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This paper proposes a fuzzy partitioning subspace clustering algorithm that minimizes a variant of the FCM cost function with a weighted Euclidean distance and a non-differentiable penalty term. The form of the cost function suggests to split the optimization problem, taking advantage of the framework of proximal optimization. The expression of the proximal operator for the penalty term is derived and implemented in a new algorithm, PFSCM, which combines proximal descent and alternate optimization. A discussion on the extension of this work to produce sparse estimations of the subspaces is conducted. Experimental results show the relevance of the proposed approach.

Introduction

Cluster analysis is a central task in unsupervised machine learning that aims at partitioning data into groups with strong internal similarity and external dissimilarity. Depending on the considered framework and context, clusters partition the original data set into groups sharing some common property with varying definitions. Most often, cluster analysis informs the user about the prevailing tendencies of the data set.

Subspace clustering [START_REF] Agrawal | Automatic subspace clustering of high dimensional data for data mining applications[END_REF] is a generalization of this task which not only searches for a good partition of the data set, but also identifies the subspaces in which these clusters can be formed, that is, the subspaces in which the points of a cluster are similar, excluding the dimensions or features in which they are dissimilar. The identified subspaces are required to be minimal, but sufficient to describe the clusters they contain.

The identifications of the clusters and their subspaces must be simultaneous: indeed, if either the clusters or their subspaces are known beforehand, the problem reduces to finding the subspaces or correct description of the clusters, or to standard clustering, respectively. In addition, as opposed to feature selection, different clusters are most of the time discovered in different subspaces: the learned metric or similarity measure is local and may differ for each cluster.

As detailed in Section 2 there exist several families of techniques and algorithms to solve the subspace clustering problem, as well as various representations of the subspaces, depending on the intended application of the subspace clustering. This paper belongs to the partitioning paradigm in a fuzzy setting. It produces clusters identified by a center. It focuses on discovering axes-parallel subspaces, which are thus identified by weights on the original data features.

Subspace clustering searches for appropriate description of the clusters using original features, motivating the identification of sparse descriptions of these subspaces, which use as few features as possible. The study of sparse models in subspace clustering is the topic of active research, as detailed in Section 2. 3. In this work, an original cost function formalising these concepts is presented. It adds, to a FCM cost function with weighted Euclidean distance [START_REF] Bezdek | Pattern Recognition with Fuzzy Objective Function Algorithms[END_REF], a penalty term expressing constraints to identify the relevant subspaces. As it is not differentiable, standard optimization techniques such as alternate optimization are not available, and this penalty term requires a new descent procedure which will allow for new constraints on the solutions, such as sparsity. Tools from the proximal descent theory [START_REF] Moreau | Fonctions convexes duales et points proximaux dans un espace hilbertien[END_REF] are thus adapted to the subspace clustering problem. The utilisation of such techniques is still relatively new in machine learning and in clustering in particular [START_REF] Parikh | Proximal algorithms[END_REF].

This paper introduces a new algorithm, called PFSCM, standing for Proximal Fuzzy Subspace C-Means, which uses this framework to solve the subspace clustering problem through the combination of proximal descent and alternate optimization.

This paper is structured as follows: Section 2 sketches related works and the scientific context of subspace clustering. The proposed cost function is presented and studied in Section 3. In Section 4, the implementation of proximal descent is studied to optimize the proposed function, leading to the update equations from which the PFSCM algorithm is derived. Section 5 discusses variants of the proposed cost function based on the introduction of a sparsity-inducing penalty term. PFSCM is then experimentally validated in Section 6. Conclusion and future works are discussed in Section 7.

Related Works

This section first introduces the problem of subspace clustering using standard notations: the data set is denoted {x i , i = 1..n} with ∀i, x i ∈ R d and the cluster set {C r , r = 1..c}. In the following, the related works in fuzzy subspace clustering and sparse methods for subspace clusterings are recalled. These works are presented by order of relevance rather than in chronological order.

