information retrieval, requirements, 

models, complex systems 

I. INTRODUCTION  

The development of complex systems involves the 

collaboration of many stakeholders. In order to design the 

system, they produce many artefacts i.e., requirements and 

models that are correlated with each other’s and which 

evolve constantly. In such a volatile environment, there is a 

critical need to manage the impact of the different changes 

occurring during the project lifetime. Traceability, as defined 

by Edwards and Howell [1], is “A technique used to provide 

a relationship between the requirements, the design and the 

final implementation of the system.” In complex systems 

engineering, establishing such traceability involves dealing 

with a large volume of requirements and models [2]. For 

example, the full specification of an aircraft includes about 

10,000 requirements and a subway line of about 6,000. And 

modelling an aircraft can lead to hundreds of thousands of 

elements in hundreds of different models. Dealing manually 

with traceability issues in such a context is obviously 

unbearable.   

In the literature, many works propose to automate the 

identification of traceability links. In the Information 

Retrieval (IR) community, approaches such as Vector Space 

Model (VSM), Latent Semantic Indexing (LSI), and Latent 

Dirichlet Allocation (LDA) have been used to recover 

traceability links between artefacts. However, traceability 

identification in these approaches is still complex and error 

prone [3].  Due to that limited accuracy, candidate links are 

systematically checked by an analyst which manually 

classifies them into two groups: the approved links called 

true links and the rejected ones called false links. Thereby, 

the candidate links evaluation is itself labour intensive and 

time-consuming [4] due to the significant number of false 

links that represent 90% of the candidate links at a low 

threshold.  

Our approach aims at improving the evaluation of 

candidate links process by reducing the number of false links 

retrieved by IR techniques while maintaining a significant 

number of true links. It belongs to the semi-supervised 

approaches category as it makes use of links that are not yet 

validated in conjunction with a small training set. However, 

in our industrial context, when we start a development 

project of a complex system, such a training set does not 

exist. Therefore, our proposal includes the definition of a 

strategy to build a small training data set. 

The approach consists of 3 phases. First, we combine 

syntactical and semantics similarities measures of four IR 

techniques, i.e. LSI [7], VSM [5, 8], LDA [19] and word 

embedding [10]. Second, we use these similarities measures 

to build a small training data set. Finally, this training data 

set and the four IR techniques are used as input of a 

predictive model [17] in order to classify true and false links.  

We evaluate our approach by investigating four open-

source datasets. The results are very promising and show a 

reduced amount of false positive links ranging from 20% to 

30% while maintaining the amount of true links up to 70%.   



 

 

The remainder of this paper is organized as follows. 

Section II describes the overview of the approach. Section III 

presents the results of a preliminary evaluation of the 

approach on four public case studies. Section IV discusses 

related works. Finally, Section V concludes the paper and 

describes directions for future work.  

II. OVERVIEW OF THE APPROACH  

 Fig. 1 presents an overview of our approach for 

identifying traceability links between artefacts, namely 

requirements and models. This is based on the combined use 

of four well-known IR techniques, LSI, LDA, VSM and 

Word embedding. IR techniques are used to provide 

similarity measures between pairs of textual software 

engineering artefacts. Similarity measures are essential to 

solve pattern classification problems. LSI, LDA and VSM 

have been intensively used to provide support for several 

software engineering tasks, and more recently, word 

embedding has been successfully employed in various 

natural language processing tasks [14, 15]. Word embedding 

represents words as vectors of real numbers that capture 

their contextual semantic meanings.  

We illustrate our approach with an example from the 

Icebreaker dataset, which is one of the dataset used in the 

Evaluation Section. In this excerpt, there are one 

requirement R1 “Historical forecast data shall be retrieved 

as needed” and one class “Weather Forecast GUI” whose 

attribute is date and operations are set Date(), get Date(), get 

Forecast-History(), handle-Critical-Forecast() and, get 

Forecast-Input(). 

Our approach takes as input requirements document 

described in natural language and models in XML Metadata 

Interchange (XMI) format. In Step 1 “Compute 

similarities”, we perform pre-processing of the input data 

which consists of the tokenization and Stopwords removal. 

Stopwords [12] are tokens that appear so frequently in the 

artefacts that they become irrelevant for link recovery. This 

pre-processing is achieved by means of Natural Processing 

Language functionalities embedded into the IR techniques 

we use for quantifying similarities between each pair of 

artefacts. These measurements are based on morphological 

similarities between terms contained in the artefacts (LSI, 

VSM), topics proximity of artefacts (LDA) or semantic 

proximity of terms (word embedding [14, 15]). We then use 

Word Mover's Distance (WMD) [15] which assesses the 

distance between a pair of artefacts using word embedding 

[14]. Thus, each similarity measure provides a description of 

each pair of artefacts according to a given criterion. A 

vector containing similarity scores is constructed for each 

pair of potentially related artefacts. As a result, the more the 

similarity measures are diverse and complementary, the 

more this vector will contain enough information to decide 

whether a link exists or not between two given artefacts. 

