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We study asymptotically and numerically the fundamental gaps (i.e. the difference between the first excited state and the ground state) in energy and chemical potential of the Gross-Pitaevskii equation (GPE) -nonlinear Schrödinger equation with cubic nonlinearity -with repulsive interaction under different trapping potentials including box potential and harmonic potential. Based on our asymptotic and numerical results, we formulate a gap conjecture on the fundamental gaps in energy and chemical potential of the GPE on bounded domains with the homogeneous Dirichlet boundary condition, and in the whole space with a convex trapping potential growing at least quadratically in the far field. We then extend these results to the GPE on bounded domains with either the homogeneous Neumann boundary condition or periodic boundary condition.

Introduction. The time-independent Schrödinger equation (in dimensionless

form by taking = m = 1 with m the mass of the particle) [START_REF] Schrödinger | An undulatory theory of the mechanics of atoms and molecules[END_REF][START_REF] Atkins | Physical Chemistry[END_REF][START_REF] Hook | Solid State Physics[END_REF][START_REF] Levine | Quantum Chemistry[END_REF] (1.1)

HΦ := N j=1 - 1 2 ∆ j + V (r j ) + 1≤j<k≤N V int (r j -r k ) Φ = E Φ,
has been widely used in quantum physics and chemistry to mathematically predict the property of a quantum system with N particles (usually atoms, molecules, and subatomic particles whether free, bound or localized). Here r j ∈ R 3 is the spatial coordinate of the j-th particle, ∆ j is the Laplacian operator with respect to the spatial coordinate r j for j = 1, 2, . . . , N , Φ := Φ(r 1 , . . . , r N ) is the complex-valued wave function of the quantum system, V (r) (for r ∈ R 3 ) is a given real-valued potential, V int (r) is a given real-valued interaction kernel for two-body interaction satisfying V int (r) = V int (-r) and H is the Hamiltonian operator. When the wave function is normalized as R 3N |Φ| 2 dr 1 . . . dr N = 1, E is the total energy of the quantum system with respect to the wave function Φ. The time-independent Schrödinger equation (1.1), also an eigenvalue problem in mathematics, predicts that wave function can form stationary states including ground and excited states [START_REF] Schrödinger | An undulatory theory of the mechanics of atoms and molecules[END_REF][START_REF] Atkins | Physical Chemistry[END_REF][START_REF] Hook | Solid State Physics[END_REF][START_REF] Levine | Quantum Chemistry[END_REF]. Finding the ground state and its energy, as well as the energy gap (or band gap) between the ground and first excited states via Eq. (1.1) has become a fundamental and highly challenging problem in computational quantum physics and chemistry, as well as material simulation and design.

By setting N = 1 in Eq. (1.1) and performing a dimension reduction from three dimensions (3D) to two dimensions (2D) and one dimension (1D) under proper assumptions on the potential V (r) such that separation of (the spatial) variables for the wave function is valid [START_REF] Bao | Mathematical models and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Dalfovo | Theory of Bose-Einstein condensation in trapped gases[END_REF][START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF][START_REF] Bao | Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation[END_REF][START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF], one can get the d-dimensional (d = 3, 2, 1) time-independent Schrödinger equation with complex-valued wave function φ := φ(x), which has been widely used in the physics literature [START_REF] Schrödinger | An undulatory theory of the mechanics of atoms and molecules[END_REF][START_REF] Atkins | Physical Chemistry[END_REF][START_REF] Hook | Solid State Physics[END_REF][START_REF] Levine | Quantum Chemistry[END_REF] (1.2) Hφ := -

1 2 ∆ x + V (x) φ(x) = E φ(x), x = (x 1 , . . . , x d ) T ∈ Ω ⊆ R d .
Using the rescaling formulas y = √ 2 x ∈ R d and ϕ(y) = 2 -d/4 φ(x), one can derive the following time-independent Schrödinger equation [START_REF] Andrews | Proof of the fundamental gap conjecture[END_REF][START_REF] Ashbaugh | The fundamental gap, Workshop on Low Eigenvalues of Laplace and Schrödinger Operators[END_REF][START_REF] Ashbaugh | Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials[END_REF][START_REF] Singer | An estimate of the gap of the first two eigenvalues in the Schrödinger operator[END_REF] (1.3)

Lϕ := [-∆ y + W (y)] ϕ(y) = E ϕ(y), y ∈ U ⊆ R d ,
where W (y) = V (x) = V (y/ √ 2), U = {y | y/ √ 2 ∈ Ω} and the operator L := -∆ y + W (y) is called the Schrödinger operator [START_REF] Ashbaugh | The fundamental gap, Workshop on Low Eigenvalues of Laplace and Schrödinger Operators[END_REF]. If U is bounded, then we require the homogeneous Dirichlet boundary condition (BC) ϕ(y)| ∂U = 0 to be imposed. In this case, we can also simply define W (y) = +∞ for y outside U and Eq. (1.3) can be defined in the whole space without BC. If W (y) is bounded below in U , i.e. inf y∈U W (y) > -∞, without loss of generality, we can always assume that W (y) ≥ 0 for y ∈ U when we are interested in the ground and excited states and the energy gap.

Under proper assumptions on the potential W (y), the eigenvalues E g , E 1 , E 2 , • • • of the Sturm-Liouville eigenvalue problem (1.3) under the normalization condition [START_REF] Ashbaugh | The fundamental gap, Workshop on Low Eigenvalues of Laplace and Schrödinger Operators[END_REF] (1.4)

ϕ 2 2 := U |ϕ(y)| 2 dy = 1 ⇐⇒ φ 2 2 := Ω |φ(x)| 2 dx = 1,
are real and can be ordered such that 0 < E g < E 1 ≤ E 2 ≤ • • • with corresponding eigenfunctions (or stationary states) ϕ g (y), ϕ 1 (y), ϕ 2 (y), • • • . Then ϕ g (y) and ϕ 1 (y) are called the ground state and the first excited state, respectively. δ 0 := E 1 -E g > 0 is usually called the fundamental gap in the literature [START_REF] Ashbaugh | The fundamental gap, Workshop on Low Eigenvalues of Laplace and Schrödinger Operators[END_REF][START_REF] Ashbaugh | Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials[END_REF][START_REF] Singer | An estimate of the gap of the first two eigenvalues in the Schrödinger operator[END_REF]. Assuming that U is a bounded convex domain and the potential W (y) ∈ C(U ), based on results for special cases, the gap conjecture was formulated in the literature [START_REF] Ashbaugh | The fundamental gap, Workshop on Low Eigenvalues of Laplace and Schrödinger Operators[END_REF][START_REF] Ashbaugh | Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials[END_REF][START_REF] Singer | An estimate of the gap of the first two eigenvalues in the Schrödinger operator[END_REF] as:

(1.5)

δ 0 = E 1 -E g ≥ 3π 2 D 2 U , with D U := sup y,z∈U
|y -z|.

