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A Proximal Framework for Fuzzy Subspace Clustering

Arthur Guillon∗, Marie-Jeanne Lesot∗, Christophe Marsala∗

Sorbonne Université, CNRS, LIP6, Laboratoire d’informatique de Paris 6, F-75005 Paris,
France

Abstract

This paper proposes a fuzzy partitioning subspace clustering algorithm that
minimizes a variant of the FCM cost function with a weighted Euclidean distance
and a non-differentiable penalty term. The form of the cost function suggests to
split the optimization problem, taking advantage of the framework of proximal
optimization. The expression of the proximal operator for the penalty term is
derived and implemented in a new algorithm, PFSCM, which combines proximal
descent and alternate optimization. A discussion on the extension of this work to
produce sparse estimations of the subspaces is conducted. Experimental results
show the relevance of the proposed approach.

Keywords: fuzzy clustering, fuzzy subspace clustering, proximal descent

1. Introduction

Cluster analysis is a central task in unsupervised machine learning that aims
at partitioning data into groups with strong internal similarity and external
dissimilarity. Depending on the considered framework and context, clusters
partition the original data set into groups sharing some common property with
varying definitions. Most often, cluster analysis informs the user about the
prevailing tendencies of the data set.

Subspace clustering [1] is a generalization of this task which not only searches
for a good partition of the data set, but also identifies the subspaces in which
these clusters can be formed, that is, the subspaces in which the points of
a cluster are similar, excluding the dimensions or features in which they are
dissimilar. The identified subspaces are required to be minimal, but sufficient
to describe the clusters they contain.

The identifications of the clusters and their subspaces must be simultaneous:
indeed, if either the clusters or their subspaces are known beforehand, the prob-
lem reduces to finding the subspaces or correct description of the clusters, or to
standard clustering, respectively. In addition, as opposed to feature selection,
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different clusters are most of the time discovered in different subspaces: the
learned metric or similarity measure is local and may differ for each cluster.

As detailed in Section 2 there exist several families of techniques and algo-
rithms to solve the subspace clustering problem, as well as various representa-
tions of the subspaces, depending on the intended application of the subspace
clustering. This paper belongs to the partitioning paradigm in a fuzzy setting.
It produces clusters identified by a center. It focuses on discovering axes-parallel
subspaces, which are thus identified by weights on the original data features.

Subspace clustering searches for appropriate description of the clusters using
original features, motivating the identification of sparse descriptions of these
subspaces, which use as few features as possible. The study of sparse models in
subspace clustering is the topic of active research, as detailed in Section 2.3.

In this work, an original cost function formalising these concepts is presented.
It adds, to a FCM cost function with weighted Euclidean distance [2], a penalty
term expressing constraints to identify the relevant subspaces. As it is not
differentiable, standard optimization techniques such as alternate optimization
are not available, and this penalty term requires a new descent procedure which
will allow for new constraints on the solutions, such as sparsity. Tools from the
proximal descent theory [3] are thus adapted to the subspace clustering problem.
The utilisation of such techniques is still relatively new in machine learning and
in clustering in particular [4].

This paper introduces a new algorithm, called PFSCM, standing for Proxi-
mal Fuzzy Subspace C-Means, which uses this framework to solve the subspace
clustering problem through the combination of proximal descent and alternate
optimization.

This paper is structured as follows: Section 2 sketches related works and the
scientific context of subspace clustering. The proposed cost function is presented
and studied in Section 3. In Section 4, the implementation of proximal descent
is studied to optimize the proposed function, leading to the update equations
from which the PFSCM algorithm is derived. Section 5 discusses variants of the
proposed cost function based on the introduction of a sparsity-inducing penalty
term. PFSCM is then experimentally validated in Section 6. Conclusion and
future works are discussed in Section 7.

2. Related Works

This section first introduces the problem of subspace clustering using stan-
dard notations: the data set is denoted {xi, i = 1..n} with ∀i, xi ∈ Rd and the
cluster set {Cr, r = 1..c}. In the following, the related works in fuzzy subspace
clustering and sparse methods for subspace clusterings are recalled. These works
are presented by order of relevance rather than in chronological order.