Problem Statement

Subspace clustering [START_REF] Agrawal | Automatic subspace clustering of high dimensional data for data mining applications[END_REF][START_REF] Vidal | A tutorial on subspace clustering[END_REF] is an unsupervised task that aims at identifying groups with strong internal similarity while simultaneously learning this similarity, i.e. the set of features or subspace shared by points of a same group. This similarity is local: it represents the subspace in which the cluster points exist. Depending on the field of application, various types of subspaces can be of interest, as hyper-rectangles [START_REF] Agrawal | Automatic subspace clustering of high dimensional data for data mining applications[END_REF], vector subspaces [START_REF] Vidal | A tutorial on subspace clustering[END_REF][START_REF] Aggarwal | Fast algorithms for projected clustering[END_REF] or hyperplanes of low dimension [START_REF] Wang | K-subspace clustering[END_REF] to name a few. Most of the time, subspaces are defined by projections or linear combination of the original axes. This second point of view presents subspace clustering as a generalization of Principal Component Analysis (PCA) in the sense that, in this case, the PCA is local to each cluster.
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In this work, subspaces of interest are defined by weights (w rp ) p∈{x,y,z} of the original features according to their importance in the resulting cluster, corresponding to axes-parallel subspaces. Figure 1 illustrates this choice: points of cluster c 1 all exist on the same plane y = 0, which means that the corresponding feature is important to identify the cluster and that it should receive a high weight (w 1y 0). Points of c 1 are also closer along the z axis than they are along the x axis, and thus w 1z > w 1x .

Fuzzy Subspace Clustering

Fuzzy subspace clustering generalizes standard subspace clustering by allowing each data point to be assigned to several clusters with various degrees. It usually relies on the introduction, in standard fuzzy clustering algorithms such as the fuzzy c-means algorithm (FCM) [START_REF] Bezdek | Pattern Recognition with Fuzzy Objective Function Algorithms[END_REF], of subspaces (not necessarily axes-parallel) and weighted distances. Deng et al. [START_REF] Deng | A survey on soft subspace clustering[END_REF] propose a survey on soft subspace clustering models and algorithms.

Keller and Klawonn [START_REF] Keller | Fuzzy clustering with weighting of data variables[END_REF] adapt the FCM cost function by introducing a weight w rp for each cluster C r and dimension p. Denoting (u ri ) ∈ [0, 1] for i ∈ {1, . . . , n} and r ∈ {1, . . . , c} the fuzzy membership degree of x i to cluster C r , c r ∈ R d the center of cluster C r and (w rp ) ∈ [0, 1] the weight of dimension p for cluster C r , they study the following cost function:

J K&K (C, U, W ) = c r=1 n i=1 u m ri d p=1 w v rp (x ip -c rp ) 2 (1) 
where m, v ∈ R are fuzzifiers tuned by the user to specify the level of fuzziness of the corresponding parameters and C, U and W are the matrices containing the centers (c r ), the memberships (u ri ) and the weights (w rp ), respectively. The function is minimized under the three constraints:

• (C1) ∀i ∈ {1, . . . , n}, c r=1 u ri = 1 • (C2) ∀r ∈ {1, . . . , c}, n i=1 u ri > 0;
• (C3) ∀r ∈ {1, . . . , c},

d p=1 w rp = 1.
The first two constraints (C1) and (C2) are similar to the FCM ones and ensure that each cluster has an equal importance in the computation of the solution and that it is not trivially empty. Constraint (C3) on the weights (w rp ) is specific to the subspace clustering problem and prevents the trivial solution such that ∀r, ∀p, w rp = 0.

The model used in [START_REF] Keller | Fuzzy clustering with weighting of data variables[END_REF] is a simple adaptation of the FCM cost function to the subspace clustering problem. The Gustafson-Kessel model [START_REF] Gustafson | Fuzzy clustering with a fuzzy covariance matrix[END_REF] is more complex, based on the Mahalanobis distance, capable of identifying non-axesparallel subspaces. Borgelt and Kruse [START_REF] Borgelt | Shape and size regularization in expectation maximization and fuzzy clustering[END_REF] improve upon this model to add shape and size regularization for the clusters.

Sparsity Constraints for Subspace Clustering

The downside of this approach is that each feature typically receives a nonzero weight, even if it plays a small role in the cluster. This not only clutters up the description of the subspaces, but also introduces noise in the cluster analysis of the data, namely the computed centers and memberships. Indeed, as shown by the update equations 3 and 4 in Section 3.2, the weigthing of the dimensions have an influence on the other variables, when they should be identified as irrelevant and not taken into account.