The gap conjecture is sharp when d = 1, U = (0, L) with 0 < L ∈ R and W (y) ≡ 0 for y ∈ U [START_REF] Ashbaugh | The fundamental gap, Workshop on Low Eigenvalues of Laplace and Schrödinger Operators[END_REF]. Recently, by the use of the gradient flow and geometric analysis and assuming that W (y) ∈ C(U ) is convex, Andrews and Clutterbuck proved the gap conjecture [START_REF] Andrews | Proof of the fundamental gap conjecture[END_REF]. In addition, they showed that if U = R d and the potential W (y) satisfies D 2 W (y) ≥ γ 2 w I d for y ∈ R d with γ w > 0, where I d is the identity matrix in d-dimensions, the fundamental gap described by Eq. (1.3) under the condition (1.4) satisfies

δ 0 := E 1 -E g ≥ √ 2γ w [2]
. In this paper, we will consider the dimensionless time-independent Gross-Pitaevskii equation (GPE) in d-dimensions (d = 3, 2, 1) [START_REF] Bao | Mathematical models and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Dalfovo | Theory of Bose-Einstein condensation in trapped gases[END_REF][START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF][START_REF] Bao | Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation[END_REF][START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF] (1.6)

- 1 2 ∆ + V (x) + β|φ(x)| 2 φ(x) = µφ(x), x ∈ Ω ⊆ R d ,
where φ := φ(x) is the complex-valued wave function (or eigenfunction) normalized via (1.4), V := V (x) is a given real-valued potential, β ≥ 0 is a dimensionless constant describing the repulsive (defocussing) interaction strength, and the eigenvalue (or chemical potential in the physics literature) µ := µ(φ) is defined as [START_REF] Bao | Mathematical models and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Dalfovo | Theory of Bose-Einstein condensation in trapped gases[END_REF][START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF][START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF] (1.7)

µ(φ) = E(φ) + β 2 Ω |φ(x)| 4 dx,
with the energy E := E(φ) defined as [START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF] (1.8)

E(φ) = Ω 1 2 |∇φ(x)| 2 + V (x)|φ(x)| 2 + β 2 |φ(x)| 4 dx.
Again, if Ω is bounded, the homogeneous Dirichlet BC, i.e. φ(x)| ∂Ω = 0, needs to be imposed. Thus, the time-independent GPE (1.6) is a nonlinear eigenvalue problem under the constraint (1.4). It is a mean field model arising from Bose-Einstein condensates (BECs) [START_REF] Anderson | Observation of Bose-Einstein condensation in a dilute atomic vapor[END_REF][START_REF] Dalfovo | Theory of Bose-Einstein condensation in trapped gases[END_REF][START_REF] Leggett | Bose-Einstein condensation in the alkali gases: Some fundamental concepts[END_REF][START_REF] Bao | Mathematical models and numerical methods for Bose-Einstein condensation[END_REF] that can be obtained from the Schrödinger equation (1.1) via the Hartree ansatz and mean field approximation [START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Chaikin | Principles of Condensed Matter Physics[END_REF][START_REF] Lieb | The Mathematics of the Bose Gas and its Condensation[END_REF][START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF]. When β = 0, it collapses to the time-independent 

D 2 U = 3π 2 2D 2 .
The ground state of the GPE (1.6) is usually defined as the minimizer of the nonconvex minimization problem (or constrained minimization problem) [START_REF] Bao | Mathematical models and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Dalfovo | Theory of Bose-Einstein condensation in trapped gases[END_REF][START_REF] Leggett | Bose-Einstein condensation in the alkali gases: Some fundamental concepts[END_REF][START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF] (1.9)

φ g = arg min φ∈S E(φ),
where

S = {φ | φ 2 2 := Ω |φ(x)| 2 dx = 1, E(φ) < ∞, φ| ∂Ω = 0 if Ω is bounded}.
The ground state can be chosen as nonnegative |φ g |, i.e. φ g = |φ g |e iθ for some constant θ ∈ R and i = √ -1 . Moreover, the nonnegative ground state |φ g | is unique [START_REF] Lieb | Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional[END_REF][START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF]. Thus, from now on, we refer to the ground state as the nonnegative one. It is easy to see that the ground state φ g satisfies the time-independent GPE (1.6) and the constraint (1.4). Hence it is an eigenfunction (or stationary state) of (1.6) with the least energy. Any other eigenfunctions of the GPE (1.6) under the constraint (1.4) whose energies are larger than that of the ground state are usually called the excited states in the physics literature [START_REF] Dalfovo | Theory of Bose-Einstein condensation in trapped gases[END_REF][START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF][START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF]. Specifically, the excited state with the least energy among all excited states is usually called the first excited state, which is denoted as φ 1 .

For the GPE (1.6), the ground state has been obtained asymptotically in weakly and strongly repulsive interaction regimes, i.e. 0 ≤ β 1 and β 1, respectively, for several different trapping potentials [START_REF] Bao | Energy and chemical potential asymptotics for the ground state of Bose-Einstein condensates in the semiclassical regime[END_REF]. In fact, by ordering all the eigenfunctions of the GPE with a repulsive interaction and a confinement potential, i.e. β ≥ 0 and lim |x|→+∞ V (x) = +∞, under the constraint (1.4) according to their energies with [START_REF] Cancès | Numerical analysis of nonlinear eigenvalue problems[END_REF], and thus φ β 1 is usually called the first excited state. We define the fundamental gaps in energy and chemical potential of the time-independent GPE under the constraint (1.4) as

φ β g , φ β 1 , φ β 2 , . . . satisfying E g (β) := E(φ β g ) < E 1 (β) := E(φ β 1 ) ≤ E(φ β 2 ) ≤ . . . , it can be shown that µ g (β) := µ(φ β g ) < µ 1 (β) := µ(φ β 1 )
δ E (β) := E(φ β 1 ) -E(φ β g ) > 0, δ µ (β) := µ(φ β 1 ) -µ(φ β g ) > 0, β ≥ 0, δ ∞ E := inf β≥0 δ E (β), δ ∞ µ := inf β≥0 δ µ (β). (1.10)
In general, the first excited state φ β 1 is not unique. Since we are mainly interested in its energy and chemical potential as well as the fundamental gaps, it does not matter which first excited state is taken in our analysis and simulation below. The main purpose of this paper is to study asymptotically and numerically the fundamental gaps of the GPE with different trapping potentials and to formulate a gap conjecture for the GPE.

The rest of this paper is organized as follows. In Section 2, we study asymptotically and numerically the fundamental gaps of GPE on bounded domains with homogeneous Dirichlet BC. In Section 3, we obtain results for GPE in the whole space with a confinement potential. Extension to GPE on bounded domains with either periodic or homogeneous Neumann BC are presented in Section 4. Finally, some conclusions are drawn in Section 5. In order to distinguish two different cases, i.e. nondegenerate and degenerate cases, we define the eigenspace of (1.2) corresponding to the eigenvalue E 1 (the second smallest eigenvalue) as (1.11)

W 1 = {φ(x) : Ω → C | Hφ = E 1 φ, φ| ∂Ω = 0 if Ω is bounded}.
Then the dimension of W 1 , i.e. dim(W 1 ) = 1, is referred to the nondegenerate case, and resp., dim(W 1 ) ≥ 2 is referred to the degenerate case. Denote

Ω 0 = d j=1 (0, L j ) satisfying L 1 ≥ L 2 ≥ • • • ≥ L d > 0 and A 0 = 1/ d j=1 L j .
2. On bounded domains with homogeneous Dirichlet BC. In this section, we obtain fundamental gaps of the GPE (1.6) on a bounded domain Ω with homogeneous Dirichlet BC asymptotically under a box potential and numerically under a general potential. Based on the results, we formulate a novel gap conjecture.