2.1. Problem Statement

Subspace clustering [1, 5] is an unsupervised task that aims at identifying
groups with strong internal similarity while simultaneously learning this sim-
ilarity, i.e. the set of features or subspace shared by points of a same group.
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Figure 1: Two clusters, contained in two different planes: c1 in (x, z) and c2 in (x, y).

This similarity is local: it represents the subspace in which the cluster points
exist. Depending on the field of application, various types of subspaces can be
of interest, as hyper-rectangles [1], vector subspaces [5, 6] or hyperplanes of low
dimension [7] to name a few.

Most of the time, subspaces are defined by projections or linear combination
of the original axes. This second point of view presents subspace clustering as
a generalization of Principal Component Analysis (PCA) in the sense that, in
this case, the PCA is local to each cluster.

In this work, subspaces of interest are defined by weights (wrp)p∈{x,y,z} of
the original features according to their importance in the resulting cluster, cor-
responding to axes-parallel subspaces. Figure 1 illustrates this choice: points of
cluster c1 all exist on the same plane y = 0, which means that the correspond-
ing feature is important to identify the cluster and that it should receive a high
weight (w1y � 0). Points of c1 are also closer along the z axis than they are
along the x axis, and thus w1z > w1x.

2.2. Fuzzy Subspace Clustering

Fuzzy subspace clustering generalizes standard subspace clustering by al-
lowing each data point to be assigned to several clusters with various degrees.
It usually relies on the introduction, in standard fuzzy clustering algorithms
such as the fuzzy c-means algorithm (FCM) [2], of subspaces (not necessarily
axes-parallel) and weighted distances. Deng et al. [8] propose a survey on soft
subspace clustering models and algorithms.

Keller and Klawonn [9] adapt the FCM cost function by introducing a
weight wrp for each cluster Cr and dimension p. Denoting (uri) ∈ [0, 1] for
i ∈ {1, . . . , n} and r ∈ {1, . . . , c} the fuzzy membership degree of xi to cluster Cr,
cr ∈ Rd the center of cluster Cr and (wrp) ∈ [0, 1] the weight of dimension p for
cluster Cr, they study the following cost function:
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JK&K(C,U,W ) =

c∑
r=1

n∑
i=1

umri

d∑
p=1

wvrp(xip − crp)2 (1)

where m, v ∈ R are fuzzifiers tuned by the user to specify the level of fuzziness
of the corresponding parameters and C,U and W are the matrices containing
the centers (cr), the memberships (uri) and the weights (wrp), respectively. The
function is minimized under the three constraints:

• (C1) ∀i ∈ {1, . . . , n},
c∑
r=1

uri = 1

• (C2) ∀r ∈ {1, . . . , c},
n∑
i=1

uri > 0;

• (C3) ∀r ∈ {1, . . . , c},
d∑
p=1

wrp = 1.

The first two constraints (C1) and (C2) are similar to the FCM ones and
ensure that each cluster has an equal importance in the computation of the
solution and that it is not trivially empty. Constraint (C3) on the weights (wrp)
is specific to the subspace clustering problem and prevents the trivial solution
such that ∀r, ∀p, wrp = 0.

The model used in [9] is a simple adaptation of the FCM cost function
to the subspace clustering problem. The Gustafson-Kessel model [10] is more
complex, based on the Mahalanobis distance, capable of identifying non-axes-
parallel subspaces. Borgelt and Kruse [11] improve upon this model to add
shape and size regularization for the clusters.

2.3. Sparsity Constraints for Subspace Clustering

The downside of this approach is that each feature typically receives a non-
zero weight, even if it plays a small role in the cluster. This not only clutters up
the description of the subspaces, but also introduces noise in the cluster analysis
of the data, namely the computed centers and memberships. Indeed, as shown
by the update equations 3 and 4 in Section 3.2, the weigthing of the dimensions
have an influence on the other variables, when they should be identified as
irrelevant and not taken into account.

