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ABSTRACT 

Accurate picking of first arrival times plays an important role in many seismic studies, 

particularly in seismic tomography and reservoirs or aquifers monitoring. Many techniques have 

been developed, mainly for seismological purposes, in order to pick first arrivals automatically or 

semi-automatically. However, these techniques do not reach the accuracy required in shallow 

seismic due to the complexity of near surface structures and low signal-to-noise ratio. We propose 

here a new adaptive algorithm to automatically pick first arrival in near surface seismic data by 

combining three picking methods: Multi-Nested Windows, Higher Order Statistics, and Akaike 

Information Criterion. They benefit from combining different properties of the signal in order to 

highlight first arrivals and finally provide an efficient and robust automatic picking. This strategy 

mimics the human first-break picking, where a global trend is first defined at the beginning of the 

picking procedure. The exact first-breaks are then sought in the vicinity of each point suggested by 

this trend. Three successive phases are combined in a multistage algorithm, each of them 

characterizing a specific signal property. Within each phase, the potential picks and their error range 

are automatically assessed and sequentially used as prior in the following phase picking. Since having 

realistic estimates of the error in picked traveltimes is crucial for seismic tomography, our adaptive 

algorithm automatically provides picked arrivaltimes with their associated uncertainties. We 

demonstrate the accuracy and robustness of the implemented algorithm with synthetic, pseudo-

synthetic, and real datasets presenting challenges for classical automatic pickers. The comparison of 

both manual and adaptive picking procedures demonstrates that our new scheme provides more 

reliable results even under different noisy conditions. All parameters of our multi-method algorithm 

are self-adaptive thanks to the sequential integration of each sub-algorithm results in the workflow. 
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Hence, it is nearly a parameter-free algorithm, which is straightforward to implement and demands 

low computational resources. 

Keywords: automatic picking, adaptive algorithm, multi-nested window, kurtosis, Akaike Information 

Criterion, seismic tomography, look-like Monte Carlo. 

INTRODUCTION 

Seismic arrival-time picking is crucial for many seismological studies. Using picked arrival-

times, we can locate earthquakes, understand the interior structure of the Earth, study the 

geotectonic context and evaluate seismic risk for a region (Billings et al., 1994; Hafez et al., 2009; 

Ross and Ben-Zion, 2014; Stewart, 1977). More specifically in reflection and refraction seismology, 

first-arrival times are picked to guess the near-surface structure (Blias, 2012; Lanz et al., 1998; 

Lawton, 1989). The quality of inverted models (near-surface layers' velocity and thickness) therefore 

depends on the accuracy of the picked first-arrival times (Senkaya and Karslı, 2014) since a small 

error in times may result in a non-negligible error in velocity and depth calculations 

(Ramananantoandro and Bernitsas, 1987). 

The first events can be classically defined as the first remarkable onset of seismic energy, i.e. 

“the first noticeable departure of the seismic pulse from a background signal” (Hatherly, 1982). 

However, they do manifest themselves as a noticeable variation in amplitude, frequency content, 

statistical properties, and/or polarization properties in time and/or frequency domain. The quality of 

these events depends on the source type and near-surface conditions (Yilmaz, 2001). The ambient 

noise may over-shadow the early part of the seismic phase and delay its apparent occurrence. 
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Traditionally, the first arrival times are manually picked by human operators, but the huge 

volume of data (especially in active-source seismic applications) makes this visual handpicking 

tedious, time-consuming and thus inefficient. Furthermore, the subjectivity of human-eye picking 

(Hatherly, 1982; Jiao and Moon, 2000) puts alongside with factors relative to the operator’s 

physiological and/or psychological state make the results of manual picking results often biased or 

inconsistent (Saragiotis et al., 2002; Sabbione and Velis, 2010). 

On the other hand, automatic picking is a more objective tool since it allows rapid analysis of 

large data sets while providing homogeneous and consistent results. Computer-based picking 

methods can be divided into semi-automatic (e.g. Lou et al., 2013; VanDecar and Crosson, 1990) and 

full-automatic (e.g. Coppens, 1985; Küperkoch et al., 2010; Lomax et al., 2012) algorithms. These 

algorithms can be further classified into two main approaches: single-trace and multi-trace. Single-

trace algorithms can be either used as a “detector” in order to recognize a seismic phase arrival, or 

as a “picker” in order to determine a precise onset time of a detected phase (Allen, 1982). Multi-

trace algorithms can be seen as an extension of single-trace algorithm, working on several traces at 

once. They are usually used for picking passive and active-source seismic data, benefiting from the 

similarity of waveforms from nearby events. Recently, Tselentis et al. (2012) provided an excellent 

classification of the common event-detection and phase-picking methodologies. Another exhaustive 

review with a new classification (i.e. single-level, hybrid and multi-level algorithms) was recently 

provided by Akram and Eaton (2016a) with discussion about the key parameters of each algorithm 

on downhole microseismic data. Among these algorithms, the most reported for single-trace (P-, S-

phase, or both) picking are energy ratio criteria (STA/LTA) (Allen, 1982, 1978; Baer and Kradolfer, 

1987; Earle and Shearer, 1994), autoregressive-Akaike information criteria (AIC) (Maeda, 1985; 

Sleeman and van Eck, 1999; Takanami and Kitagawa, 1988), higher order statistics (HOS) (Saragiotis 
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et al., 2004, 2002), polarization information (Cichowicz, 1993), and wavelet transform (WT) (Anant 

and Dowla, 1997; Bogiatzis and Ishii, 2015; Zhang et al., 2003). 

Although a multitude of algorithms exists, the aforementioned automatic methods are less 

commonly used in the literature for first-arrival picking on near-surface refraction records. Peraldi 

and Clement (1972) proposed an algorithm based on cross correlation of the seismic trace with a 

reference “model” trace. However due to incorrect assumption about waveform stationarity, this 

algorithm does not pick the first arrivals accurately (Gelchinsky and Shtivelman, 1983). Hatherly 

(1982) proposed an algorithm combining the correlation method with a linear least-squares 

prediction method. A drawback of this algorithm is that it is non-robust against random noise. 

Gelchinsky and Shtivelman (1983) used a method based on spatial correlation properties of the 

refracted signals. To prevent an apparent cycle skipping problem with the cross correlation 

approach, Zelt et al. (1987) implemented a Monte Carlo technique in which the cross correlation 

function is transformed into a probability distribution using semblance optimization in order to pick 

low amplitude arrivals in crustal refraction data. Like other automatic picking methods, the accuracy 

of cross-correlation based methods decreases with the signal-to-noise ratio (SNR). However, the 

accuracy of these algorithms may be improved when combined with (i) semi-automatic processes in 

which human operators can interactively guide the algorithm to the correct pick (e.g. Senkaya and 

Karslı, 2014), (ii) iterative stacking/filtering procedures that leads to improve SNR signals (e.g. Akram 

and Eaton, 2016b; Iqbal et al., 2017), (iii) or both (e.g. Lou et al., 2013; Pavlis and Vernon, 2010). 