2.1. Nondegenerate case, i.e. dim(W 1 ) = 1. We first consider a special case by taking Ω = Ω 0 satisfying d = 1 or L 1 > L 2 when d ≥ 2 and V (x) ≡ 0 for x ∈ Ω in (1.6). For simplicity, we define (2.1)

A 1 = 2 L 1   25 9L 1 + 2 9 d j=1 1 L j   , A 2 = π 2 2 d j=1 1 L 2 j .
In this scenario, when β = 0, all the eigenfunctions can be obtained via the sine series [START_REF] Bao | Analysis and computation for the semiclassical limits of the ground and excited states of the Gross-Pitaevskii equation[END_REF][START_REF] Bao | Energy and chemical potential asymptotics for the ground state of Bose-Einstein condensates in the semiclassical regime[END_REF]. Thus the ground state φ 0 g (x) and the first excited state φ 0 1 (x) can be given explicitly as [START_REF] Bao | Analysis and computation for the semiclassical limits of the ground and excited states of the Gross-Pitaevskii equation[END_REF][START_REF] Bao | Energy and chemical potential asymptotics for the ground state of Bose-Einstein condensates in the semiclassical regime[END_REF] 

for x ∈ Ω (2.2) φ 0 g (x) = 2 d 2 A 0 d j=1 sin πx j L j , φ 0 1 (x) = 2 d 2 A 0 sin 2πx 1 L 1 d j=2 sin πx j L j .
Lemma 2.1. In the weakly repulsive interaction regime, i.e. 0 < β 1, we have

E g (β) = A 2 + 3 d A 2 0 2 d+1 β + o(β), µ g (β) = A 2 + 3 d A 2 0 2 d β + o(β), 0 ≤ β 1, (2.3) E 1 (β) = 3π 2 2L 2 1 + A 2 + 3 d A 2 0 2 d+1 β + o(β), µ 1 (β) = 3π 2 2L 2 1 + A 2 + 3 d A 2 0 2 d β + o(β). (2.4)
Proof. When 0 < β 1, we can approximate the ground state φ β g (x) and the first excited state φ β 1 (x) by φ 0 g (x) and φ 0 1 (x), respectively. Thus we have

(2.5) φ β g (x) ≈ φ 0 g (x), φ β 1 (x) ≈ φ 0 1 (x), x ∈ Ω.
Plugging (2.5) 

(β) = E 1 (β) -E g (β) ≈ 3π 2 2L 2 1 and δ µ (β) = µ 1 (β) - µ g (β) ≈ 3π 2 2L 2 1
for 0 ≤ β 1, which are independent of β. In order to get the dependence on β, we need to find more accurate approximations of φ β g and φ β 1 and can obtain the following asymptotics of the fundamental gaps.

Lemma 2.2. When 0 ≤ β 1, we have

(2.6) δ E (β) = 3π 2 2L 2 1 + G (1) 
d β 2 + o(β 2 ), δ µ (β) = 3π 2 2L 2 1 + G (2) 
d β 2 + o(β 2 ),
where

G (1) d =      3 64π 2 , A 4 0 64π 2 27 4 L 2 1 + 3 A6(A6L 2 1 +3) , 1 256π 2 (C 1,1,1 -C 2,1,1 ), G (2) d =      9 64π 2 , d = 1, 3A 4 0 64π 2 27 4 L 2 1 + 3 A6(A6L 2 1 +3) , d = 2, 3 256π 2 (C 1,1,1 -C 2,1,1 ), d = 3, with (2.7) A 6 = d j=1 1 L 2 j , C k1,k2,k3 = A 4 0   81 3 j=1 L 2 j k 2 j + 9 i<j 1 k 2 i L 2 i + k 2 j L 2 j + 1 3 j=1 k 2 j L 2 j    .
Proof. When 0 < β 1, we assume

(2.8) φ β g (x) ≈ φ 0 g (x) + βϕ g (x) + o(β), x ∈ Ω.
Plugging (2.8) into (1.6), noticing (2.2), (2.3) and (2.4), and dropping all terms at O(β 2 ) and above, we obtain (2.9) ∆ϕ g (x) + 2A 2 ϕ g (x) = 2(φ 0 g (x)) 3 -

3 d A 2 0 2 d-1 φ 0 g (x), x ∈ Ω, ϕ g (x)| ∂Ω = 0.
Substituting (2.2) into (2.9), we can solve it analytically. For the simplicity of notations, here we only present the case when d = 1. Extensions to d = 2 and d = 3 are straightforward and the details are omitted here for brevity [START_REF] Ruan | Mathematical Theory and Numerical Methods for Bose-Einstein Condensation with Higher Order Interactions[END_REF]. When d = 1, we have (2.10)

ϕ g (x) = √ 2L 1 8π 2 sin 3πx L 1 , 0 ≤ x ≤ L 1 .
Plugging (2.10) into (2.8) and using φ β g 2 = 1, we get

(2.11) φ β g (x) ≈ 64π 4 -β 2 L 2 1 32π 4 L 1 sin πx L 1 + β √ 2L 1 8π 2 sin 3πx L 1 , 0 ≤ x ≤ L 1 .
Inserting (2.11) into (1.8) and (1.7) with V (x) ≡ 0, we have

(2.12) E g (β) = π 2 2L 2 1 + 3β 4L 1 - β 2 16π 2 + o(β 2 ), µ g (β) = π 2 2L 2 1 + 3β 2L 1 - 3β 2 16π 2 + o(β 2 ).
Similarly, we can obtain results for the first excited state

(2.13) E 1 (β) = 2π 2 L 2 1 + 3β 4L 1 - β 2 64π 2 + o(β 2 ), µ 1 (β) = 2π 2 L 2 1 + 3β 2L 1 - 3β 2 64π 2 + o(β 2 ).
Subtracting (2.12) from (2.13), we obtain (2.6) when d = 1. Lemma 2.3. In the strongly repulsive interaction regime, i.e. β 1, we have

E g (β) = A 2 0 2 β + 4A 0 A 3 3 β 1 2 + 2A 2 3 - 8A 4 9 + o(1), (2.14) µ g (β) = A 2 0 β + 2A 0 A 3 β 1 2 + 2A 2 3 -A 4 + o(1), β 1, (2.15) E 1 (β) = A 2 0 2 β + 4A 0 (A 3 L 1 + 1) 3L 1 β 1 2 + 2(A 3 L 1 + 1) 2 L 2 1 - 8A 5 9 + o(1), (2.16) µ 1 (β) = A 2 0 β + 2A 0 (A 3 L 1 + 1) L 1 β 1 2 + 2(A 3 L 1 + 1) 2 L 2 1 -A 5 + o(1), (2.17)
where

(2.18) A 3 = d j=1 1 L j , A 4 = 4 1≤j<k≤d 1 {d≥2} L j L k , A 5 = A 4 + 4 1<j≤d 1 {d≥2} L 1 L j ,
with 1 {d≥2} the standard set function, which takes 1 when d ≥ 2 and 0 otherwise. Proof. When β 1, the ground and first excited states can be approximated by the Thomas-Fermi (TF) approximations and/or uniformly accurate matched approximations. For d = 1 and Ω = (0, L), these approximations have been given explicitly and verified numerically in the literature [START_REF] Bao | Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow[END_REF][START_REF] Bao | Convergence rate of dimension reduction in Bose-Einstein condensates[END_REF][START_REF] Bao | Analysis and computation for the semiclassical limits of the ground and excited states of the Gross-Pitaevskii equation[END_REF][START_REF] Bao | Energy and chemical potential asymptotics for the ground state of Bose-Einstein condensates in the semiclassical regime[END_REF] as

(2.19) φ g (x) ≈ µ g β φ (1) 
L,µg (x), φ 1 (x) ≈ µ 1 β φ (2) 
L,µ1 (x), 0 ≤ x ≤ L, where φ (1) 
L,µ (x) = tanh ( √ µx) + tanh ( √ µ(L -x)) -tanh ( √ µL) , 0 ≤ x ≤ L, φ (2) 
L,µ (x) = tanh ( √ µx) -tanh ( √ µ(L -x)) + tanh ( √ µ (L/2 -x)) , (2.20)
with µ g and µ 1 determined from the normalization condition (1.4) and tanh √ µL ≈ 1. These results in 1D can be extended to d-dimensions (d = 1, 2, 3) for the approximations of the ground and first excited states as

φ β g (x) ≈ φ MA g (x) = µ g (β) β d j=1 φ (1) Lj ,µg (x j ), x ∈ Ω, (2.21) φ β 1 (x) ≈ φ MA 1 (x) = µ 1 (β) β φ (2) L1,µ1 (x 1 ) d j=2 φ (1) 
Lj ,µ1 (x j ), (2.22) where µ g (β) and µ 1 (β) are determined from the normalization condition (1.4). Inserting (2.21) and (2.22) into (1.7) and (1.8), after a detailed computation which is omitted here for brevity, we can obtain (2.14)-(2.17).