As a good subspace clustering solution consists in minimal yet sufficient de-
scriptions of the clusters and their subspaces, subspace clustering is related to
sparsity-inducing techniques. Over the last years, several approaches to sub-
space clustering heavily relied on sparse solutions to optimization problems in
order to identify the correct subspaces. Most of these approaches are related to
compressed sensing and are not directly usable in the framework presented in
the previous section.

Most notably, Elhamifar and Vidal’s Sparse Subspace Clustering (SSC) [12]
solves an `1-based optimization problem for each point xi, finding a minimal
representation of xi based on its neighbor points. In its simplest setting, this
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framework makes the assumption that the clusters live in a union of vector
subspaces, and thus can be recovered through these local representations (see
e.g. [13] for a theoretical analysis). A similarity relation is learnt and used to
identify the clusters.

This framework has been extended by various authors. Li and Vidal [14]
propose a structured approach to SSC, where the sparse representation and the
resulting segmentation are refined iteratively through alternate optimization.
Instead of looking for sparse representations, Liu et al. [15, 16] search for low-
rank representations (LRR) of the data points, using the nuclear norm [17] as an
approximation of the rank function. The underlying idea is that SSC identifies
sparse local representations of the data but may have more trouble identifying
the global structure of the data in presence of noise, whereas LRR constrains
the solution globally.

Closer to the paradigm studied in the present paper, Witten and Tibshi-
rani [18] reformulate the k-means original problem into a maximization problem
with a weighted distance. This allows them to add an `1-based constraint to the
problem in order to produce sparse weight vectors and identify the subspaces.
Qiu et al. [19] extend this framework to fuzzy clustering and compare it to
some usual subspace clustering algorithms. Borgelt [20] proposes alternatives
to Keller and Klawonn and Gustafson-Kessel algorithms with sparsity inducing
fuzzifier functions for uri and wrp, the second one leading to the selection of
principal features or axes. However, both of these contributions cannot intro-
duce sparsity inducing terms without changing the original subspace clustering
model.

3. Proximal Splitting for Fuzzy Subspace Clustering

This section presents a new cost function to model the subspace clustering
problem and studies its properties. It is based on the Keller and Klawonn model
but moves the constraint (C3) inside the cost function in order to change the
optimization dynamic.

3.1. A Model for Fuzzy Subspace Clustering

Using the same notations as in Section 2.2, we introduce the following cost
function:

J(C,U,W ) =

c∑
r=1

n∑
i=1

umri

d∑
p=1

w2
rp(xip − crp)2

︸ ︷︷ ︸
F (C,U,W )

+γ

c∑
r=1

|
d∑
p=1

(wrp)− 1|︸ ︷︷ ︸
G(W )

(2)

which is optimized under the classic FCM constraints (C1) and (C2).
This function is of the form J(C,U,W ) = F (C,U,W )+γG(W ). As shown in

the next section, this form plays an important role in the optimization strategy
of J .
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Function F is the same as Keller and Klawonn’s model, except that the
weight fuzzifier v is set to 2 in order to simplify further mathematical analysis.
The general case is left to be considered in future works. As it is a special
case of Keller and Klawonn’s subspace clustering model, function F computes
solutions that are close to this model (although the use of a different descent
scheme introduces some differences, see Section 6) and thus the function defined
in Equation (2) aims at preserving these solutions while using a second function
G to enforce some additional constraints.

In this paper, function G adds a penalty to the function which prevents
the trivial solution W = 0. It can be understood as an inlined version of the
constraint (C3), with two differences:

• the hyperparameter γ ∈ R is not a Lagrange multiplier, but is rather set
by the user beforehand. Its purpose is to balance out the two terms, and,
if large enough, it ensures that the weights W sum up to 1;

• function G is not differentiable and requires new optimization techniques
presented in the next section. The advantage is that, as discussed in
Section 5, they will allow for more advanced penalties, e.g. for enforcing
new properties such as sparsity.

The cost function J in Equation (2) thus conveys the idea of finding a so-
lution to the subspace clustering problem (as expressed by F ) with a relaxed
constraint (as expressed by G), inspired by `1-regularization [21].