As a good subspace clustering solution consists in minimal yet sufficient descriptions of the clusters and their subspaces, subspace clustering is related to sparsity-inducing techniques. Over the last years, several approaches to subspace clustering heavily relied on sparse solutions to optimization problems in order to identify the correct subspaces. Most of these approaches are related to compressed sensing and are not directly usable in the framework presented in the previous section.

Most notably, Elhamifar and Vidal's Sparse Subspace Clustering (SSC) [START_REF] Elhamifar | Sparse subspace clustering[END_REF] solves an 1 -based optimization problem for each point x i , finding a minimal representation of x i based on its neighbor points. In its simplest setting, this framework makes the assumption that the clusters live in a union of vector subspaces, and thus can be recovered through these local representations (see e.g. [START_REF] Patel | Latent space sparse subspace clustering[END_REF] for a theoretical analysis). A similarity relation is learnt and used to identify the clusters.

This framework has been extended by various authors. Li and Vidal [START_REF] Li | Structured sparse subspace clustering: A unified optimization framework[END_REF] propose a structured approach to SSC, where the sparse representation and the resulting segmentation are refined iteratively through alternate optimization. Instead of looking for sparse representations, Liu et al. [START_REF] Liu | Robust subspace segmentation by low-rank representation[END_REF][START_REF] Liu | Latent low-rank representation for subspace segmentation and feature extraction[END_REF] search for lowrank representations (LRR) of the data points, using the nuclear norm [START_REF] Meyer | Matrix analysis and applied linear algebra[END_REF] as an approximation of the rank function. The underlying idea is that SSC identifies sparse local representations of the data but may have more trouble identifying the global structure of the data in presence of noise, whereas LRR constrains the solution globally.

Closer to the paradigm studied in the present paper, Witten and Tibshirani [START_REF] Witten | A framework for feature selection in clustering[END_REF] reformulate the k-means original problem into a maximization problem with a weighted distance. This allows them to add an 1 -based constraint to the problem in order to produce sparse weight vectors and identify the subspaces. Qiu et al. [START_REF] Qiu | A sparse fuzzy c-means algorithm based on sparse clustering framework[END_REF] extend this framework to fuzzy clustering and compare it to some usual subspace clustering algorithms. Borgelt [START_REF] Borgelt | Fuzzy subspace clustering[END_REF] proposes alternatives to Keller and Klawonn and Gustafson-Kessel algorithms with sparsity inducing fuzzifier functions for u ri and w rp , the second one leading to the selection of principal features or axes. However, both of these contributions cannot introduce sparsity inducing terms without changing the original subspace clustering model.

Proximal Splitting for Fuzzy Subspace Clustering

This section presents a new cost function to model the subspace clustering problem and studies its properties. It is based on the Keller and Klawonn model but moves the constraint (C3) inside the cost function in order to change the optimization dynamic.

A Model for Fuzzy Subspace Clustering

Using the same notations as in Section 2.2, we introduce the following cost function:

J(C, U, W ) = c r=1 n i=1 u m ri d p=1 w 2 rp (x ip -c rp ) 2 F (C,U,W ) +γ c r=1 | d p=1 (w rp ) -1| G(W ) (2) 
which is optimized under the classic FCM constraints (C1) and (C2). This function is of the form J(C, U, W ) = F (C, U, W )+γG(W ). As shown in the next section, this form plays an important role in the optimization strategy of J.

Function F is the same as Keller and Klawonn's model, except that the weight fuzzifier v is set to 2 in order to simplify further mathematical analysis. The general case is left to be considered in future works. As it is a special case of Keller and Klawonn's subspace clustering model, function F computes solutions that are close to this model (although the use of a different descent scheme introduces some differences, see Section 6) and thus the function defined in Equation ( 2) aims at preserving these solutions while using a second function G to enforce some additional constraints.

In this paper, function G adds a penalty to the function which prevents the trivial solution W = 0. It can be understood as an inlined version of the constraint (C3), with two differences:

• the hyperparameter γ ∈ R is not a Lagrange multiplier, but is rather set by the user beforehand. Its purpose is to balance out the two terms, and, if large enough, it ensures that the weights W sum up to 1;

• function G is not differentiable and requires new optimization techniques presented in the next section. The advantage is that, as discussed in Section 5, they will allow for more advanced penalties, e.g. for enforcing new properties such as sparsity.