 Data pre-processing can also improve the detectability of first arrivals and increase the accuracy of 

automatic picking (Mousa et al., 2011; Mousa and Al-Shuhail, 2012). In strong heterogeneous 

velocity fields, the first arrivals do not necessarily correspond to the most energetic wavefield 



6 

(Geoltrain and Brac, 1993), especially in the case of refracted arrivals at far offsets. Therefore, 

seismic noise can considerably impede automatic picking of weak (Tselentis et al., 2012). One way to 

address this problem is to filter the data before automatic picking. But when the first arrivals and 

noise share the same frequency band, data filtering becomes ineffective for automatic picking. Allam 

et al. (2014) showed the potential effects of causal and non-causal filters on head wave picking 

quality. Non-causal filters can introduce small artifacts ringing to the front of high-amplitude arrivals, 

whereas causal filters can produce a phase shift. Additionally, Aldersons (2004) and Senkaya and 

Karslı (2014) discussed the troublesome effects inherent to the choice of corner frequencies and 

slopes of a filter . 

The combination of multi-methods was also proposed to increase the accuracy of automatic 

techniques when picking more complicated phases (e.g. S-phase) (Ross and Ben-Zion, 2014; Diehl et 

al., 2009; Küperkoch et al., 2012). Since each method is based on identifying a specific property of 

the part of the seismic trace where the first arrival occurs, the hybrid algorithms combine the 

advantageous properties of each individual method. 

In near-surface seismic tomography, picking far offset traces remains a challenge. When 

picked, the overall bad quality of far offsets traveltimes usually degrades the inversion reliability 

though they are required to increase the investigation depth. To mitigate such effects, first 

arrivaltimes can be used with their associated uncertainty estimate in order to balance the trade-off 

between investigation depth and inversion quality. According to Aldersons (2004), estimating picking 

uncertainties is the second most important goal in an automatic picking algorithm. Di Stefano et al. 

(2006) automatically estimated the uncertainties of first arrivals by using quality weighting algorithm 

which takes into account the waveform sampling rate, spectral density analysis and SNR. Diehl et al. 
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(2009) obtained a robust estimate of error intervals for automatically picked S-arrivals by combining 

picking information from different methods (STA/LTA detector, polarization detector, and 

autoregressive picker). Küperkoch et al. (2010) introduced an automatic quality estimation of picked 

P-onset from local slope and SNR of the characteristic function (CF) used in their picking procedure. 

Although using combined algorithms has become a standard approach for automatic picking 

in deep seismology, it is still not common for near surface seismic data. 

Here we propose a new adaptive algorithm based on the combination of three picking methods, 

respectively Multi-Nested Windows (MNW), Higher Order Statistics (HOS), and Akaike Information 

Criterion (AIC). This work focuses on overcoming most of the shortcomings inherent to the use of a 

single picking method. It also aims at providing accurate P-wave arrivaltimes along with their 

uncertainties, which are required information for reliable near surface tomography processing. 

Exploiting all sub-algorithms in a single scheme proves to be beneficial in order to avoid filtering. The 

proposed new scheme is thus auto-adaptive and nearly parameter-free algorithm. Furthermore, all 

sub-algorithms are applied on raw single-component records in time domain in order to improve 

computational efficiency. 

METHODOLOGY 

Principle and methods 

Most of automatic picking techniques rely on different noise and signal properties in time 

or/and frequency domain. The transition point (noise to signal) can be identified with an algorithm 

that enhances and detects a specific attribute. Our proposed strategy is based upon an adaptive 

algorithm combining three picking methods (MNW, HOS, and AIC). The implemented algorithm 
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mimics the human first-break picking, where at the beginning a global trend is defined, and then the 

precise first arrival times are searched in the vicinity of this trend. The picking is performed using a 

three stage algorithm that combines sequentially the three sub-algorithms. In this section, we 

describe the mathematical background of the three methods and their implementation in adaptive 

workflow either for a trace-by-trace or a shot-gather picking. To better illustrate and facilitate the 

comparison, each trace is normalized to its maximum amplitude before any process. 

Multi-Nested Windows (MNW) method 

The particles motion increases gradually when the disturbance of the seismic waves arrives, 

so usually no sudden take-off in the trace at the first break can be noticed (Ricker, 1953). Therefore, 

the early advent of the first arrival (here, P-wave) is usual low, and the later one would be more 

energetic. However, in near surface prospection, first arrivals could be obscured by ambient noise. 

This case is commonly met at far offsets due to the spherical divergence of the front wave, the 

attenuation and the interference with background noise (Mallinson et al., 2011). 

Let      represent the amplitudes of trace at a time t (   [   ]  of   samples). The 

average energy in the before, after and delayed windows (respectively BEA, AEA, and DEA) are 

defined by Eq. (1): 
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where   ,    and    are the lengths (here in samples) of the corresponding windows in 

terms of dominant period length (  ) of the first arrival wave; d is the time delay for shifting the DEA 

window. Trnkoczy (2012) quantified the tradeoffs between the windows size and trigger sensitivity 

of the short-term average/long-term average (STA/LTA; Allen, 1978) algorithm. It is claimed that the 

preceding window should be a few times longer than the later window for microseismic data picking 

(Chen, 2005; Han et al., 2009; Wong et al., 2009). In this work, the lengths of the windows are 

                                 . The energy ratios    and     are defined by Eq. 

(2). 

        
      

        

        
      

        
  

(2) 

where β is a constant used to avoid numerical instability in the energy ratio computation. In 

this study, β was adopted as 0.005 being suitable for the datasets used. It is noticed that     is 

slightly equivalent to energy ratio (ER=STA/LTA) methods (e.g. Han et al., 2009). However, when ER 

exceeds a pre-defined threshold, the first arrival is considered as detected. But the onset picking 
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may need further processing. Wong et al. (2009) showed that the onset of the first arrival is very 

close to the maximum derivative of ER. In the case of noisy traces, the first-break times derived from 

ER technique are somewhat later (Gaci, 2014). To overcome the problems due to first arrival 

weakness, we propose a new characteristic function (CFmnw) by summing the two energy ratios 

(       ), calculated in the nested windows shown in Fig. 1a, as follows. 

                        (3) 

Fig. 1b demonstrates the ability of incorporated energy ratios to enhance the presence of 

the first arrival onset, where it is shown that the new CF is greater in value and sharper than the 

traditional STA/LTA ratio at the first arrival time. Thereby, the accuracy in picking should be 

enhanced by comparing to traditional energy ratio methods. 