From Lemmas 2.1-2.3, we have asymptotic results for the fundamental gaps. Proposition 2.4 (For GPE under a box potential in nondegenerate case). When 

Ω = Ω 0 satisfying d = 1 or L 1 > L 2 when d ≥ 2 and V (x) ≡ 0 for x ∈ Ω in (1.6), i.e. GPE with a box potential, we have (2.23) δ E (β) = 3π 2 2L 2 1 + o(β), 4A0 3L1 β 1 2 + A 1 + o(1), δ µ (β) = 3π 2 2L 2 1 + o(β), 0 ≤ β 1, 2A0 L1 β 1 2 + 6 L 2 1 + o(1), β 1. Proof. When 0 ≤ β 1,
E(φ β 1,x2 ) E(φ β 1,x1 ) E(φ β g ) Fig. 2.2. Energy Eg(β) := E(φ β g ) < E 1 (β) := E(φ β 1 = φ β 1,x 1 ) < E 2 (β) := E(φ β 1,x 2 )
of GPE in 2D with Ω = (0, 2) × (0, 1) and a box potential for different β ≥ 0.

To verify numerically our asymptotic results in Proposition 2.4, we solve the time-independent GPE (1.6) numerically by using the normalized gradient flow via backward Euler finite difference discretization [START_REF] Bao | A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems[END_REF][START_REF] Bao | Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates[END_REF][START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Bao | Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow[END_REF] to find the ground and first excited states and their corresponding energy and chemical potentials. Fig. 2.1 shows the ground and first excited states for different β ≥ 0 in 1D, Fig. 2.2 shows the energy of the ground and excited states which are excited in x 1 -or x 2 -direction, while the first excited state is taken as the one excited in x 1 -direction, and Fig. 2.3 depicts fundamental gaps in energy obtained numerically and asymptotically in 1D, 2D and 3D. From Fig. 2.3, we can see that the asymptotic results in Proposition 2.4 are very accurate in both weakly and strongly repulsive interaction regimes. In addition, our numerical results suggest that both δ E (β) and δ µ (β) are increasing functions for β ≥ 0 (cf. Fig. 2.

3).

For a general bounded domain Ω and/or V (x) = 0, we cannot get asymptotic results on the fundamental gaps, but we can study the problem numerically. If Ω and V (x) are symmetric with respect to the axis, we can compute numerically the ground and first excited states and their corresponding energy and chemical potential as well as the fundamental gaps via the normalized gradient flow method [START_REF] Bao | A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems[END_REF][START_REF] Bao | Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates[END_REF][START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Bao | Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow[END_REF]. We remark here that for a general bounded domain Ω, discretization in space can be 

(β) (right) of GPE in 1D with Ω = (0, 2) and V (x) = V 0 (x -1) 2 for different V 0 > 0 and β ≥ 0.
performed by using the finite element method instead of finite difference or spectral method for the normalized gradient flow to compute the ground and first excited states [START_REF] Bao | Ground state solution of Bose-Einstein condensate by directly minimizing the energy functional[END_REF]. For arbitrarily chosen external potentials, the first excited state might not have any symmetric property. In this case, we can obtain numerically the first excited state by using the numerical method proposed in [START_REF] Bao | Ground state solution of Bose-Einstein condensate by directly minimizing the energy functional[END_REF]. Fig. 2.4 depicts fundamental gaps in energy and chemical potential of the GPE in 1D with Ω = (0, 2) and the potential V (x) = V 0 (x -1) 2 for different V 0 and β. Fig. 2.5 plots the fundamental gaps in energy and chemical potential of the GPE in 1D with Ω = (0, 2) and some nonconvex trapping potentials for different β ≥ 0. Based on the asymptotic results in Proposition 2.4 and the above numerical results as well as additional extensive numerical results not shown here for brevity [START_REF] Ruan | Mathematical Theory and Numerical Methods for Bose-Einstein Condensation with Higher Order Interactions[END_REF], we speculate the following gap conjecture.

β 0 2 4 6 8 1 0 δ E (β)
Gap conjecture (For GPE on a bounded domain with homogeneous Dirichlet BC in nondegenerate case) Suppose Ω is a convex bounded domain, the external potential V (x) is convex and dim(W 1 ) = 1, we have

(2.24) δ ∞ E := inf β≥0 δ E (β) ≥ 3π 2 2D 2 , δ ∞ µ := inf β≥0 δ µ (β) ≥ 3π 2 2D 2 ,
where D := sup x,z∈Ω |x-z| is the diameter of Ω. In fact, our numerical results suggest a stronger gap as

δ E (β) ≥ 3π 2 2D 2 , 0 ≤ β ≤ 81π 4 |Ω| 64D 2 , 4β 1/2 3D|Ω| 1/2 , β ≥ 81π 4 |Ω| 64D 2 , δ µ (β) ≥ 3π 2 2D 2 , 0 ≤ β ≤ 9π 4 |Ω| 16D 2 , 2β 1/2 D|Ω| 1/2 , β ≥ 9π 4 |Ω| 16D 2 , (2.25) 
where |Ω| is the volume of Ω. On the other hand, Fig. 2.5 suggests that the gap conjecture (2.24) is not valid for non-convex trapping potentials.

2.2. Degenerate case, i.e. dim(W 1 ) ≥ 2. Again, we first consider a special case by taking Ω = Ω 0 satisfying L 1 = L 2 := L and d ≥ 2 and V (x) ≡ 0 for x ∈ Ω in (1.6). In this case, the approximations of the ground states and their energy and chemical potential are the same as those in the previous subsection by letting L 2 → L 1 = L. On the contrary, the approximations of the first excited states are completely different with those in the non-degenerate case.

Lemma 2.5. For weakly repulsive interaction, i.e. 0 < β 1, we have for d ≥ 2

E 1 (β) = 3π 2 2L 2 + A 2 + 13d 32 A 2 0 β + o(β), µ 1 (β) = 3π 2 2L 2 + A 2 + 13d 16 A 2 0 β + o(β). (2.26)
Proof. For simplicity, we only present the 2D case and extension to 3D is straightforward. Denote (2.27)

φ 0 g (x) = 2 L sin πx L , φ 0 1 (x) = 2 L sin 2πx L , 0 ≤ x ≤ L.
When d = 2 and β = 0, it is easy to see that ϕ 1 (x) := φ 0 1 (x 1 )φ 0 g (x 2 ) and ϕ 2 (x) := φ 0 g (x 1 )φ 0 1 (x 2 ) are two linearly independent orthonormal first excited states. In fact, W 1 = span{ϕ 1 , ϕ 2 }. In order to find an appropriate approximation of the first excited state when 0 < β 1, we take an ansatz 