3.2. Minimization of the Cost Function

As in Section 2.2, an algorithm solving the subspace clustering problem
has to find parameters (C∗, U∗,W ∗) minimizing J . As the proposed J is not
differentiable, this algorithm cannot be derived from the standard approach of
constrained optimization. Instead, the approach we propose is different, and
benefits from two observations:

• the second term
∑c
r=1|

∑d
p=1(wrp) − 1| only involves the variable W and

thus the optimization of variables C and U is not impacted by the non-
differentiability;

• F is still differentiable in all three parameters and its gradient as a func-
tion of W is Lipschitz-continuous: these properties guarantee good perfor-
mance of well-known optimization algorithms, such as gradient descent.

For the variables C and U , the optimization of F can be done through
standard alternate optimization, as for fuzzy c-means: the two update equations
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for membership degree and cluster centers are derived,

uri =
d

2
1−m
ri

c∑
s=1

d
2

1−m
si

where d2
ri =

d∑
p=1

w2
rp(xip − crp)2 (3)

and crp =

n∑
i=1

umri · xip

n∑
i=1

umri

(4)

4. Proximal Splitting for Weights Optimization

The function J is not differentiable in W on its domain of definition and
thus cannot be optimized by standard alternate optimization. In this section,
an alternative optimization technique for the weights W is presented, based on
proximal descent [4], and its implementation in a subspace clustering algorithm
is then detailed.

4.1. Proximal Descent

Studied as a function of variable W only, the cost function is of the general
form J(W ) = F (W )+γG(W ), where F corresponds to a differentiable model for
subspace clustering and G enforces some constraints on the solutions. This form
of functions has recently gained interest in the machine learning community, and
proximal descent has thus been studied as an alternative to standard, gradient-
based optimization techniques [22].

As F is differentiable, usual optimization techniques would suggest to use
an iterative algorithm based on its gradient, such as gradient descent. This
technique considers an update equation of the general form

W t+1 = W t − η · ∇F (W t)

where t is the iteration index and η a descent step size. This simple optimization
scheme provides an iterative algorithm in order to minimize any convex function
F , starting from any W 0 and iterating until convergence.

Function G is not differentiable, therefore its gradient ∇G is not defined for
each W t. Proximal descent [4] suggests to split the optimization of the two
functions F and G, and to enrich gradient descent in the following way:

W t+1 = prox γ
LG

(
W t − 1

L
∇F (W t)

)
(5)

where prox γ
LG

(W ′) = argmin
W

{
1

2
‖W −W ′‖2 +

γ

L
G(W )

}
(6)
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Figure 2: Principle of the two-steps proximal descent.

where L > 0 is a descent step size similar to η. That is, in order to solve a
global minimization problem, proximal descent solves a minimization problem
as defined by Equation (6) at each step of the iteration.

The justification for this additional minimization problem is the following: at
each step, starting from the current step of iteration W t, proximal descent moves
according to −∇F as would any descent approach, then according to proxG.
Figure 2 illustrates this principle, showing the space of admissible solutions in
blue. This justifies the definition of the proximal operator as well: given an
intermediate descent step W t, the solution W ′ to Equation (6) is sought for in
the neighborhood of W t, hence the first term ‖W −W ′‖2.

The definition of Equation (6) can seem counter-intuitive, as it proposes to
solve an additional minimization problem at each step of the algorithm, in order
to minimize the global function J . The key ingredient in order to efficiently solve
this problem is the notion of proximal operator: a closed-form expression or
algorithm to efficiently solve the optimization problem defined by Equation (6).

4.2. A Proximal Operator for G

We establish in the following theorem a proximal operator for the penalty
term G(W ). Let K denote the vector (1, 1, . . . 1) ∈ R1×d, such that K ·Kᵀ

= d.

Theorem 1. Let Gr(Wr) = |
∑d
p=1(wrp)− 1| and L ∈ R.

prox γ
LGr

(Wr) = Wr +
1

d
K

ᵀ ·
(
1 + proxγd

L |·|
(K ·Wr − 1)−K ·Wr

)
(7)

where proxλ|·|(x) = sign(x) max(|x| − λ, 0).