Beside the drawbacks concerning windows size, threshold choice is another crucial problem 

of energy ratios methods (Akram and Eaton, 2012). We assume that the noise average does not 

depend on time, i.e. the seismic noise satisfies local stationary in short observation-scale (Ait Laasri 

et al., 2014). Consequently, when all windows are merely comprised of noise part,    and    

(given by Eq. (2) are circa one, resulting in CFmnw around two (Eq. (3)). Based on these considerations, 

the theoretical threshold is given by Eq. (4): 

                (4) 

where      is the standard deviation computed within the window preceding the instant t. 

By adding   term in Eq. (4), the impact of most noise fluctuations should be mitigated, making this 

threshold slightly time dependent. However, when the later and delayed windows encompass a part 

of the seismic phases, the CFmnw becomes greater than 2. The beginning of the potential zone (BPZ; 
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P-wavetrain trend) is determined once the CFmnw exceeds Thr(t). In order to minimize spike 

fluctuations on the picking procedure, a smoothing process of CFmnw is performed via local regression 

tools (using for example loess MatLab function) within a window of half dominant period (     ). 

Since CFmnw characterizes the waveform change of the P-wavetrain, the potential first arrival times 

can be allocated to the two first local maxima of the smoothed CFmnw (SCFmnw) after BPZ within a 

predefined searching window. Therefore, one of the two initial picks that correspond to the 

maximum SNR represents the first break (tP1) (Fig. 1). The approximated interval error (tE1) can be 

assessed by                     where     is the absolute difference between BPZ and the first 

local maximum, and      is the absolute difference between the two maxima if they exist. The results 

of MNW method can be summarized by three parameters: the early beginning of the potential zone 

(BPZ), the potential first arrival time      , and the approximated interval error      . 

Higher Order Statistics (HOS) method 

The seismic noise follows closely a Gaussian probability distribution (Ait Laasri et al., 2014), 

while at the opposite, the seismic signal is non-Gaussian (Persson, 2003; Saragiotis et al., 2002). 

Higher statistics (as skewness and kurtosis which are normalized central moments of order three and 

four, respectively) are well suited to check the gaussianity of time series (Giannakis and Tsatsanis, 

1994). Moving skewness and kurtosis reflect in different degrees the changes in distribution shape 

around a chosen position of the time series (Press et al., 1992). However, the ability of HOS to pick 

first arrivals was successfully tested by Saragiotis et al. (2002) for real seismic applications. 

Furthermore, the superior efficiency of kurtosis over other metrics (such as skewness) to detect and 

pick seismic phases has been shown by many authors (e.g. Küperkoch et al., 2010; Nippress et al., 

2010). 
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In this study, kurtosis-based attribute (CFk) was used to characterize the amplitude 

distribution, where CFk is calculated using Eq. (5) with a nk-samples moving window over the seismic 

trace. 
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where ai represents a vector of seismic amplitudes inside a window of size nk ,   ̅ and σt are 

respectively the mean and the standard deviation over nk samples. The kurtosis-value for each 

window is ascribed to the end sample of the window (Fig. 2a). CFk increases when the moving 

window integrates the first part of the seismic phase, due to the transition from Gaussian to non-

Gaussian behavior (Fig. 2b). In case of complicated or emergent onsets, the kurtosis increases 

progressively before reaching its maximum value. The very beginning of this increase matches well 

the human-operator picking (Baillard et al., 2014). The onset time of the considered phase can be 

determined using the maximum CFk derivative (Langet et al., 2014; Lois et al., 2013). To address this 

issue, we applied the successive transformations proposed by Baillard et al. (2014) to CFk followed by 

smoothing; in a similar fashion as in MNW method, we can also apply low pass filtering to CFk by 

using the same function and the smoothing parameters. Hence, the first arrival time (tP2) is defined 

by the minimum of the smoothed Baillard’s function (SCFBk) (Fig. 2b). We notice that when the non-

impulsive arrivals are submerged by the noise, the kurtosis local maxima identifying this arrivals shift 

up in time. The approximated error (tE2) can therefore be estimated by the time interval between 

the maximum of the CFk function and the picked onset. For the clear and impulsive phases this time 

interval is very small, while in case of noisy and non-impulsive phases this interval becomes 

significantly larger. The results of HOS method can be summarized in two parameters: the potential 

first arrival time (   ) and the time sensibility range (   ). 
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Akaike Information Criterion (AIC) method 

AIC (Akaike, 1974) is widely used in autoregressive (AR) techniques (e.g. Leonard and 

Kennett, 1999; Leonard, 2000; Takanami and Kitagawa, 1988). This approach is based on the 

assumption that the seismic trace can be split into locally stationary segments, where each of them 

is satisfying a different autoregressive model. Hence, the point where the AIC is minimized indicates 

the optimal separation of two time series (noise and signal plus noise) where the first break arrival 

(Sleeman and van Eck, 1999). In this study, instead of using AR coefficients for calculating AIC 

function, the CF based AIC (CFaic) is calculated via Maeda’s version (1985). Let a(t) a seismic trace of 

length N, the CFaic is computed by Eq. (6) directly from amplitudes sequences splitting in two 

segments (Fig. 3a). 

                                                 (6) 

where         and           are the variance of a in the backward and forward 

windows. 

Under ideal conditions, the minimum of the CFaic is searched for, and its corresponding time 

is interpreted as first arrival time. In some circumstances when noise and other later wavefield 

interfere, or when the seismic trace contains many significant features, AIC picker may fail to define 

the arrival as a global minimum. It is so necessary to apply AIC picker within a time limited window 

(searching window) containing only the useful phase (Zhang et al., 2003). Taking into account these 

points for improving the accuracy of AIC picking, we implemented the multi-model inference 

approach (Li et al., 2009). This approach incorporates the entire set of models in the searching 

window to compute a weighted average model, based on normalized Akaike weights as following: 
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- Define the minimum of the CFaic in the searching window (CF_aicmin). 

- Calculate the differences (Δi) between CFaic values and CF_aicmin: 

          
                  (7) 

- Compute the normalized Akaike weights     : 

     
        ⁄  

∑          ⁄   
   

(8) 

- Set all values of      out the searching window to zero. 

- The potential first break time       is obtained by using the weighted average: 

    ∑    

 

   

    (9) 

where ti is the time corresponding to each sample in the time series. 

For traces showing high SNR, the difference between the improved AIC picker based on 

weighted model averaging scheme and ordinary AIC picker based on the best model (corresponding 

to the minimum AIC value) is negligible (Fig. 3b). On the other hand, when the traces show low SNR 

(where the global minimum of AIC function is not very sharp), the new AIC picker is more accurate 

since it integrates the other candidate models based on its relative importance estimated by Akaike 

weights (Li et al., 2009). 