(2.28) ϕ a,b (x) = aϕ 1 (x) + bϕ 2 (x), x = (x 1 , x 2 ) ∈ Ω,
E(ϕ a,b ) = 3π 2 2L 2 + A 2 + 8β L 4 [0,L] 2 a sin( 2πx 1 L ) sin( πx 2 L ) + b sin( πx 1 L ) sin( 2πx 2 L ) 4 dx = 3π 2 2L 2 + A 2 + 9β 8L 2 (|a| 4 + |b| 4 ) + β 2L 2 (4|a| 2 |b| 2 + a 2 b2 + ā2 b 2 ) = 3π 2 2L 2 + A 2 + 9β 8L 2 + β 4L 2 (2a 2 b2 + 2ā 2 b 2 -|a| 2 |b| 2 ).
To minimize E(ϕ a,b ), noting |a| 2 + |b| 2 = 1, we take a = e iξ cos(θ) and b = e iη sin(θ) with ξ, η, θ ∈ [-π, π). Then we have

E(ϕ a,b ) = 3π 2 2L 2 + A 2 + 9β 8L 2 - β 16L 2 sin 2 (2θ) [1 -4 cos (2(ξ -η))] ,
which is minimized when θ = ±π/4 and ξ -η = ±π/2, i.e. a = ±ib. By taking a = 1/ √ 2 and b = i/ √ 2, we obtain an approximation of the first excited state φ β 1 when 0 < β 1 as

(2.29)

φ β 1 (x) ≈ 1 √ 2 φ 0 1 (x 1 )φ 0 g (x 2 ) + iφ 0 g (x 1 )φ 0 1 (x 2 ) , x ∈ Ω.
Substituting (2.29) into (1.8) and (1.7), we get (2.26) when d = 2. Lemma 2.6. When d = 2 and β 1, we have

E 1 (β) = β 2L 2 + 8 √ β 3L 2 + π 2L 2 ln(β) + o(ln(β)), (2.30) µ 1 (β) = β L 2 + 4 √ β L 2 + π 2L 2 ln(β) + o(ln(β)). (2.31)
Proof. From Lemma 2.5, when 0 < β 1, the first excited state needs to be taken as a vortex-type solution. By assuming that there is no band crossing when β > 0, then the first excited state can be well approximated by the vortex-type solution when β 1 too. Thus when β 1, we approximate the first excited state via a matched asymptotic approximation.

(i) In the outer region, i.e. |x -(L/2, L/2)| > o(1), it is approximated by the ground state profile as

(2.32) φ β 1 (x) ≈ φ out (x) = µ 1 β φ (1) 
L,µ1 (x 1 )φ

L,µ1 (x 2 ), where φ

L,µ (x) is given in (2.20) with µ = µ 1 (β) the chemical potential of the first excited state.

(ii) In the inner region near the center (L/2, L/2), i.e. |x -(L/2, L/2)| 1, it is approximated by a vortex solution with winding number m = 1 as

(2.33) φ β 1 (x) ≈ φ in (x) = µ 1 β f (r)e iθ , |x -(L/2, L/2)| 1,
where r and θ are the modulus and argument of (x 1 -L/2) + i(x 2 -L/2), respectively. Substituting (2.33) into (1.6), we get the equation for f (r)

(2.34) - 1 2 f (r) - 1 2r f (r) + 1 2r 2 f (r) + µ 1 f 3 (r) = µ 1 f (r), r > 0,
with BCs f (0) = 0 and lim r→+∞ f (r) = 1. When β 1, by dropping the term - 1 2 f (r) in (2.34) and then solving it analytically, we get

(2.35) f (r) ≈ f a (r) := 2µ 1 r 2 1 + 2µ 1 r 2 , r ≥ 0.
Combining the outer and inner approximations via the matched asymptotic technique, we obtain an asymptotic approximation of the density of the first excited state as

(2.36) ρ β 1 (x) := |φ β 1 (x)| 2 ≈ µ 1 β f 2 a (r) + φ (1) 
L,µ1 (x 1 )φ

L,µ1 (x 2 ) 2 -1 , x ∈ Ω. (1) 
Substituting (2.36) into the normalization condition φ β 1 2 = 1, a detailed computation gives the approximation of the chemical potential in (2.31). Plugging (2.36) into (1.7) and noticing (2.31), a detailed computation implies the approximation of the energy in (2.30). The details of the computation are omitted here for brevity [START_REF] Ruan | Mathematical Theory and Numerical Methods for Bose-Einstein Condensation with Higher Order Interactions[END_REF].

From lemmas 2.1, 2.3, 2.5 and 2.6, we have the following result about the fundamental gaps for the degenerate case.

Proposition 2.7 (For GPE under a box potential in degenerate case). When Ω = Ω 0 satisfying L 1 = L 2 := L and d ≥ 2 and V (x) ≡ 0 for x ∈ Ω in (1.6), i.e. GPE with a box potential, we have (i) when 0 ≤ β 1 and d ≥ 2,

(2.37)

δ E (β) = 3π 2 2L 2 - 5dA 2 0 32 β + o(β), δ µ (β) = 3π 2 2L 2 - 5dA 2 0 16 β + o(β); (ii) when β 1 and d = 2, (2.38) δ E (β) = π 2L 2 ln(β) + O(1), δ µ (β) = π 2L 2 ln(β) + O(1).
Again, to verify numerically our asymptotic results in Proposition 2.7, Fig. 2.6 plots the ground state φ β g , the first excited state φ β 1 = φ β 1,v , and other excited states φ β 1,x and φ β 1,c , of the GPE in 2D with Ω = (0, 2) 2 and a box potential for different β ≥ 0, which were obtained numerically [START_REF] Bao | A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems[END_REF][START_REF] Bao | Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates[END_REF][START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Bao | Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow[END_REF]. Fig. 2.7 depicts the energy

E g (β) = E(φ β g ) < E 1 (β) = E(φ β 1 = φ β 1,v ) < E(φ β 1,x ) < E(φ β 1,c
) for different β ≥ 0 and the corresponding fundamental gaps in energy, and Fig. 2.8 shows the fundamental gaps in energy of GPE in 3D with Ω = (0, 1) 3 and a box potential. In addition, Fig. 2.9 depicts the fundamental gaps in energy of GPE in 2D with Ω = B 1 (0) = {x | |x| < 1} and a box potential. 

E(φ β 1,c ) E(φ β 1,x ) E(φ β 1,v ) E(φ β g ) -2 0 
= E(φ β g ) < E 1 (β) := E(φ β 1 = φ β 1,v ) < E 2 (β) := E(φ β 1,x 1 ) = E(φ β 1,x 2 ) < E 3 (β) := E(φ β 1,c
) of GPE in 2D under a box potential with Ω = (0, 2) 2 for different β ≥ 0 (top) and the fundamental gaps in energy δ E (β) (bottom). Here a band crossing in energy happens at β = 0 for the excited states (cf. top). Based on the asymptotic results in Proposition 2.7 and the above numerical results as well as additional extensive numerical results not shown here for brevity [START_REF] Ruan | Mathematical Theory and Numerical Methods for Bose-Einstein Condensation with Higher Order Interactions[END_REF], we speculate the following gap conjecture.