Moreover, prox γ
LG

(W ) =
(

prox γ
LGr

(Wr)
)
r=1...c

∈ Rd×c.
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Proof. The proof uses results from [23] and [4]. First, Gr(Wr) = φ(K · Wr)
where φ(x) = |x−1|. Using the translation and semi-orthogonal linear transform
properties [23]:

proxGr (Wr) = Wr +
1

d
K

ᵀ ·
(

proxφ(K ·Wr)−K ·Wr)

= Wr +
1

d
K

ᵀ ·
(
1 + proxd|·|(K ·Wr − 1)−K ·Wr)

Hence the expression of prox γ
LGr

by the postcomposition property [4]. Finally,

prox γ
LG

is computed using the separable sum property of proximal operators [4].

Equation (7) gives the expression of the proximal operator of the G func-
tion. This operator can be used to efficiently implement the scheme defined in
Equation (5) to find the solution W minimizing function J .

As η for gradient descent, the choice of constant L determines the speed
of convergence of the descent. We experimentally observe that setting L to
trace(H−1) yields good results, where H is the Hessian matrix of F (as a func-
tion of W ). As we set v = 2 in Equation (2), F is a sum of quadratic functions
and its Hessian does not depend on W . It can thus be computed once and for
all before running proximal descent.

4.3. A Fuzzy Subspace Algorithm: PFSCM

The previous mathematical results allow us to efficiently implement proximal
descent for the identification of the subspaces. Combining the expression of
prox γ

LG
with the results of Section 3.2, we introduce the PFSCM algorithm for

fuzzy subspace clustering, detailed in Algorithm 1 and commented on below.
PFSCM is a FCM-style alternate optimization algorithm which substitutes the
exact update of the weights W with proximal descent.

Initialization is a typical issue of k-means-like algorithms. In this paper,
initial centers are randomly chosen and each cluster receives uniform weights
for all dimensions. As C and U are optimized before W , this is equivalent to
running the FCM algorithm and initializing the subspace algorithm with the
result, as is often done for subspace clustering algorithms such as Keller and
Klawonn [9] or Gustafson-Kessel [10] algorithms.

As most partitioning algorithms, the number c of clusters to identify must
be set by the user, as well as the constant γ > 0. PFSCM is not sensitive to
precise values of γ and just needs a value “large enough” (e.g. 104) in order to

impose ∀r,
∑d
p=1 wrp = 1.

The algorithm then iterates the update of U , C and W , similarly to alter-
nate optimization in k-means-like algorithms. It consists of two alternate inner
loops: the regular parameters C and U are optimized separately from W , which
requires the special optimization procedure described in the previous subsection.
Variables C and U are optimized one last time at the end of the algorithm, in
order to guarantee that the result takes the final computed weights into account.
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Data: X: data matrix
Parameters: c,γ: numbers;
Variables: C, U, W: arrays;

Wlast: array
Initialization: Wr ← (1, 1, . . . 1) for each Cr;

C ← random centers
Output: C, U, W
repeat

repeat
Update U according to Equation (3);
Update C according to Equation (4)

until convergence(C, U);
repeat

Update W according to Equation (6)
until convergence(W);
Wlast ←− W

until convergence(Wlast);
Update U and C one last time.

Algorithm 1: Proximal fuzzy subspace clustering PFSCM algorithm

The convergence criteria are defined as the distance between the current and
the previous values of the parameters being optimized. In particular, conver-
gence for (C,U) is defined as ‖Ct − Ct+1‖2 < ε ∧ ‖U t − U t+1‖2 < ε.

PFSCM outputs U , C and W . In order to exploit the result of the algorithm,
it may be of interest to extract the dimension associated to each cluster. To
that aim we propose to post-process the matrix W using a threshold parameter
cut to cut out the irrelevant dimensions in a simple fashion: a dimension p for
a cluster Cr is considered relevant if wrp > cut.