The sharpness of the AIC minimum often reflects the onset clarity (Diehl et al., 2009; 

Toomey et al., 1994). A prominent AIC minimum is typically produced by an impulsive event, 

whereas the broader local minima are related to non-impulsive or noisy events. We estimate the 

time uncertainty of AIC picker       from normalized Akaike weights function within searching 

window. The lower and upper limit of error interval correspond with, respectively, to the first and 

last sample where    is greater than an appropriate threshold. We found that a threshold of 10% 
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of the maximum    function gives satisfying estimate of the uncertainty interval. The results of the 

AIC method can be summarized also by two parameters: the potential first-break of P-wave (   ), 

and the error range (   ). 

However, in free-noisy traces one method is enough to pick correctly the first arrivals. 

Whereas in low SNR traces, each method picking has its own CF characterizing a specific property of 

the trace, their results may therefore be significantly different. Hence, using multi-method algorithm 

helps to fill gaps in each method maintaining a good performance, and further, to guide picking 

algorithm toward the interesting zone. 

Algorithms implementation 

The main idea of the implemented strategy is that multi-algorithm integration should 

enhance the picking capability of weak events and reduce picking errors whatever the noise level. In 

this three stage algorithm the information provided by each sub-algorithm is used either to orient 

the following phase picking (defining a target window), or to setup the essential parameters for the 

next phase, or both. The sequential integration of each sub-algorithm results in the implemented 

workflow provides auto adaptive parameter estimation. Therefore, one input parameter is needed 

only for the first picking algorithm (in MNW). Subsequently, all potential picks derived from sub-

algorithms are used to determine the first arrival times and their corresponding relative errors. In 

the following subsections we describe the workflow of the complete picking algorithm and its 

parameters for a signal trace (trace-by-trace algorithm) and for a set of traces (entire-shot gather 

algorithm). 

Single-trace algorithm picking 
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We extracted a vertical component seismic trace from a simulated record by finite differences 

modeling in order to describe the internal stage operations of the picking algorithm (input-

output parameters and its respective CFs). A significant noise level (random and bandlimited 

noise) is added ( 

Fig. 4a). This trace presents a double serious challenge to be picked automatically, since the 

first arrival has a weak onset and is completely embedded within added noise. The first 

arrival was picked manually on clean trace before adding the noise and is marked by a black 

vertical solid line ( 

Fig. 4a). 

Phase 1 (MNW sub-algorithm): the main goal of this phase is to enhance the presence of 

weak event and to determine the very beginning of the considering seismic phase. The CF 

characterizes the energy variations as a function of time. The first period length of the P-wave 

(Td) is the only input parameter that needs fine-tune by the user. However, it can be obtained 

directly from the input data trace. For this test trace, we estimated Td to 75 samples. The 

picking procedures, as described previously, are applied on the smoothed CF (SCFmnw). The 

searching window (SW1) is located just after BPZ. We find a length equal to one and a half 

period (1.5Td) is suited to pick the two local minima for which one of them is potentially the 

first arrival (tP1). 

Fig. 4b shows the SCFmnw and the related results. 

Phase 2 (HOS sub-algorithm): the size of the moving window (Nk) used in calculating the 

kurtosis-based (CFK) can be estimated automatically from the approximated sensitivity 
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interval of the previous sub-algorithm (tE1). For most tested traces, we found that Nk twice 

the (tE1) provides satisfactory results. In order to avoid the under- or over-estimating of CFK, 

we added a security condition in which when estimated Nk less than 0.5Td or greater than 

2Td, the algorithm setup the Nk to one period (Td). The searching window (SW2 = tE1+Td) is 

automatically set up around the potential first arrival derived from MNW sub-algorithm (tP1); 

tE1 before tP1 and Td after. The potential first arrival (tP2) and associated time uncertainty 

(tE2) are also determined according to the descriptions in the related section (HOS method). 

The related CFs and results of this sub-algorithm are illustrated on the 

Fig. 4c. It is worth mentioning that it is sufficient to compute the kurtosis attribute only for 

the part of the trace corresponding to the searching window, which speeds the picking process. 

Phase 3 (AIC sub-algorithm): Since the performance of AIC methods depends strongly upon 

the searching window configuration, the results of previous sub-algorithms (MNW and HOS based 

kurtosis) were jointly used to lead the AIC picker, and further to setup its searching window size. We 

define the size of this window and its location (respectively, SW3 and Caic) according to Eq. (10). 

                   

                   

(10) 

Finally, the potential first arrival (   ) and its time uncertainty (   ) are also obtained 

according to the related explications in AIC method section. The related attribute functions 

and the results are illustrated on the 

Fig. 4d. 
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All potential first arrival onsets and their associated errors picked by the sub-algorithms are 

shown on the 

Fig. 4e. The input/outputs parameters of each sub-algorithm can be summarized in the 

following simplified flows: 

                      
            
⇒                          

                            
            
⇒                     

                                             
            
⇒                     

Final picking: In analogy to the multi-window and weighting scheme proposed by Lois et al. 

(2013), the final pick time           is obtained by the weighted average of the picks set produced by 

the previous pickers (           ) according to 

         
∑       

 
   

∑   
 
   

  (11) 

where    is a quality factor of the picked phase calculated into a predefined time windows 

and is given in dB (Küperkoch et al., 2010): 

        (
  

  
), (12) 

where    is the RMS-amplitude of the noise calculated within a time window of length 

(nois_wind = 3Td) before the determined    . The    is the RMS-amplitude of the P-wave evaluated 

on the signal window (sig_wind = 1Td) starting immediately after    . 
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In general, Q-values can yield crude information on the quality pick. If the arrival is correctly 

picked, Q has high and positive value. On the other hand, Q-value close to zero or negative indicates, 

respectively, very early picking (noise signal or dead trace) or late picking. All picks corresponding 

with negative Q values were excluded out the final picking process. 

Error and quality assessment 

While an ultimate goal of any automatic picker is to assure the highest accuracy possible, an 

associated uncertainty estimation is of great importance in a posteriori processing of first arrival 

time (e.g. in tomographic inversion). For these purposes, we suggest an approximated estimation of 

final pick error by using a simple statistical tool. From a practical and physical point view, the 

standard deviation can be considered as a good error estimator of repeated measurements of a 

physical parameter (here, the arrival time). Therefore, the final time uncertainty (       ) is 

produced by the standard deviation of three potential picks resulting from the aforementioned sub-

algorithms. 