Thus, for a pair of artefacts (x, y) with (m1, m2 ..., mp) the 

similarity measures assigned by the p IR techniques, the 

associated descriptor vector would be equal to (m1(x, y), 

m2(x, y)..., mp(x, y)). Each descriptor vector constitutes a row 

of the descriptor matrix, which is the output of step 1.  

In our example, the descriptor vector of the pair of 

artefacts R1 and the Weather Forecast GUI class with LSI, 

VSM, LDA and WMD measures is ((0.94)LSI, (0.44)VSM, 

(0.71)LDA, (1.03)WMD).  

 

Fig. 1. Overview of our 3 steps approach  

If a set of validated links would be available, one could 

use a supervised classification method [16] to derive a 

statistical model that estimates the probability for two 

artefacts to be linked, based on their descriptor vector. This 

probability could constitute a measure of confidence on the 

traceability link between two artefacts. Indeed, deep 

learning approaches have recently achieved outstanding 

performance in the traceability community [10]. However as 

mentioned earlier, in our industrial context, a training 

dataset, i.e. a set of artefacts with validated links, is 

generally not available. In step 2 “Build training set”, we 

propose a heuristic to label some pairs of artefacts as related 

or non-related.  This heuristic is motivated by the statistical 

ranking of IR techniques [18], which puts the most likely 

links on the top and the bad links (false links) to the bottom. 

Thus, for each similarity measure, we take the pairs of 

artefacts with a small percentage of the highest and the 

lowest similarity scores. In the Evaluation Section, we use 

empirically the 10% highest and the 10% lowest similarity 

scores respectively. The list of links labelled as true is 

obtained as the intersection of the set of links having the 

highest scores and the list of links labelled as false is 

obtained by the union of the set of links with the lowest 

scores. At the end of this step, the labels vector is built. 

Potential true links are represented with the value "1", the  

false links are represented with the value "0" and the 

remaining links, called unlabelled links, are represented 

with the value "-1". In our example, the labels vector 

belongs to the unlabelled links because of the disparities of 

the similarity measures therefore it has the value -1. 

In step 3 “Classify Links”, we use the descriptor matrix 

and the labels vector as inputs. Based on these inputs, a 

predictive model finds the community structures in order to 

group them in true and false links. Given the important 

amount of unlabelled data, in order to build our predictive 

model, we use the label spreading method, which is a semi-

supervised machine learning technique. We use label 

spreading [17] among other semi-supervised learning 

methods because of its ability to modify initially provided 

labels and therefore, its potential robustness to labelling 

errors. The label propagation algorithm and its variant the 

label spreading are used for community detection in large 

complex networks. Therefore, label spreading efficiency for 

our problem relies on the clustering hypothesis, which is the 



 

 

assumption that true links tend to gather in the descriptors 

space [8]. As output, the predictive model provides a 

probability which describes how much a link belongs to the 

class of true links. As previously stated, we will refer to this 

probability as a confidence measure. From a practical point 

of view, it provides a prioritization criterion to the analyst 

during the links verification phase. In our example, the 

confidence measure of the requirement R1 and the Weather 

Forecast GUI class is 0.19. 

III. EVALUATION 

 The experiments for the validation of our approach have 

been conducted over four datasets available on the COEST1 

website: Icebreaker, HIPAA (Healthcare Insurance 

Portability and Accountability Act), EasyClinic, and CM1-

NASA (NASA spacecraft instrument). The Icebreaker 

dataset was built by students. It provides traceability links 

between High-level requirements and UML Classes. The 

HIPAA provides traceability links between 10 HIPAA 

Technical safeguards and requirements in 10 different 

requirements specifications. The CM1-NASA is a dataset 

which provides high-level requirements and low-level 

requirements documents. The EasyClinic dataset was also 

built by a small group of students. It contains several 

artefacts including use cases, interaction diagrams, test cases 

and classes description.   

      VSM has been implemented via the Tracelab tool [13]. 

LSI, LDA and WMD have been implemented with Gensim2. 

We experimented all the possible combinations of the four 

IR techniques and the best one in the classification problem 

was: VSM-LSI-LDA. We compare the performance of this 

combination against the performance of each individual IR 

technique. The most used metrics for evaluating any IR 

techniques are recall, precision and F-measure. F-measure is 

the harmonic average of the recall and the precision. It 

shows trade-offs between precision and recall. It can then be 

used to provide insights about the performance of a method. 