However, instead of using a threshold parameter, an improvement of the
algorithm would be to identify the irrelevant dimensions during the descent in
order to get rid of them and not have them influence the identification of the
centers. This motivates the research of sparsity-inducing models, which are
discussed in the next section.

5. Towards a Sparsity-Inducing Penalty Function

This section discusses extensions of PFSCM aiming at producing sparse
solutions: as can be experimentally observed (see Section 6), PFSCM leads
to solutions where the weights can be small but different from 0. In order to
produce sparse estimations of the subspaces, the previous function J must be
changed. In this section, various solutions are discussed to define variants for G,
listing some of the difficulties or the similarities with other approaches of the
literature.
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Indeed, for function G defined in Equation (2) and for large values of γ,

proxγG acts as a projection towards the simplex ∆ =
{
Wr ∈ Rd

∣∣∣∑d
p=1 wrp = 1

}
for each Wr. The framework presented in this paper would encourage looking
for a function which would favor sparse projections on ∆.

`1-norm regularization. The most common sparsity-inducing norm, the `1 norm,
is useless in the current setting: indeed, after projection using proxG, the solu-
tions of interest all verify ∀r, ‖Wr‖1 = 1, and thus this norm does not discrimi-
nate any solution under this constraint. A better penalty-inducing function H
must be found, which still needs to be “proximable”. Moreover, even if G and H
are proximable, this is not necessarily the case of their sum G+H [4].

Negentropy based regularization. An alternative to `1 and other non-differen-
tiable norms may come from negentropy-based regularization, already used in
conjunction of standard FCM clustering to regularize the number of clusters
(see e.g. [24]). The study conducted in Section 6 has not yet be extended to
negentropy-regularized subspace algorithms. However, Jing et al. [25] use a very
similar technique for a slightly different subspace clustering model, in a different
context: as they consider sparse data, they use entropy (not negentropy) in order
not to promote sparsity, but to promote subspaces of high dimensionality.

Projection-based regularization. Closer to the spirit of the present paper, an-
other direction of work is to reformulate G as an actual projection on ∆ and
then to introduce a sparsity-promoting penalty. First define G1 to be the fol-
lowing penalty function:

G1(Wr) =

{
0 if

∑d
p=1 wrp = 1

∞ otherwise

Function G1 is convex and thus has a proximal operator:

proxG1
(Wr) = argmin

W ′r∈Rd

{
G1(W ′r) +

1

2
‖Wr −W ′r‖2

}
(8)

= argmin
W ′r∈∆

{
1

2
‖Wr −W ′r‖2

}
(9)

= proj∆(Wr) (10)

that is, the proximal operator of G1 is the projection on ∆.
Unlike the function G in Equation (2), this projection does not depend on

the value of γ: G1 strictly enforces the constraint, but still does not discriminate
between the points of ∆. The goal now becomes to assign a price to the solutions
on ∆, in order to favor sparse ones. However, this direction is left for future
works.
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Figure 3: Clustering example in two dimensions

Gray cluster Dark cluster Red cluster Blue cluster
w1 w2 w1 w2 w1 w2 w1 w2

Weights 0.528 0.472 0.063 0.937 0.027 0.973 0.964 0.036

Table 1: Computed weights for the example given in Figure 3. Column w1 (resp. w2) denotes
the weight associated to the x-axis (resp. y-axis).

6. Experimental Study

The proposed PFSCM algorithm has been tested on artificial data in order
to study its ability to correctly identify centers of non-circular clusters, as well as
the dimensions that are relevant to describe the clusters. The results show the
effectiveness of PFSCM in detecting the clusters and their subspaces. Moreover,
PFSCM is compared to Keller and Klawonn’s algorithm [9] and shows to provide
a better estimation of the dimensionality of the subspaces.

6.1. Illustrative Example

This subsection presents illustrative experiments of subspace clustering us-
ing the PFSCM algorithm, similar to the visual examples given in [9]. The
first example in d = 2 dimensions is represented in Figure 3: four clusters are
generated, one of them (the top gray one in Figure 3) being circular while the
others have a very low variance in one dimension. PFSCM is run with c = 4,
m = 2, and γ = 1000.