                         (13) 

Since the first arrival onset is completely embedded by the random noise, the final pick is 

slightly shifted ( 

Fig. 4e). Therefore, that demonstrates the high sensibility of the three picking methods to the 

higher amplitudes. Although the considerable added noise, the correct first arrival time is still 

in the range error of the implement algorithm ( 

Fig. 4e). 

Final picking reliability of single-trace algorithm: 
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To analyze the reliability of the final picking in the single-trace algorithm, we use a pseudo-

synthetic dataset. These dataset was generated by adding 1000 noise scenarios to a real trace 

characterized by high SNR. Since the first-order Gauss-Markov process is the best candidate that can 

model the seismic noise (Baziw et al., 2004), we use this process to create the seed of our synthetic 

noise realizations as following: 

- generation of a long time series (the seed series) of random noise via Gauss-Markov 

process. 

- apply S-transform (Stockwell et al., 1996) on this one-dimensional noise. 

- for each scenario, random selection (the bandlimited frequency and the start time) 

on the S-Transform time-frequency map , zeroing out of the selected zone and inverse S-Transform, 

normalization the output time series by its maximum and multiplication it by a random value (0.1 - 

0.9). 

The resultant noise scenarios can be considered more realistic in terms of random and 

bandlimited noises and S/N values. Fig 5 illustrates the pseudo-synthetic dataset generation via one 

noisy trace realization. 

The only input parameter (Td) of the single-trace algorithm is about 30 ms. By assuming that 

the acceptable error is a quarter of the dominant period (Td /4 = 7.5 ms), 70% of final picks falls in 

the interval error [-7.5, 7.5] with RMS value equal to 3.66 ms. A detailed view of the statistical 

analysis of the automatic picking results is shown in Fig 6. The time differences (automatic - manual) 

and final error normalized by Td are shown as a function of first arrival quality (SNR) (Fig 6a), as well 

as their histogram distribution (Fig 6b). As expected, the algorithm performance deteriorates with 
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decreasing SNR. The quality of final picking and/or the normalized final error could be good criteria 

for assessing picked results. For this dataset, we can easily define 5 dB as a threshold for primary 

filtering out the bad picks with no good picks below this threshold. However, that is not evident for 

bad picks corresponds to earlier or later high amplitude produced by addition noise or posterior 

arrivals, respectively (Fig 6d). 

To clarify the MNW effect on the final picking we perform a cross-analysis of MNW picking 

results. We define the acceptable error for MNW as ±Td. This error-value seems a reasonable choice 

because it corresponds to a part of the searching window of HOS that follows the initial pick 

estimates from MNW. Fig 6c shows time difference pie chart for the four possible cross-

combinations of MNW and Final Picking (FP) results. Among 70% of successful FP in its interval error, 

only 2% of picks were not initialized by MNW. Otherwise, despite than 9% of picks were well 

initialized by the MNW algorithm, the FP could not pick them correctly due to the  relative high-

quality weighting of the other pickers (HOS and AIC). Most of these picks are often associated with 

later arrivals. The MNW could not determine the potential zone of the last 21%. Since energy ratio 

algorithms are sensitive to high noise fluctuations (Akram and Eaton, 2016a), MNW was probably 

trapped by high-amplitude noise fluctuations far from the first arrival. The same behavior is 

observed for FP. The corresponding picks are characterized by low final quality picking (Fig 6d). 

Normalizing the pick quality by the corresponding errors issued from final picking can be 

considered as a good criterion to evaluate the three stage algorithm consistency. High values 

indicate a good arrival quality, and the sub-algorithms will therefore pick in a narrow time interval 

(small error), whereas lower values (close to 0) correspond to erroneous first arrival (noise) or/and 
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dispersive picks algorithms (large error). Fig 7 shows the consistence of three algorithms on the 

categories in the Fig 6. 

A drawback of the three-stage algorithm occurs when the MNW stage fails to successfully 

define the BPZ, leading to sequential failure as sub-algorithms are inter-connected by auto adaptive 

parameters transmission, and to false picking. In such case, high-fidelity filtering (e.g. Aldersons, 

2004) or denoising (e.g. Parolai, 2009; Tselentis et al., 2012; Gaci, 2014) are still possible during pre-

processing. In near surface seismic surveys, exploitation of multi-trace redundant data and events 

coherency is another candidate solution. 

Entire-shot record algorithm picking 

The basic idea of this algorithm is to integrate all picks provided from preceding sub-

algorithms by exploitation the properties of coherency of the first arrivals and its consistency over all 

offsets. This algorithm is an extension of the single-trace algorithm, and it is adapted for full 

automatically picking of common shot-gathers. In order to better determine the trend of P-

wavetrain and to work under different noise conditions we optimized MNW sub-algorithm by 

adding/involving two tools; variable-threshold engine and look-like Monte Carlo approach. 

Using a fixed MNW-threshold might lead to false picking due to the high variability of the 

noise and the P-waveforms. In order to elevate this drawback, we proposed a variable-threshold 

engine combined with an iterative process. The latter is a look-like Monte Carlo approach; an 

optimal solution is built from the database picks that arise from MNW sub-algorithm via variable 

thresholding. Here, the solution is the set of picks (BPZ picks) forming the first-breaks trend over the 

whole shot gather. Using two subroutines: In the first one, a matrix of all possible solutions is 

generated by a multi threshold engine picking (the threshold varies between 0.5 and 10). The second 



23 

one is an iterative system consisting of: (1) randomly building a solution, (2) calculating the 

corresponding cost function, (3) repeating the process for a predetermined number of iterations, (4) 

choosing the best solution which corresponds to maximum of the cost function. Our cost function 

combines three main properties in order to highlight the presence of the first arrivals: 

Energy cost function (      ): we defined       (Eq. (14)) as a function of the after-

energy ratio (AER) modulated by given picks quality (Q) and normalized by an error (       ). AER is 

CFmnw average within a limited window just after the built solution. Q is estimated by Eq. (12). 

       is given by the standard deviation of the solutions matrix over threshold dimension 

(     ). This cost function has to maximize over the whole shot record. 

        ∑(
      

         

)
 

              

(14) 

Smooth cost function (          ): by definition, a curve is smooth when all the derivatives 

exist and are continuous. The simplicity and efficiency of centered second-order derivative (      ) 

make it an attractive candidate for analyzing smoothness curve. The second order derivative of the 

travel time shape has to minimize (i.e. the solution is hold as close as possible to a smooth curve). 

The shape of the trend is normalized by an attributed error (           ), which can be defined as 

the standard deviation of the selected solution (      ). The            is then given through the 

Eq. (15): 
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SNR cost function (       ): the         is defined by Eq. (16), and has to be maximized. 

         ∑(
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(16) 

where     is calculated for raw traces in predetermined windows around the built solution. 