A pair of artifacts is considered related when the similarity 

measure is greater or equal to a given threshold. The 

accuracy rate of IR technique strongly relies on this 

threshold. Thus, we evaluated the results by plotting F-

measure at different thresholds for each method on the four 

datasets. The F-measure results of all methods in Fig. 2, Fig. 

3, Fig. 4, and Fig. 5, show that our approach is more 

effective than VSM, LSI, and LDA at low threshold from 0 

to 0.3. Precisions at low thresholds are significantly 

improved by our approach; especially at low threshold from 

0 to 0.3. Our precision is much higher than LSI, VSM and 

WMD. Concerning to LDA, it depends on the chosen 

threshold. The higher the threshold, the better LDA is 

compared to our approach. Concerning the recall, our 

approach is lower at high thresholds from 0.3 to 0.9. 

Nevertheless, our approach achieves reasonably high recall 

values, from 50% to 70% at low threshold points from 0 to 

0.3 in all datasets.  

In summary, our preliminary experimental results 

demonstrate that our approach improves precision at lower 

                                                           
1  Center of Excellence for Software & Systems Traceability,  

http://www.coest.org/ 
2 https://radimrehurek.com/gensim/index.html 

threshold from 0 to 0.3 while keeping a high recall. In other 

words, this significantly decreases the false links at lower 

threshold from 0 to 0.3 ranging from 20% to 30% of the 

 
Fig. 2.        F –measure results for Icebreaker dataset  

 

Fig. 3.  F –measure results for HIPAA dataset  

 
Fig. 4. F –measure results for Easyclinic dataset  

 
Fig. 5. F –measure results for CM1-NASA dataset   



 

 

candidate links while raising the amount of true links up to 

70%. Its main limitation is that the confidence values 

provided by the predictive model are lower; typically, the 

class of true links is from 0.1 to 0.5. Therefore, at higher 

threshold, the number of retrieved links is very low. This is 

because the predictive model can effectively distinguish true 

and false links at low threshold, due to VSM, LSI, and LDA 

which achieve recall levels above 90% at lower thresholds. 

IV. RELATED WORKS 

Approaches combining different techniques have been 
proposed in the literature to improve the IR techniques and 
overcome their limits. For example, Chen et al. [5] combine 
Regular Expression, Key Phrases, and Clustering algorithm 
K-mean to enhance the performance of VSM. Their 
approach has higher precision and recovers more true links 
than VSM alone. Cleland-Huang et al. [6] propose three 
enhancement strategies (hierarchical modelling, logical 
clustering of artefacts, and semi-automated pruning of the 
probabilistic network (PN)) to improve the performance of 
PN. The results indicate that these strategies effectively 
improve trace retrieval performance. Wang et al. [7] present 
four strategies (source code clustering, identifier classifying, 
similarity thesaurus, and hierarchical structure enhancement) 
to improve LSI. Their approach has higher precision but 
lower recall. Our work differs from the above in that it 
combines IR techniques in order to improving their 
effectiveness while compensating for their weaknesses. 

Our proposed approach is most related to predictive 
models which have been applied to identification of 
traceability links. For instance, Mills et al. [9] use a 
predictive model with two features (text retrieval rankings 
and query quality metrics) to automatically classify links as 
true or false.  Their approach achieves high accuracy on 
average using both types of features but there are still a high 
number of miss-classified links. Many researchers have 
found that unlabeled data, when used in conjunction with a 
small amount of labelled data, can produce considerable 
improvement in learning accuracy [11]. The novelty of this 
work is that quantitative similarity measures have been 
considered as features to build a classification model. Our 
main goal is to reduce the number of false links and 
consequently reduce potential errors due to manual candidate 
links evaluation. 

V. CONCLUSION 

In this paper, we propose a semi-supervised method, which  

uses a combination of similarities measure defined by IR 

techniques in order to classify true links and false links. Due 

to unavailability of validated data training, we define a 

strategy to provide a small dataset. The preliminary results 

on four datasets indicate that our approach is more accurate 

on average by 3-5% than LDA and LSI and by 10% than 

VSM and WMD. In future work, we plan to investigate 

more strategies to build data training set as well as different 

configurations of the semi-supervised method, which could 

improve the performance of our approach.  An ongoing 

validation is in progress with our industrial partners. 

Moreover, this approach is the first step to reach our 

ultimate goal, which is the maintenance of links during the 

project lifetime. In summary, the presented results in this 

paper demonstrate that semi-supervised techniques can be 

effectively applied to traceability links recovery. 
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