Gap conjecture (For GPE in 2D on a bounded domain with homogeneous Dirichlet BC in degenerate case) Suppose Ω ⊂ R 2 is a convex bounded domain, the external potential V (x) is convex and dim(W 1 ) ≥ 2, we have

(2.39) δ ∞ E := inf β≥0 δ E (β) ≥ π 2 2D 2 , δ ∞ µ := inf β≥0 δ µ (β) ≥ 3π 2 8D 2 .
3. Fundamental gaps of GPE in the whole space. In this section, we obtain asymptotically the fundamental gaps of the GPE (1.6) in the whole space under a harmonic potential and numerically under general potentials growing at least Fig. 2.9. The fundamental gaps in energy of GPE under a box potential with Ω = B 1 (0). It is obviously that the fundamental gap is larger than the lower bound proposed in the gap conjecture (2.39), which is

π 2 2D 2 ≈ 1.234.
quadratically in the far field. Based on the results, we formulate a novel gap conjecture for this case. Here we take Ω = R d and denote

V h (x) = 1 2 d j=1 γ 2 j x 2 j satisfying 0 < γ 1 ≤ γ 2 ≤ • • • ≤ γ d .
3.1. Nondegenerate case, i.e. dim(W 1 ) = 1. We first consider the special case by taking V (x) = V h (x) satisfying d = 1 or γ 1 < γ 2 when d ≥ 2. For simplicity, we define

(3.1) B 0 = d j=1 γ j 2π , B 1 = 1 2 d j=1 γ j , B 2 = d j=1 γ j , C d =      2, d = 1, π, d = 2, 4π 3 , d = 3.
In this scenario, when β = 0, all eigenfunctions can be obtained via the Hermite functions [START_REF] Bao | Analysis and computation for the semiclassical limits of the ground and excited states of the Gross-Pitaevskii equation[END_REF][START_REF] Bao | Energy and chemical potential asymptotics for the ground state of Bose-Einstein condensates in the semiclassical regime[END_REF]. Thus the ground state φ 0 g (x) and the first excited state φ 0 1 (x) can be given explicitly as [START_REF] Bao | Analysis and computation for the semiclassical limits of the ground and excited states of the Gross-Pitaevskii equation[END_REF][START_REF] Bao | Energy and chemical potential asymptotics for the ground state of Bose-Einstein condensates in the semiclassical regime[END_REF] 

(3.2) φ 0 g (x) = d j=1 γ j π 1 4 e - γ j x 2 j 2 , φ 0 1 (x) = 2γ 1 x 1 d j=1 γ j π 1 4 e - γ j x 2 j 2 , x ∈ R d .
Lemma 3.1. In the weakly repulsive interaction regime, i.e. 0 < β 1, we have

E g (β) = B 1 + B 0 2 β + o(β), µ g (β) = B 1 + B 0 β + o(β), 0 ≤ β 1, (3.3) E 1 (β) = γ 1 + B 1 + 3B 0 8 β + o(β), µ 1 (β) = γ 1 + B 1 + 3B 0 4 β + o(β). (3.4)
Proof. When 0 < β 1, we can approximate the ground state φ β g (x) and the first excited state φ β 1 (x) by φ 0 g (x) and φ 0 1 (x), respectively. Thus we have

(3.5) φ β g (x) ≈ φ 0 g (x), φ β 1 (x) ≈ φ 0 1 (x), x ∈ R d .
Plugging (3.5) into (1.7) and (1.8), after a detailed computation which is omitted here for brevity [START_REF] Ruan | Mathematical Theory and Numerical Methods for Bose-Einstein Condensation with Higher Order Interactions[END_REF], we can obtain (3.3) and (3.4). Lemma 3.2. In the strongly repulsive interaction regime, i.e. β 1, we have

µ g (β) ≈ µ TF g = 1 2 (d + 2)B 2 β C d 2 d+2 , µ 1 (β) ≈ µ MA 1 = µ TF g + √ 2 2 γ 1 + o(1), (3.6) E g (β) = 2 + d 4 + d µ TF g + o(1), E 1 (β) = E g (β) + √ 2 2 γ 1 + o(1), β 1. (3.7)
Proof. When β 1, the ground and first excited states can be approximated by the TF approximations and/or uniformly accurate matched asymptotic approximations. For d = 1 and V (x) = γ 2 x 2 2 , these approximations have been given explicitly and verified numerically in the literature [START_REF] Bao | Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow[END_REF][START_REF] Bao | Convergence rate of dimension reduction in Bose-Einstein condensates[END_REF][START_REF] Bao | Analysis and computation for the semiclassical limits of the ground and excited states of the Gross-Pitaevskii equation[END_REF][START_REF] Bao | Energy and chemical potential asymptotics for the ground state of Bose-Einstein condensates in the semiclassical regime[END_REF], and the results can be extended to d dimensions (d = 1, 2, 3) as

(3.8) φ β g (x) ≈ φ TF g (x) = (µ TF g -V (x)) + β , x ∈ R d , (3.9) φ β 1 (x) ≈ φ MA 1 (x) =        g1(x) β + g2(x) β tanh(x 1 g 2 (x)) -1 , g 1 (x) ≥ 0&x 1 ≥ 0, -g1(x) β + g2(x) β 1 + tanh(x 1 g 2 (x)) , g 1 (x) ≥ 0&x 1 < 0, 0, otherwise, where (f ) 
+ := max{f, 0}, g 1 (x) = µ MA 1 -1 2 d j=1 γ 2 j x 2 j and g 2 (x) = µ MA 1 -1 2 d j=2 γ 2 j x 2 j
, and µ TF g and µ MA 1 can be obtained via the normalization condition (1.4). Inserting (3.8) and (3.9) into (1.7), after a detailed computation which is omitted here for brevity [START_REF] Ruan | Mathematical Theory and Numerical Methods for Bose-Einstein Condensation with Higher Order Interactions[END_REF], we get (3.7).

From Lemmas 3.1 and 3.2, we have asymptotic results for the fundamental gaps. Proposition 3.3 (For GPE under a harmonic potential in nondegenerate case). When V (x) = V h (x) satisfying d = 1 or γ 1 < γ 2 when d ≥ 2, i.e. GPE with a harmonic potential, we have

(3.10) δ E (β) = γ 1 -B0 8 β + o(β), √ 2 2 γ 1 + o(1), δ µ (β) = γ 1 -B0 4 β + o(β), 0 ≤ β 1, √ 2 2 γ 1 + o(1), β 1.
Proof. When 0 ≤ β 1, subtracting (3.3) from (3.4), we obtain (3.10) in this parameter regime. Similarly, when β 1, we get the result by recalling (3.6) and (3.7).

Remark 3.1. Similar to Lemma 2.2, when β 1, by performing asymptotic expansion to the next order, we can obtain 

δ E (β) = √ 2 2 γ 1 + γ 2 1 (d + 2) d d+2 4 C d B 2 β 2 d+2 + o(β -2 d+2 ), β 1, (3.11) δ µ (β) = √ 2 2 γ 1 + γ 2 1 d(d + 2) -2 d+2 4 C d B 2 β 2 d+2 + o(β -2 d+2 ), β 1. (3.
E(φ β 1,x2 ) E(φ β 1,x1 ) E(φ β g ) Fig. 3.2. Energy Eg(β) := E(φ β g ) < E 1 (β) := E(φ β 1 = φ β 1,x ) < E 2 (β) := E(φ β 1,y ) of GPE in 2D under a harmonic potential with γ 1 = 1 < γ 2 = 2 for different β ≥ 0.
β ≥ 0, which are obtained numerically [START_REF] Bao | A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems[END_REF][START_REF] Bao | Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates[END_REF][START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Bao | Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow[END_REF]. Fig. 3.2 shows energy of the ground state, first excited state, i.e. excited state in the x 1 -direction, and excited states in the x 2 -direction and Fig. 3.3 depicts fundamental gaps in energy obtained numerically and asymptotically (cf. Eqs. (3.11), (3.12) and (3.10)) in 1D, 2D and 3D. From Fig. 3.3, we can see that the asymptotic results in Proposition 3.3 are very accurate in both weakly repulsive interaction regime, i.e. 0 ≤ β 1, and strongly repulsive interaction regime, i.e. β 1. In addition, our numerical results suggest that both δ E (β) and δ µ (β) are decreasing functions for β ≥ 0 (cf. Fig. 3.3).