The total cost function is the sum of the normalized costs functions as follows: 

                   
 

          

             (17) 

where  , β and γ are weights in [0, 1], which allow controlling the importance of individual 

objective functions. In this study, we give an equal contribution of the three cost functions 

(       ). The trend of the first arrivals is then to find the optimal solution (    ) which 

maximize the total cost function (         ). The problem can be simply formulated as, 

            
   

         (18) 

The general flow of our iterative system is somewhat similar to Monte Carlo approach 

(randomizing selection and then minimizing a likelihood function). In our approach, the random 

selection is limited or somehow guided, and the likelihood function is absent (i.e. full directly 

searching). 
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Taking in consideration that the first arrivals are consistent and coherent over all offsets, 

their trend should be as smoothed as possible. In order to eliminate outliers and high first order 

derivative points, the final solution should be passed through a smoothing process. We used rloess 

matlab function, which is based on local regression using linear least squares; it assigns lower 

weights to outliers during the regression. The smoothing window length is chosen depending on the 

complexity of subsurface and therefore on the expected form of travel time curve (in percent of 

total traces number). 

In very noisy case, the correct first arrivals could be found in the shadow of strong ambient 

noise. Hence, they might be invisible for the variable-threshold engine. In such case, it is preferred to 

rebuild the solutions matrix, but within a small tolerance window centered on the smoothed 

solution. The tolerance window length of two time dominant period (2Td) is suitable for this purpose. 

The new candidate matrix is processed again though the iterative system. The final smoothed 

solution can then be interpreted as the trend of the potential zone of the P-wavetrain arrivals. 

As a whole, the rest of the algorithm has the same workflow as the single-trace algorithm. In 

particular, the input parameters of each sub-algorithm (especially the searching windows size) were 

adjusted by using statistical tools. The abundance of each sub-algorithm outputs permits also to set 

forwardly the SW location for the next sub-algorithm (i.e. guiding mode). 

Since the trend might be delayed due to use of multi-threshold and/or smoothing process in 

MWN sub-algorithm, it is appropriate to add a confidence interval (0.5 Td) before the estimating 

smoothed trend. Therefore, the P-wavetrain zone is located around the smoothed trend rather than 

just after it (as in single-trace algorithm). 
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The parameters setting of all sub-algorithms are recapitulated in the 

Table 1 that presents a comparative summary of the two algorithms’ parameters. 

VALIDATION THE PROPOSED ALGORITHM 

Test on synthetic data 

Synthetic datasets were produced by finite-difference (FD) modelling in the time-space 

domain using FDELMODC program developed by Thorbecke and Draganov (2011). The geometry of 

the acquisition system consists of an array of 72 receivers with a spacing of 4 m in flat topography. 

The seismic sources are simulated by an explosive Ricker wavelet with maximum-frequency of 90 Hz, 

spreading every 4 m between the receivers. The geological model used to create wavefield data is 

assumed to be an elastic media incorporating realistic subsurface structures. This model is 

composed of many layers (C1-C3) and a substratum (S) fractured by a normal fault (F); three layers 

at the left side of the fault and two layers on the right one (Fig. 8a). All velocities and densities are 

assumed to be constant in each layer, except the fault zone with a linear velocity gradient about 12.5 

m/s per m, with v0 = 625 m/s. Densities ( ) are set using the Grardner’s rule for P-wave velocities 

(        
             ⁄               ⁄ ) for each layer. The details about the model 

geometrical parameters are shown in Fig. 8a and 
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Table 2. Since FD modelling requires to grid the model into a finite number of cells (Carcione 

et al., 2002), the model (500 x 150 m) was discretized into 1000 x 300 grid mesh (i.e. the space is 

equally sampled in x and z at 0.5 m). The Perfected Matched Layer (PML) absorbing boundary with 

120 grid points was implemented along at three sides, with free surface. We generate many inline 

shot gathers; in each one, a total of 0.6 s with time increment of 0.5 ms was modelled for the 

vertical point force located at the free surface. Fig. 8b shows an example end-on spread shot-gather 

(the source at 198 m) of the vertical component of the wavefield simulated, in which the theoretical 

P-wave arrival times are denoted in small green circles. 

We added the noise adding to the simulated wavefields, which represents another difficulty 

inherent to weak events, along complex changes in the waveforms, and nonlinear travel-time curve 

in presence of a fault. Two types of added noise (random zero-mean Gaussian and band-limited 

noises) were computed using the function suaddnoise of the Seismic Unix (SU) package (Cohen and 

Stockwell, 2012). The band-limited noise has approximately the double frequency range of the 

simulated source. 

We applied the entire-shot picking algorithm to pick the first arrival times in the shot gather shown in Fig. 8b. The first dominant period of the P-waves is approximately 75 samples. The automatic picks resulting from the adaptive algorithm are compared to the theoretical picks calculated by Fast Marching Method (FMM) implemented by Dirk-

Jan Kroon under an open source license 

(https://fr.mathworks.com/matlabcentral/fileexchange/24531-accurate-fast-marching, last accessed 

March 1st, 2018). The automatic process was repeated for the same shot-gather in Fig. 8a but with 

additive random Gaussian noise of 20%, with limited-band noise by [40-180] Hz, followed by the two 

previous noises together (Fig. 8b, Fig. 8c, and Fig. 8d), respectively. The picks resulting from the 

automatic algorithm have a good overall consistence with the theoretical picks. Although automatic 

picking performed satisfactorily, an over-estimating of the arrival times is noticed after adding the 
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noise. This shift-down of the picks increases with the offset and it is remarkable at the events 

corresponding to the fault. 

To assess our algorithm robustness, we compare the picks with those determined 

theoretically for two cases: noise-free and noisy records. In the case of noise-free shot gather, 60% 

of the automatic picks are within [0,-2] ms of the actual picks, and 90% are within [0, -10] ms (Fig. 

9a, red histogram). This analysis can be considered as a calibration step of the algorithm parameter 

setting; the median value of the automatic-manual differences is about -1 ms. A possible explanation 

of this deviation is that the P-wave dominant period length varies with the offset. For noisy data 

(random and band-limited noises), the blue histogram in Fig. 9a shows that about 35% of the 

differences are found at 10 ms, and 75% are within [0, 20] ms. Fig. 9b shows a statistical analysis per 

quality class, which are determined in analogy to the empirical uncertainty categories (A-D) of Lois et 

al. (2013). Clearly, all distributions of the four classes are found on the positive side of the difference 

between automatic and actual picks. The visual check of individual sub-algorithm results and 

corresponding waveforms shows that delay time picking is mainly due to their high sensibility to the 

high amplitudes in the presence of high noise levels. The dispersion symmetry around the median 

and the absence of outliers show again good consistence of the two picking methods. 