The cost function J in Equation ( 2) thus conveys the idea of finding a solution to the subspace clustering problem (as expressed by F ) with a relaxed constraint (as expressed by G), inspired by 1 -regularization [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF].

Minimization of the Cost Function

As in Section 2.2, an algorithm solving the subspace clustering problem has to find parameters (C * , U * , W * ) minimizing J. As the proposed J is not differentiable, this algorithm cannot be derived from the standard approach of constrained optimization. Instead, the approach we propose is different, and benefits from two observations:

• the second term c r=1 | d p=1 (w rp ) -1| only involves the variable W and thus the optimization of variables C and U is not impacted by the nondifferentiability;

• F is still differentiable in all three parameters and its gradient as a function of W is Lipschitz-continuous: these properties guarantee good performance of well-known optimization algorithms, such as gradient descent.

For the variables C and U , the optimization of F can be done through standard alternate optimization, as for fuzzy c-means: the two update equations for membership degree and cluster centers are derived,

u ri = d 2 1-m ri c s=1 d 2 1-m si where d 2 ri = d p=1 w 2 rp (x ip -c rp ) 2 (3) 
and

c rp = n i=1 u m ri • x ip n i=1 u m ri (4)

Proximal Splitting for Weights Optimization

The function J is not differentiable in W on its domain of definition and thus cannot be optimized by standard alternate optimization. In this section, an alternative optimization technique for the weights W is presented, based on proximal descent [START_REF] Parikh | Proximal algorithms[END_REF], and its implementation in a subspace clustering algorithm is then detailed.

Proximal Descent

Studied as a function of variable W only, the cost function is of the general form J(W ) = F (W )+γG(W ), where F corresponds to a differentiable model for subspace clustering and G enforces some constraints on the solutions. This form of functions has recently gained interest in the machine learning community, and proximal descent has thus been studied as an alternative to standard, gradientbased optimization techniques [START_REF] Bach | Optimization with sparsityinducing penalties[END_REF].

As F is differentiable, usual optimization techniques would suggest to use an iterative algorithm based on its gradient, such as gradient descent. This technique considers an update equation of the general form

W t+1 = W t -η • ∇F (W t )
where t is the iteration index and η a descent step size. This simple optimization scheme provides an iterative algorithm in order to minimize any convex function F , starting from any W 0 and iterating until convergence.

Function G is not differentiable, therefore its gradient ∇G is not defined for each W t . Proximal descent [START_REF] Parikh | Proximal algorithms[END_REF] suggests to split the optimization of the two functions F and G, and to enrich gradient descent in the following way:

W t+1 = prox γ L G W t - 1 L ∇F (W t ) (5) 
where where L > 0 is a descent step size similar to η. That is, in order to solve a global minimization problem, proximal descent solves a minimization problem as defined by Equation ( 6) at each step of the iteration. The justification for this additional minimization problem is the following: at each step, starting from the current step of iteration W t , proximal descent moves according to -∇F as would any descent approach, then according to prox G . Figure 2 illustrates this principle, showing the space of admissible solutions in blue. This justifies the definition of the proximal operator as well: given an intermediate descent step W t , the solution W to Equation ( 6) is sought for in the neighborhood of W t , hence the first term W -W 2 .

prox γ L G (W ) = argmin W 1 2 W -W 2 + γ L G(W ) (6) 
The definition of Equation ( 6) can seem counter-intuitive, as it proposes to solve an additional minimization problem at each step of the algorithm, in order to minimize the global function J. The key ingredient in order to efficiently solve this problem is the notion of proximal operator: a closed-form expression or algorithm to efficiently solve the optimization problem defined by Equation (6).

A Proximal Operator for G

We establish in the following theorem a proximal operator for the penalty term G(W ). Let K denote the vector (1, 1, . . .

1) ∈ R 1×d , such that K • K = d. Theorem 1. Let G r (W r ) = | d p=1 (w rp ) -1| and L ∈ R. prox γ L Gr (W r ) = W r + 1 d K • 1 + prox γd L |•| (K • W r -1) -K • W r (7) 
where prox λ|•| (x) = sign(x) max(|x| -λ, 0).