Again, for general external potentials, the ground and first excited states as well as their energy and chemical potential can be computed numerically [START_REF] Bao | A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems[END_REF][START_REF] Bao | Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates[END_REF][START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Bao | Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow[END_REF]. Fig. 3.4 depicts fundamental gaps in energy and chemical potential of GPE in 1D with V (x) = x 2 2 + V 0 cos(kx) for different β, V 0 and k, and Fig. 3.5 shows the fundamental gaps of GPE in 1D with different convex trapping potentials growing at least quadratically in the far field for different β ≥ 0.

Based on the asymptotic results in Proposition 3.3 and the above numerical results as well as additional extensive numerical results not shown here for brevity [START_REF] Ruan | Mathematical Theory and Numerical Methods for Bose-Einstein Condensation with Higher Order Interactions[END_REF], we speculate the following gap conjecture.

Gap conjecture (For GPE in whole space in nondegenerate case) Suppose the external potential 3.2. Degenerate case, i.e. dim(W 1 ) ≥ 2. We first consider a special case by taking V (x) = V h (x) satisfying d ≥ 2 and γ 1 = γ 2 := γ. In this case, the approximations to the ground states and their energy and chemical potential are the same as those in the previous subsection by letting γ 2 → γ 1 = γ. Therefore, we only need to focus on the approximations to the first excited states, which are completely different with those in the non-degenerate case.

V (x) satisfies D 2 V (x) ≥ γ 2 v I d for x ∈ R d with γ v > 0 a constant and dim(W 1 ) = 1, we have (3.13) δ ∞ E := inf β≥0 δ E (β) ≥ √ 2 2 γ v , δ ∞ µ := inf β≥0 δ µ (β) ≥ √ 2 2 γ v .
Lemma 3.4. For weakly interaction regime, i.e. 0 < β 1, we have for d ≥ 2

E 1 (β) = 3γ 2 + B 0 d 8 β + o(β), µ 1 (β) = 3γ 2 + B 0 d 4 β + o(β). (3.14)
Proof. For simplicity, we only present the 2D case and extension to 3D is straightforward. Denote

(3.15) φ 0 g (x) = γ π 1 4 e -γx 2 2 , φ 0 1 (x) = 2γ γ π 1 4 xe -γx 2 2 .
When d = 2 and β = 0, it is easy to see that ϕ 1 (x) := φ 0 1 (x 1 )φ 0 g (x 2 ) and ϕ 2 (x) := φ 0 g (x 1 )φ 0 1 (x 2 ) are two linearly independent orthonormal first excited states. In fact, 

I) V (x) = x 2 2 + 0.5 sin(x), (II) V (x) = x 2 4 -x, (III) V (x) = x 2 4 + x 4 100 + x for different β ≥ 0.
W 1 = span{ϕ 1 , ϕ 2 }. In order to find an appropriate approximation of the first excited state when 0 < β 1, we take an ansatz 

E(ϕ a,b ) = 3γ + γβ 16π |a 2 + b 2 | 2 + 2(|a| 2 + |b| 2 ) 2 ≥ 3γ + γβ 8π , (3.17)
which is minimized when a 2 +b 2 = 0, i.e. a = ±ib. By taking a = 1/ √ 2 and b = i/ √ 2, we get an approximation of the first excited state as

(3.18) φ β 1 (x) ≈ φ 1,v (x) = γ √ π (x 1 + ix 2 )e -γ(x 2 1 +x 2 2 ) 2 = γ √ π re -γr 2 2 e iθ ,
where (r, θ) is the polar coordinate. Substituting (3.18) into (1.8) and (1.7), we get (3.14). Lemma 3.5. For the 2D case with strongly repulsive interaction, i.e. d = 2 and β 1, we have

E 1 (β) = E TF g + γ 2 π β ln(β) + O(β -1 2 ), µ 1 (β) = µ TF g + γ 4 π β ln(β) + O(β -1 2 ), (3.19)
where µ TF g is given in (3.6) and E TF g = 2+d 4+d µ TF g . Proof. From Lemma 3.4, when 0 < β 1, the first excited state needs to be taken as a vortex-type solution. By assuming that there is no band crossing when β > 0, the first excited state can be well approximated by the vortex-type solution when β 1 too. Thus when β 1, we approximate the first excited state via a matched asymptotic approximation.

(i) In the outer region, i.e. |x| > o(1), it is approximated by the TF approximation as

(3.20) φ β 1 (x) ≈ φ out (x) ≈ (2µ 1 -γ 2 r 2 ) + 2β , r > o(1),
where µ = µ 1 (β) is the chemical potential of the first excited state.

(ii) In the inner region near the origin, i.e. |x| 1, it is approximated by a vortex solution with winding number m = 1 as

(3.21) φ β 1 (x) ≈ φ in (x) = µ 1 β f (r)e iθ , |x| 1, 
Substituting (2.33) into (1.6), we get the equation for f (r)

(3.22) - 1 2 f (r) - 1 2r f (r) + 1 2r 2 f (r) + γ 2 r 2 2 f (r) + µ 1 f 3 (r) = µ 1 f (r), r > 0,
with BC f (0) = 0. When β 1 and 0 ≤ r 1, by dropping the terms -1 2 f (r) and

γ 2 r 2
2 f (r) in (3.22) and then solving it analytically with the far field limit lim r→+∞ f (r) = 1, we get (2.35). Combining the outer and inner approximations via the matched asymptotic technique, we obtain an asymptotic approximation of the density of the first excited state as

(3.23) ρ β 1 (x) := |φ β 1 (x)| 2 ≈ 2µ 1 r 2 1 + 2µ 1 r 2 (2µ 1 -γ 2 r 2 ) + 2β , r ≥ 0.
Substituting (3.23) into the normalization condition φ β 1 2 = 1 and (1.7), a detailed computation gives the approximation of the chemical potential and energy in (3.19). The details of the computation are omitted here for brevity [START_REF] Ruan | Mathematical Theory and Numerical Methods for Bose-Einstein Condensation with Higher Order Interactions[END_REF].

From Lemmas 3.4&3.5, we have asymptotic results for the fundamental gaps. Proposition 3.6 (For GPE under a harmonic potential in degenerate case). When V (x) = V h (x) with d ≥ 2 and γ 1 = γ 2 := γ, i.e. GPE with a harmonic potential, we have (i) when 0 ≤ β 1 and d ≥ 2

(3.24) δ E (β) = γ - (4 -d)B 0 8 β + o(β), δ µ (β) = γ - (4 -d)B 0 4 β + o(β); (ii) when β 1 and d = 2, (3.25) δ E (β) = γ 1 2 π β ln(β) + o ln(β) √ β , δ µ (β) = γ 1 4 π β ln(β) + o ln(β) √ β ,
which implies δ E (β) → 0 and δ µ (β) → 0 as β → ∞. Again, to verify numerically our asymptotic results in Proposition 3.6, Fig. 3.6 plots the ground state φ β g , the first excited state φ β 1 = φ β 1,v , and the higher excited states φ β 1,x , of GPE in 2D with a harmonic potential (γ = 1) for different β ≥ 0, which were obtained numerically [START_REF] Bao | A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems[END_REF][START_REF] Bao | Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates[END_REF][START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Bao | Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow[END_REF]. Fig. 3.7 depicts the energy E g

(β) = E(φ β g ) < E 1 (β) = E(φ β 1 = φ β 1,v ) < E(φ β 1,x
) for different β ≥ 0 and the corresponding fundamental gaps in energy, and Fig. 3.8 shows the fundamental gaps in energy of GPE in 3D with a harmonic potential. In addition, our numerical results suggest that both δ E (β) and δ µ (β) are decreasing functions for β ≥ 0 (cf. Figs. 3.7&3.8).