With noise addition, the first arrivals quality was degraded by about 20% of their level at the 

noise-free gather (Fig. 10; see red dotted curves evaluation comparing to the red solid ones). The 

accuracy of our adaptive algorithm versus the first arrivals quality is presented in the tables included 

in the Fig. 10. The Root-Mean-Square (RMS) of the differences in case of zero noise is 3.6 ms, and 

the maximum RMS in noisy cases is 16 ms, which normally corresponds with C and D quality classes. 

Generally, increased noise levels result in anomalously late picks, because parts or even complete 



29 

phases of the recorded signal can be masked by the noise. The implemented algorithm kept a good 

performance despite the decreasing of quality arrival due to additive noise, where the maximum 

RMS in the very noisy case did not exceed the acceptable error. 

Test on real data 

Exploration-scale active-source seismic dataset was chosen to validate the implemented 

algorithm on real data. The dataset is characterized by a variable quality level of first arrivals when 

increasing source-receiver distances. The performance assessment is achieved by comparing the 

algorithm result with those manually picked. The Douglas's concept (1997) “the less filtering, the 

better picking algorithm” has been applied, where no data preprocessing was performed before the 

automatic picking process, but all traces are scaled with respect to their maximum value. 

Field data 

As a test, we have applied our algorithm to a 800-m-long seismic profile conducted in the 

Chaux Forest in the Jura region (France). An accelerated 40 kg weight (hitch-mounted at the front of 

a tractor) dropped onto a steel plate, is used as a seismic source for generating the energy, with 4 m 

source interval along the profile. Four shots at each source location were averaged to increase the 

signal-to-noise ratio. The recorder system consists of 72 14-Hz vertical component geophones, with 

4 m receiver spacing along 318 m of maximum offset. The recording time was 1 s with a delay of -20 

ms. The data were sampled at 1 ms. A roll-along technique acquisition was used to perform the total 

profile survey. In this study more than 12500 recorded traces were considered from 174 shots. 

The dominant period (Td) of the P-waves can be directly estimated by visual inspection of the 

seismic section. Since the earth acts as a minimum phase low pass filter (Aki and Richards, 1980), Td 
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tends to become larger at far-offsets. Following the initial inspections on individual shot gathers, six 

periods ranging from 11 to 35 samples in length were examined. This key parameter was calibrated 

through a trial-and-error procedure in order to unify its value over all offsets. We can see that a 

value of 25 samples is a reasonable choice because it provides the best compromise between 

minimum RMS and maximum traces picked within the predefined margin error of manual picking (±5 

ms) (Fig. 11). This error-value corresponds to approximately a quarter period of the 40–50 Hz first 

arrival signals (Zelt et al., 2006). The other required parameters are set up automatically during the 

process (i.e. auto adaptive parameters) as described in the previous sections. 

In order to reduce calculation time, only the first 250 ms of the time record were taken in 

consideration. Fig. 12 shows an example of the picking results by our adaptive algorithm (blue line) 

with related error, and those picked manually (green line). Unlike the far-offset traces, an excellent 

agreement is observed between manual and automatic picks of near-offset traces. 

Applying the proposed algorithm to the whole profile data (more than 12500 traces), more 

than 88% of traces were picked in the implicit presumed error interval of the manual picks (±5 ms), 

with only 7 ms as RMS. A more detailed view of the statistical analysis of the automatic picking 

results is shown in Fig. 13. The residuals between our automatic picks and manual picks (automatic-

manual) are shown as a function of offset (Fig. 13a) and first arrivals quality (SNR) (Fig. 13b), as well 

as their distribution in a histogram (Fig. 13c). The residuals decrease quickly and concentrate (close 

to zero) for the high quality traces, which largely reflect the high performance of the proposed 

algorithm. Unfortunately, the residuals depart from zero after offset 200 m and are dispersed in the 

positive side, which suggests that our algorithm picks systematically late arrivals at far-offsets. 

Another possible explanation of this deviation is that the increasing dominant period length with 
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offset might have a significant effect on algorithm accuracy. The signal-to-noise ratio (SNR) is 

however the main source of error for even a manual picking (Zeiler and Velasco, 2009). Fig. 13d 

shows the normalized cumulative histogram of the related picking errors, with 90% of the available 

traces picked with standard errors less than ±3 ms. 

However, the tendency of late picking at those offsets reinforces the need to enhance these 

arrivals before automatic picking, or at least to omit automatically or manually their picks before any 

posterior processing. Additionally, there might be some dead traces where their picks are naturally 

wrong and must be also ignored (Sabbione and Velis, 2010). 

A further advantage of the proposed algorithm is that the individual error derived 

automatically can be employed to define the pick quality, thus weighting the data in travel time 

inversion (e.g. Bauer et al., 2010). Furthermore, the performance of the developed algorithm versus 

other automatic pickers and with many datasets recorded by various sources-types was stated by 

Khalaf (2016). 

From our experience, the new algorithm processes 72 traces shot gather in about 10 

seconds along with thorough quality check. Since this study is primarily focused on accurate picking, 

no attention is paid to time calculation improvement that may be a subject of further research. 

CONCLUSIONS 

We have introduced an adaptive multi-method algorithm to pick automatically the first 

arrival times of near surface seismic data by combining three methods (MNW, HOS, and AIC). The 

MNW method was combined with iterative look-like Monte Carlo approach supplying a good 

localization of the first arrivals trend, even if the arrival onset embedded by a high noise level. 
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Integrating the three methods results as a combination of the first arrival properties (energy, 

gaussianity, and stationarity) yielded fruitfully as a precise, nearly parameter-free, and full automatic 

picking algorithm. 

Testing our algorithm on synthetic and real data demonstrated good results in comparison 

to those calculated theoretically and picked manually, respectively. The synthetic example presented 

in this paper is realistic for near-surface studies in terms of the velocities distribution, depth 

investigation, source–receiver geometries, and noise data. The noise robustness tests (with no 

added noise and with additive random Gaussian and limited-band noises) demonstrated the overall 

reliability of proposed algorithm, resulting in maximum RMS of 16 ms in the case of exaggerated 

noise. For real data, the effectiveness of the proposed picking method is highly dependent on the 

quality of the first arrivals and their dominant period, which is the key parameter in the overall 

methodology. 

The proposed algorithm provides automatically not only the first arrival times, but also their 

uncertainties. These uncertainties can be used in a posteriori processing such as in tomographic 

inversion or data phase-editing prior inversion. 

The number of user-tuning parameters was kept as low as possible as in order to reduce 

parameters errors. In fact, the main period of the first arrivals is the only required parameter. All the 

others parameters are auto-estimated and adapted across the processing workflow. 