Moreover, prox γ L G (W ) = prox γ L Gr (W r ) r=1...c ∈ R d×c .
Proof. The proof uses results from [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] and [START_REF] Parikh | Proximal algorithms[END_REF]. First, G r (W r ) = φ(K • W r ) where φ(x) = |x-1|. Using the translation and semi-orthogonal linear transform properties [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]:

prox Gr (W r ) = W r + 1 d K • prox φ (K • W r ) -K • W r ) = W r + 1 d K • 1 + prox d|•| (K • W r -1) -K • W r )
Hence the expression of prox γ L Gr by the postcomposition property [START_REF] Parikh | Proximal algorithms[END_REF]. Finally, prox γ L G is computed using the separable sum property of proximal operators [START_REF] Parikh | Proximal algorithms[END_REF].

Equation [START_REF] Wang | K-subspace clustering[END_REF] gives the expression of the proximal operator of the G function. This operator can be used to efficiently implement the scheme defined in Equation ( 5) to find the solution W minimizing function J.

As η for gradient descent, the choice of constant L determines the speed of convergence of the descent. We experimentally observe that setting L to trace(H -1 ) yields good results, where H is the Hessian matrix of F (as a function of W ). As we set v = 2 in Equation ( 2), F is a sum of quadratic functions and its Hessian does not depend on W . It can thus be computed once and for all before running proximal descent.

A Fuzzy Subspace Algorithm: PFSCM

The previous mathematical results allow us to efficiently implement proximal descent for the identification of the subspaces. Combining the expression of prox γ L G with the results of Section 3.2, we introduce the PFSCM algorithm for fuzzy subspace clustering, detailed in Algorithm 1 and commented on below. PFSCM is a FCM-style alternate optimization algorithm which substitutes the exact update of the weights W with proximal descent.

Initialization is a typical issue of k-means-like algorithms. In this paper, initial centers are randomly chosen and each cluster receives uniform weights for all dimensions. As C and U are optimized before W , this is equivalent to running the FCM algorithm and initializing the subspace algorithm with the result, as is often done for subspace clustering algorithms such as Keller and Klawonn [START_REF] Keller | Fuzzy clustering with weighting of data variables[END_REF] or Gustafson-Kessel [START_REF] Gustafson | Fuzzy clustering with a fuzzy covariance matrix[END_REF] algorithms.

As most partitioning algorithms, the number c of clusters to identify must be set by the user, as well as the constant γ > 0. PFSCM is not sensitive to precise values of γ and just needs a value "large enough" (e.g. 10 4 ) in order to impose ∀r, The convergence criteria are defined as the distance between the current and the previous values of the parameters being optimized. In particular, convergence for (C, U ) is defined as C t -C t+1 2 < ∧ U t -U t+1 2 < . PFSCM outputs U , C and . In order to exploit the result of the algorithm, it may be of interest to extract the dimension associated to each cluster. To that aim we propose to post-process the matrix W using a threshold parameter cut to cut out the irrelevant dimensions in a simple fashion: a dimension p for a cluster C r is considered relevant if w rp > cut.

However, instead of using a threshold parameter, an improvement of the algorithm would be to identify the irrelevant dimensions during the descent in order to get rid of them and not have them influence the identification of the centers. This motivates the research of sparsity-inducing models, which are discussed in the next section.

Towards a Sparsity-Inducing Penalty Function

This section discusses extensions of PFSCM aiming at producing sparse solutions: as can be experimentally observed (see Section 6), PFSCM leads to solutions where the weights can be small but different from 0. In order to produce sparse estimations of the subspaces, the previous function J must be changed. In this section, various solutions are discussed to define variants for G, listing some of the difficulties or the similarities with other approaches of the literature.

Indeed, for function G defined in Equation ( 2) and for large values of γ, prox γG acts as a projection towards the simplex ∆ = W r ∈ R d d p=1 w rp = 1 for each W r . The framework presented in this paper would encourage looking for a function which would favor sparse projections on ∆.