In Figure 3 the points are colored according to the cluster Cr for which uri
is maximum and Table 1 presents the weights computed for each dimension and
cluster. It can be observed that PFSCM correctly identifies the desired clusters
and their dimensions: the two weights (w1, w2) found for the circular cluster are

12



Figure 4: Clustering example in three dimensions

similar, whereas the horizontal (respectively vertical) clusters verify w2 � w1

(respectively w1 � w2).
It is worth noting that, for this specific instance, some points close to the blue

cluster are assigned to one of the horizontal clusters, as it minimizes the cost
function. This kind of inliers is frequent in subspace clustering problems, and
naturally leads to the use of fuzzy membership values (uri). It was also studied
for its own sake by Guillon et al. [26], which suggest the use of a Laplacian-based
regularization term to prevent it.

Another example is given in Figure 4. Again, 4 clusters are depicted and
colored according to the cluster maximizing uri. These clusters live in various
subspaces of various dimensionalities, but are still identified by PFSCM.

6.2. Artificial Data Set with Ellipsoidal Clusters

The previous example is generalized to higher dimensions and several algo-
rithms of fuzzy subspace clustering are compared: PFSCM, Keller and Klawonn
(KK), Gustafson-Kessel (GK) and WLFC algorithm from [26].

6.2.1. Experimental Protocol

Considered Data. In order to validate PFSCM, the previous experiment is gen-
eralized to higher dimensions, more precisely to artificial data of dimension
d ∈ {5, 7, 9, 11, 13, 15}. For each experiment, k = 4 centers are randomly gen-
erated in the hypercube [−3, 3]d. Then, dr dimensions j1, . . . jdr are randomly
picked, with dr randomly chosen between 1 and d − 3. Dimensions j1, · · · , jdr
are thereafter called the “relevant dimensions” for cluster Cr. For each cluster,
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Table 2: Average and standard deviation of δ

d WLFC K&K GK PFSCM
5 0.58± 0.09 1.18± 0.77 0.59± 0.10 0.60± 0.11
7 0.72± 0.12 1.49± 1.03 0.75± 1.67 0.73± 0.13
9 0.86± 0.14 1.98± 1.58 3.36± 5.09 0.84± 0.13
11 0.99± 0.13 2.02± 1.36 9.78± 10.4 0.98± 0.12
13 1.12± 0.11 1.77± 0.91 19.4± 13.0 1.11± 0.10

Table 3: Average and standard deviation of φ

d WLFC K&K GK PFSCM
5 1.83± 1.63 1.59± 1.26 11.7± 16.7 1.32± 1.12
7 1.93± 2.09 1.74± 1.83 13.8± 18.7 1.73± 1.43
9 2.20± 2.64 2.14± 2.54 15.2± 16.9 2.37± 2.10
11 2.06± 2.42 1.97± 2.01 NA 1.93± 2.04
13 2.99± 3.82 2.99± 4.00 NA 3.12± 2.19

100 points are generated according to a Gaussian distribution, with variance
vj < 0.1 for dimensions j1, . . . , jdr and vj ∈ [0.5, 0.9] for other dimensions. The
generated points in cluster r in dimension j thus follow Xr ∼ N (cr, vj).

Algorithm Parameters. All algorithms are initialized with FCM centers and use
m = v = 2 and c = 4. PFSCM is ran with γ = 1000 and c = 4. All algorithms
were implementend using the same convergence criterion, with ε = 10−4.

The parameter cut is set to 1
2d , which is a simple rule of thumb to iden-

tify the dimensions selected as relevant by the algorithms in each considered
dimension d.

Quality Criteria. All algorithms are evaluated on three metrics in order to qual-
ify their results and their ability to discover the desired clusters and subspaces,
and their dimensions.

First, let δ =
∑4
r=1‖ĉr−cr‖2 be the sum of the Euclidean distances between

the generated centers and the computed ones (cr): this metric is a standard
quality criterion for evaluating the produced clusters. A low value means that
the computed centers are close to the original ones.