Finally, in cases of very weak events with high noise presence, local enhancement of the first 

arrival signals may help to improve our algorithm accuracy. For instance, like this enhancement may 

be achieved by local stacking or very high fidelity denoising. Our algorithm is appropriate for 
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common shot gather, but it is expected to provide a basis for more effective picking on other seismic 

data collections, such as common-offset gather (COG). However, their detailed advantages and 

drawbacks analysis is beyond the scope of the present paper. 
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Single-trace Algorithm Entire-shot Algorithm 
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Table 2 : Thickness and velocities of the layers model used in the simulation 

Layer 

Thickness (m) 

Left   Right 

Velocity P-wave 

Vp (m/s) 

Velocity S-wave 

Vs (m/s) 

C1 28.5 14 400 230 

C2 16.5 0 1000 580 

C3 22.5 22.5 1800 1050 

F 10.5 625 - 2500 365 - 1500 

S   2500 1500 

Fig. 1. Illustration of MNW method: (a). normalized free-noisy trace and the three windows (red = before 

instant t; black = just after instant t; green = after a delay instant t) used on the calculation of CFmnw. (b). 

Energy ratios (ER1 = energy ratio calculated between the before window and after window; ER2 = 

calculated energy ratio between delayed window and before window; CFmnw = Characteristic Function of 

the incorporated energy ratio; CFmnw = Smoothed Characteristic Function; Thr = Threshold). The black 

line indicates the first break. 
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Fig. 2. Illustration of HOS based kurtosis method: (a). normalized free-noisy trace and windows (red 

rectangle) used for calculating CFk. (b). the resulting kurtosis CF (blew solid line), and transformed 

kurtosis based on Baillard procedure (red solid line). The black dashed line indicates the manual pick of 

first arrival of P-wave. 

Fig. 3. Illustration of AIC picker based upon Akaike Weights: (a). normalized free-noisy trace and two 

windows with variable length (red and black dashed rectangles) (b). The CFs based on AIC (blue solid 

line) and on AW (red solid line). The part of CFAIC used in calculation CFwa is highlighted by purple line. 

The black vertical dashed line represents the manual pick of the first arrival. 
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Fig. 4. Illustration of the Single-trace algorithm applied to a 

synthetic trace: (a). Noise-free synthetic trace (black), after 

adding noise (blue), manual first arrival (vertical black line). The 

first period of P-wave is framed by the red rectangle (b). MNW 

sub-algorithm topics: threshold (dashed red line), BPZ (vertical 

red line), picked potential first arrival and the associated error 

(respectively, vertical pointed and horizontal green line). (c). HOS 

sub-algorithm topics: the guide picker (vertical pointed green 

line), maximum of kurtosis (small green circle), picked potential 

first arrival and associated error (respectively, vertical pointed and 

horizontal red line). (d). AIC sub-algorithm topics: the picker 

guide (vertical pointed blue line), the red part of CFaic is 

considered for calculating CFwa, the picked potential first arrival 

and associated error (respectively, vertical and horizontal purple 

lines). The gray zones in b, c, and d represent the searching 

windows SW1, SW2, and SW3, respectively. (e). Zoom in of the 

trace in (a) around the first arrival (vertical solid line). The final 

pick and its error are marked by vertical pointed and horizontal 

solid lines, respectively. The potential first arrivals and their 

associated errors picked by the three sub-algorithms are re-

delineated on the noisy trace. 
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Fig 5. Pseudo-synthetic dataset generating: (a). a random noise trace generated by Gauss-Markov 

process. (b). S-Transform of the seed trace in (a). (c). inverse S-transform of the selected zone represented 

by the red rectangle in (b). (d). real trace. (e). noisy trace after adding the noise in (c). 
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Fig 6. Final picking reliability on pseudo-synthetic dataset: (a). Time differences (automatic - manual) 

and normalized final error versus SNR plot. (b). histogram of time differences; the purple lines in a and b 

show the upper and lower levels of acceptable error (±7.5 ms). (c). Time differences pie chart of MNW 

sub-algorithm and Final Picking (FP); Ok and No signify respectively, the corresponding picker 

succeeded or not to pick the first arrival in their acceptable error (±Td/4 for FP and ±Td for MNW). (d). 

Boxplot graphs of the final quality of the picked first arrival classified into groups as in c. 
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Fig 7. Algorithms consistence evaluation on the groups in Fig 6 via normalization the quality picking by 

the corresponding error; small values indicate dispersive algorithms (gray group in figure 6) or/and bad 

quality arrivals (red group in figure 6). 

Fig. 8. Numerical simulation: (a). Schematic view of the multi-layer model (layers C1-C3, substratum S, 

and F page of normal fault) used for generating the synthetic data. The positions of the sources and the 

receivers are highlighted by red starts and blue triangles, respectively. The thicknesses and velocities are 

listed in the Table 2. (b). Normalized vertical component of the wavefield simulated by a source located at 

198 m from the left side of the model. The small green circles represent the manual picks.  
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Fig. 8. A synthetic vertical components record with the first arrivals times obtained theoretically (in 

green) and automatically with their interval errors using the proposed adaptive algorithm (in blue and 

the error barre in red): (a).Noise-free shot-gather. (b). With 20% random white noise. (c). With random 

band-limited noise [40-180] Hz. (c). With the noise in (a) and in (b) (random and band-limited noise). 
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Fig. 9. Statistical analysis: (a). Histograms of differences between automatic and actual picks for noise-

free data (in red) and noisy data (blue). (b). Boxplot graphs of the differences for noisy data within the 

quality classes (A, B, C, and D). 

Fig. 10. Quality assessment of automatic and actual picks, respectively in blue and red curves for zero 

noise (a), 20% random noise added (b), band-limited noise added (c), and random and band-limited noise 

added (d). The red solid curve represent the quality factor of the actual picks for the noise-free gather, 

the red pointed curve the same but after adding the noise. The tables in a, b, c, and d show the percent of 

the traces in each quality class and the related RMS of the differences between the automatic and real 

picks. The dashed black lines represent the limits of quality categories. 
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Fig. 11. Trial-and-error results for determining the best first arrival period-length: The curves show 

values expressed as RMS between automatic and manual picks (left axis) and percentages of hit-rate 

picking in the manual range-error (right axis). 

Fig. 12. Shot-gather shown as an example of automatic picking result. 
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Fig. 13. Basic display and statistics to compare the automatic picking accuracy versus manual picking: 

(a). Time differences between automatic and manual picks as a function of the offset. (b). Time 

differences between automatic and manual picks as a function of SNR (quality of first arrivals); the red 

lines in a and b show the level of the differences at ±5 ms (margin manual picks error). (c). Histogram of 

the difference between automatic and manual. (d). Normalized cumulative histogram of derived picking 

errors; the red dashed lines show the level of picked traces at 90% and the corresponding maximum pick 

error (3 ms). 