1 -norm regularization. The most common sparsity-inducing norm, the 1 norm, is useless in the current setting: indeed, after projection using prox G , the solutions of interest all verify ∀r, W r 1 = 1, and thus this norm does not discriminate any solution under this constraint. A better penalty-inducing function H must be found, which still needs to be "proximable". Moreover, even if G and H are proximable, this is not necessarily the case of their sum G + H [START_REF] Parikh | Proximal algorithms[END_REF].

Negentropy based regularization. An alternative to 1 and other non-differentiable norms may come from negentropy-based regularization, already used in conjunction of standard FCM clustering to regularize the number of clusters (see e.g. [START_REF] Sahbi | Validity of fuzzy clustering using entropy regularization[END_REF]). The study conducted in Section 6 has not yet be extended to negentropy-regularized subspace algorithms. However, Jing et al. [START_REF] Jing | An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data[END_REF] use a very similar technique for a slightly different subspace clustering model, in a different context: as they consider sparse data, they use entropy (not negentropy) in order not to promote sparsity, but to promote subspaces of high dimensionality.

Projection-based regularization. Closer to the spirit of the present paper, another direction of work is to reformulate G as an actual projection on ∆ and then to introduce a sparsity-promoting penalty. First define G 1 to be the following penalty function:

G 1 (W r ) = 0 if d p=1 w rp = 1 ∞ otherwise
Function G 1 is convex and thus has a proximal operator:

prox G1 (W r ) = argmin W r ∈R d G 1 (W r ) + 1 2 W r -W r 2 (8) 
= argmin

W r ∈∆ 1 2 W r -W r 2 (9) = proj ∆ (W r ) (10) 
that is, the proximal operator of G 1 is the projection on ∆. Unlike the function G in Equation ( 2), this projection does not depend on the value of γ: G 1 strictly enforces the constraint, but still does not discriminate between the points of ∆. The goal now becomes to assign a price to the solutions on ∆, in order to favor sparse ones. However, this direction is left for future works. 

Gray cluster

Dark cluster Red cluster Blue cluster w 1 w 2 w 1 w 2 w 1 w 2 w 1 w 2 Weights 0.528 0.472 0.063 0.937 0.027 0.973 0.964 0.036 Table 1: Computed weights for the example given in Figure 3. Column w 1 (resp. w 2 ) denotes the weight associated to the x-axis (resp. y-axis).

Experimental Study

The proposed PFSCM algorithm has been tested on artificial data in order to study its ability to correctly identify centers of non-circular clusters, as well as the dimensions that are relevant to describe the clusters. The results show the effectiveness of PFSCM in detecting the clusters and their subspaces. Moreover, PFSCM is compared to Keller and Klawonn's algorithm [START_REF] Keller | Fuzzy clustering with weighting of data variables[END_REF] and shows to provide a better estimation of the dimensionality of the subspaces.

Illustrative Example

This subsection presents illustrative experiments of subspace clustering using the PFSCM algorithm, similar to the visual examples given in [START_REF] Keller | Fuzzy clustering with weighting of data variables[END_REF]. The first example in d = 2 dimensions is represented in Figure 3: four clusters are generated, one of them (the top gray one in Figure 3) being circular while the others have a very low variance in one dimension. PFSCM is run with c = 4, m = 2, and γ = 1000.

In Figure 3 the points are colored according to the cluster C r for which u ri is maximum and Table 1 presents the weights computed for each dimension and cluster. It can be observed that PFSCM correctly identifies the desired clusters and their dimensions: the two weights (w 1 , w 2 ) found for the circular cluster are w 2 ). It is worth noting that, for this specific instance, some points close to the blue cluster are assigned to one of the horizontal clusters, as it minimizes the cost function. This kind of inliers is frequent in subspace clustering problems, and naturally leads to the use of fuzzy membership values (u ri ). It was also studied for its own sake by Guillon et al. [START_REF] Guillon | Laplacian regularization for fuzzy subspace clustering[END_REF], which suggest the use of a Laplacian-based regularization term to prevent it.

Another example is given in Figure 4. Again, 4 clusters are depicted and colored according to the cluster maximizing u ri . These clusters live in various subspaces of various dimensionalities, but are still identified by PFSCM.

Artificial Data Set with Ellipsoidal Clusters

The previous example is generalized to higher dimensions and several algorithms of fuzzy subspace clustering are compared: PFSCM, Keller and Klawonn (KK), Gustafson-Kessel (GK) and WLFC algorithm from [START_REF] Guillon | Laplacian regularization for fuzzy subspace clustering[END_REF].