We also consider θ defined as the percentage of clusters for which all relevant
dimensions are correctly identified by the algorithm: the relevant dimensions are
correctly identified if wrj > cut⇔ j ∈ {j1, · · · jdr}.

Finally, for the clusters for which the relevant dimensions have been correctly
identified, let the weight ratio be φ = ω1

ωjdr
where ω1 is the largest computed

weight and ωjdr the smallest computed weight for the relevant dimensions. This
metric measures the distortion of the cluster between the relevant dimensions,
as estimated by the algorithms.
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Table 4: Average and standard deviation of θ

d WLFC K&K GK PFSCM
5 52% 51% 29% 63%
7 53% 51% 17% 68%
9 48% 46% 12% 74%
11 48% 50% 3% 78%
13 58% 56% 1% 85%

6.2.2. Obtained Results

Cluster identification and stability. The results of the experiment are gathered
from [26] and reported in three tables. Table 2 and Table 3 give the means and
standard deviations for δ and φ. Table 4 gives the criterion θ, computed over 100
runs of each algorithm. The low mean distances δ in Table 2 show that WLFC
and PFSCM succeed in identifying the centers of the generated clusters, while
K&K is not as efficient. The GK algorithm performs well in low dimensions,
but significantly worse when d increases. Moreover, WLFC and PFSCM appear
more stable than K&K and GK, judging by the lower standard deviation.

Dimensionality. The values of θ in Table 4 show that WLFC and K&K succeed
in estimating the dimensionality of roughly half of the generated clusters whereas
PFSCM performs better when d increases. These results may be related to the
choice of the parameter cut used to defuzzify W . This table also shows that
GK has troubles identifying the relevant dimensions of the generated clusters;
as θ gets very low in higher dimensions, the values of φ for these dimensions
is not relevant. A possible explanation of these poor results is that GK is not
constrained to search for axes-parallel subspaces and converges towards another
solution, as there are not enough points to guide the algorithm. This would also
explain the results of the algorithm in Table 2. In Table 3, WLFC, K&K and
PFSCM show similar results, bearing in mind the very large standard deviations,
PFSCM seeming slightly more stable.

Computation time. In terms of computational time, K&K is significantly faster
than all other algorithms. WLFC appears to be globally twice as slow as K&K
on average regardless of the dimension. GK is two to five times slower than
K&K, probably because of the use of expensive matrix operations. Finally, PF-
SCM is much slower than the other algorithms: in higher dimensions it is more
than ten times slower than K&K. This may be due to a naive implementation
of the inner loop and to the choice of the convergence criterion.

Axes-parallel Gustafson-Kessel algorithm. For the aforementioned reasons, the
general GK algorithm is not suited to this experiment. As presented in [20], this
algorithm can be modified in order to identify only axes-parallel soft subspaces.

We thus ran a specific experiment in order to compare PFSCM to axes-
parallel GK, which shows that both algorithms perform similarily in terms of
the δ metric. However, as GK algorithm describes the subspaces in terms of
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the variance of their dimension, it provides no indication as to if a dimension is
actually relevant or not in the description of a cluster. This feature also seems
to preclude its use for the main goal of this work, which is the identification of
sparse subspaces.

7. Conclusion and Future Works

In this paper, a new approach to solve the fuzzy subspace clustering problem
with a cost function involving a non-differentiable term has been introduced.
The cost function is expressed as the sum of two functions, a model and a
penalty or regularizer term. Advanced optimization techniques are explored,
which replace the standard update equations of fuzzy c-means-like algorithms.

Experiments on synthetic data show the relevance of the proposed approach,
that appears to correctly identify all the relevant dimensions and not more,
whereas Keller and Klawonn’s algorithm tends to underestimate the number of
relevant dimensions. This provides more information about the importance of
each dimension for the subspaces and clusters.

Future works will aim at generalizing this approach around the same key
ideas based on the discussion initiated in the paper: a differentiable function
matching the specification of the problem and one or several penalty functions,
expressing constraints on the shape of the solution. The introduction of regu-
larization terms for parameters other than W will also be studied. Finally, more
efficient descent schemes will be considered, in order to speed up the descent.
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