Experimental Protocol

Considered Data. In order to validate PFSCM, the previous experiment is generalized to higher dimensions, more precisely to artificial data of dimension d ∈ {5, 7, 9, 11, 13, 15}. For each experiment, k = 4 centers are randomly generated in the hypercube [-3, 3] d . Then, d r dimensions j 1 , . . . j dr are randomly picked, with d r randomly chosen between 1 and d -3. Dimensions j 1 , • • • , j dr are thereafter called the "relevant dimensions" for cluster C r . For each cluster, 100 points are generated according to a Gaussian distribution, with variance v j < 0.1 for dimensions j 1 , . . . , j dr and v j ∈ [0.5, 0.9] for other dimensions. The generated points in cluster r in dimension j thus follow X r ∼ N (c r , v j ).

Algorithm Parameters. All algorithms are initialized with FCM centers and use m = v = 2 and c = 4. PFSCM is ran with γ = 1000 and c = 4. All algorithms were implementend using the same convergence criterion, with = 10 -4 . The parameter cut is set to 1 2d , which is a simple rule of thumb to identify the dimensions selected as relevant by the algorithms in each considered dimension d.

Quality Criteria. All algorithms are evaluated on three metrics in order to qualify their results and their ability to discover the desired clusters and subspaces, and their dimensions.

First, let δ = 4 r=1 ĉr -c r 2 be the sum of the Euclidean distances between the generated centers and the computed ones (c r ): this metric is a standard quality criterion for evaluating the produced clusters. A low value means that the computed centers are close to the original ones.

We also consider θ defined as the percentage of clusters for which all relevant dimensions are correctly identified by the algorithm: the relevant dimensions are correctly identified if

w rj > cut ⇔ j ∈ {j 1 , • • • j dr }.
Finally, for the clusters for which the relevant dimensions have been correctly identified, let the weight ratio be φ = ω1 ωj dr where ω 1 is the largest computed weight and ω j dr the smallest computed weight for the relevant dimensions. This metric measures the distortion of the cluster between the relevant dimensions, as estimated by the algorithms. Cluster identification and stability. The results of the experiment are gathered from [START_REF] Guillon | Laplacian regularization for fuzzy subspace clustering[END_REF] and reported in three tables. Table 2 and Table 3 give the means and standard deviations for δ and φ. Table 4 gives the criterion θ, computed over 100 runs of each algorithm. The low mean distances δ in Table 2 show that WLFC and PFSCM succeed in identifying the centers of the generated clusters, while K&K is not as efficient. The GK algorithm performs well in low dimensions, but significantly worse when d increases. Moreover, WLFC and PFSCM appear more stable than K&K and GK, judging by the lower standard deviation.

Dimensionality. The values of θ in Table 4 show that WLFC and K&K succeed in estimating the dimensionality of roughly half of the generated clusters whereas PFSCM performs better when d increases. These results may be related to the choice of the parameter cut used to defuzzify W . This table also shows that GK has troubles identifying the relevant dimensions of the generated clusters; as θ gets very low in higher dimensions, the values of φ for these dimensions is not relevant. A possible explanation of these poor results is that GK is not constrained to search for axes-parallel subspaces and converges towards another solution, as there are not enough points to guide the algorithm. This would also explain the results of the algorithm in Table 2. In Table 3, WLFC, K&K and PFSCM show similar results, bearing in mind the very large standard deviations, PFSCM seeming slightly more stable.

Computation time. In terms of computational time, K&K is significantly faster than all other algorithms. WLFC appears to be globally twice as slow as K&K on average regardless of the dimension. GK is two to five times slower than K&K, probably because of the use of expensive matrix operations. Finally, PF-SCM is much slower than the other algorithms: in higher dimensions it is more than ten times slower than K&K. This may be due to a naive implementation of the inner loop and to the choice of the convergence criterion.

Axes-parallel Gustafson-Kessel algorithm. For the aforementioned reasons, the general GK algorithm is not suited to this experiment. As presented in [START_REF] Borgelt | Fuzzy subspace clustering[END_REF], this algorithm can be modified in order to identify only axes-parallel soft subspaces. We thus ran a specific experiment in order to compare PFSCM to axesparallel GK, which shows that both algorithms perform similarily in terms of the δ metric. However, as GK algorithm describes the subspaces in terms of the variance of their dimension, it provides no indication as to if a dimension is actually relevant or not in the description of a cluster. This feature also seems to preclude its use for the main goal of this work, which is the identification of sparse subspaces.

Conclusion and Future Works

In this paper, a new approach to solve the fuzzy subspace clustering problem with a cost function involving a non-differentiable term has been introduced. The cost function is expressed as the sum of two functions, a model and a penalty or regularizer term. Advanced optimization techniques are explored, which replace the standard update equations of fuzzy c-means-like algorithms.

Experiments on synthetic data show the relevance of the proposed approach, that appears to correctly identify all the relevant dimensions and not more, whereas Keller and Klawonn's algorithm tends to underestimate the number of relevant dimensions. This provides more information about the importance of each dimension for the subspaces and clusters.

Future works will aim at generalizing this approach around the same key ideas based on the discussion initiated in the paper: a differentiable function matching the specification of the problem and one or several penalty functions, expressing constraints on the shape of the solution. The introduction of regularization terms for parameters other than W will also be studied. Finally, more efficient descent schemes will be considered, in order to speed up the descent.

Figure 1 :

 1 Figure 1: Two clusters, contained in two different planes: c 1 in (x, z) and c 2 in (x, y).

Figure 2 :

 2 Figure 2: Principle of the two-steps proximal descent.

d p=1 w rp = 1 .Algorithm 1 :

 11 The algorithm then iterates the update of U , C and W , similarly to alternate optimization in k-means-like algorithms. It consists of two alternate inner loops: the regular parameters C and U are optimized separately from W , which requires the special optimization procedure described in the previous subsection. Variables C and U are optimized one last time at the end of the algorithm, in order to guarantee that the result takes the final computed weights into account.Data: X: data matrix Parameters: c,γ: numbers; Variables: C, U, W: arrays; W last : array Initialization: W r ← (1, 1, . . . 1) for each C r ; C ← random centers Output: C, U, W repeat repeat Update U according to Equation (3); Update C according to Equation (4) until convergence(C, U); repeat Update W according to Equation (6) until convergence(W); W last ←-W until convergence(W last ); Update U and C one last time. Proximal fuzzy subspace clustering PFSCM algorithm

Figure 3 :

 3 Figure 3: Clustering example in two dimensions

Figure 4 :

 4 Figure 4: Clustering example in three dimensions

Table 2 :

 2 Average and standard deviation of δ

	d	WLFC	K&K	GK	PFSCM
	5 0.58 ± 0.09 1.18 ± 0.77 0.59 ± 0.10 0.60 ± 0.11
	7 0.72 ± 0.12 1.49 ± 1.03 0.75 ± 1.67 0.73 ± 0.13
	9 0.86 ± 0.14 1.98 ± 1.58 3.36 ± 5.09 0.84 ± 0.13
	11 0.99 ± 0.13 2.02 ± 1.36 9.78 ± 10.4 0.98 ± 0.12
	13 1.12 ± 0.11 1.77 ± 0.91 19.4 ± 13.0 1.11 ± 0.10

Table 3 :

 3 Average and standard deviation of φ

	d	WLFC	K&K	GK	PFSCM
	5 1.83 ± 1.63 1.59 ± 1.26 11.7 ± 16.7 1.32 ± 1.12
	7 1.93 ± 2.09 1.74 ± 1.83 13.8 ± 18.7 1.73 ± 1.43
	9 2.20 ± 2.64 2.14 ± 2.54 15.2 ± 16.9 2.37 ± 2.10
	11 2.06 ± 2.42 1.97 ± 2.01	NA	1.93 ± 2.04
	13 2.99 ± 3.82 2.99 ± 4.00	NA	3.12 ± 2.19

Table 4 :

 4 Average and standard deviation of θ

	d WLFC K&K GK PFSCM
	5	52%	51% 29%	63%
	7	53%	51% 17%	68%
	9	48%	46% 12%	74%
	11	48%	50%	3%	78%
	13	58%	56%	1%	85%
	6.2.2. Obtained Results				
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