Based on the asymptotic results in Proposition 3.6 and the above numerical results as well as additional extensive numerical results not shown here for brevity [START_REF] Ruan | Mathematical Theory and Numerical Methods for Bose-Einstein Condensation with Higher Order Interactions[END_REF], we speculate the following gap conjecture. 

= E(φ β g ) < E 1 (β) := E(φ β 1 = φ β 1,v ) < E 2 (β) := E(φ β 1,x 1 ) = E(φ β 1,x 2 ) of GPE in 2D under the harmonic potential V (x) = x 2 1 +x 2 2 2
for different β ≥ 0 (top) and the fundamental gap in energy δ E (β) for different β ≥ 0 (bottom). 

(x) = (x 2 1 + x 2 2 + x 2 3 )/2 for different β ≥ 0.
Gap conjecture (For GPE in the whole space in degenerate case) Suppose the external potential

V (x) satisfies D 2 V (x) ≥ γ 2 v I d for x ∈ R d with γ v > 0 a constant and dim(W 1 ) ≥ 2. When 0 ≤ β 1, we have (3.26) δ E (β) ≥ γ v -C 1 β, δ µ (β) ≥ γ v -C 2 β,
where C 1 > 0 and C 2 > 0 are two constants independent of β. In addition, we have lim β→+∞ δ E (β) = 0 and lim β→+∞ δ µ (β) = 0. We remark here that the fundamental gap δ E (β) gives an upper bound of the critical rotating speed Ω β c in rotating BEC for β ≥ 0 [START_REF] Seiringer | Gross-Pitaevskii theory of the rotating Bose gas[END_REF][START_REF] Bao | Ground, symmetric and central vortex states in rotating Bose-Einstein condensates[END_REF][START_REF] Bao | Mathematical models and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF], which implies that lim β→+∞ Ω β c = 0.

4. Extensions to other BCs. In this section, we study the fundamental gaps of GPE on bounded domains with either periodic BC or homogeneous Neumann BC.

4.1.

Results for the periodic BC. Take Ω = Ω 0 and assume that φ satisfies the periodic BC. When d = 1, it corresponds to a BEC on a ring [START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF]; and when d = 2, it corresponds to a BEC on a torus. In this case, the ground state φ β g is defined the same as in (1.9) provided that the set S is replaced by S = {φ | φ 2 2 := Ω |φ(x)| 2 dx = 1, E(φ) < ∞, φ is periodic on ∂Ω}, and the first excited state φ β 1 and the eigenspace W 1 are defined similarly. We have the following results for the energy and chemical potential of the ground and first excited states.

Lemma 4.1. Assume V (x) ≡ 0, for all β ≥ 0 and d = 1, 2, 3, we have

E g (β) = A 2 0 2 β, µ g (β) = A 2 0 β, E 1 (β) = 2π 2 L 2 1 + A 2 0 2 β, µ 1 (β) = 2π 2 L 2 1 + A 2 0 β. (4.1)
Proof. For any φ ∈ S, the Cauchy-Schwarz inequality implies that

(4.2) 1 = φ 4 2 = Ω |φ| 2 dx 2 ≤ Ω |φ| 4 dx Ω 1dx = 1 A 2 0 Ω |φ| 4 dx.
Thus, for all β ≥ 0 and any φ ∈ S, we have

(4.3) E(φ) = Ω 1 2 |∇φ| 2 + β 2 |φ| 4 dx ≥ β 2 A 2 0 = β 2 Ω |A 0 | 4 dx = E(φ ≡ A 0 ).
Therefore, for all β ≥ 0, we have

(4.4) φ β g (x) ≡ φ 0 g (x) := A 0 , x ∈ Ω.
Plugging (4.4) into (1.8) and (1.7) and noticing V (x) ≡ 0, we obtain the first two equalities in (4.1).

As for the first excited state, for simplicity, we only present 1D case and extensions to 2D and 3D are straightforward. When d = 1 and β = 0, it is easy to see that ϕ 1 (x) := √ 2A 0 cos (2πx/L 1 ) and ϕ 2 (x) := √ 2A 0 sin (2πx/L 1 ) are two linearly independent orthonormal first excited states. In fact, in this case, W 1 = span{ϕ 1 , ϕ 2 }. In order to find an appropriate approximation of the first excited state when 0 < β 1, we take an ansatz Similar to (4.2) and (4.3), we can prove rigorously that for all β ≥ 0 (4.8) φ β 1 (x) ≡ φ 0 1 (x) = A 0 e i2πx/L1 , 0 ≤ x ≤ L 1 .

Plugging (4.14) into (1.8) and (1.7) with V (x) ≡ 0, we obtain (4.12). When β 1, i.e. in strongly repulsive interaction regime, the first excited state can be approximated via the matched asymptotic method shown in [START_REF] Bao | Analysis and computation for the semiclassical limits of the ground and excited states of the Gross-Pitaevskii equation[END_REF][START_REF] Bao | Energy and chemical potential asymptotics for the ground state of Bose-Einstein condensates in the semiclassical regime[END_REF] as (4.15)

φ β 1 (x) ≈ φ M A 1 (x) = µ M A 1 β tanh µ M A 1 L 1 2 -x , 0 ≤ x ≤ L 1 .
Substituting (4.15) into the normalization condition (1.4) and (1.7), we obtain (4.13), while the detailed computation is omitted here for brevity [START_REF] Ruan | Mathematical Theory and Numerical Methods for Bose-Einstein Condensation with Higher Order Interactions[END_REF]. Proof. The proof is similar to that for Lemmas 2.5&2.6 in the box potential case and thus it is omitted here for brevity [START_REF] Ruan | Mathematical Theory and Numerical Methods for Bose-Einstein Condensation with Higher Order Interactions[END_REF].

Lemmas 4.4&4.5 implies the following proposition about the fundamental gaps. The above asymptotic results have been verified numerically [START_REF] Ruan | Mathematical Theory and Numerical Methods for Bose-Einstein Condensation with Higher Order Interactions[END_REF], which are omitted here to avoid this paper to be too long. In addition, our numerical results suggest that both δ E (β) and δ µ (β) are increasing functions for β ≥ 0 [START_REF] Ruan | Mathematical Theory and Numerical Methods for Bose-Einstein Condensation with Higher Order Interactions[END_REF].

Based on the above asymptotic results and numerical results not shown here for brevity [START_REF] Ruan | Mathematical Theory and Numerical Methods for Bose-Einstein Condensation with Higher Order Interactions[END_REF], we speculate the following gap conjecture.

Gap conjecture (For GPE on a bounded domain with homogeneous Neumann BC) Suppose Ω is a convex bounded domain and the external potential V (x) is convex, we speculate a gap conjecture for the fundamental gaps as (4.21)

δ ∞ E := inf β≥0 δ E (β) ≥ π 2 2D 2 , δ ∞ µ := inf β≥0 δ µ (β) ≥ π 2 2D 2 .
5. Conclusions. Fundamental gaps in energy and chemical potential of the Gross-Pitaevskii equation (GPE) with repulsive interaction were obtained asymptotically and computed numerically for different trapping potentials and a gap conjecture on fundamental gaps was formulated. In obtaining the approximation of the first excited state of GPE and the fundamental gaps, two different cases were identified in high dimensions (d ≥ 2), i.e. non-degenerate and degenerate cases which correspond to the dimensions dim(W 1 ) = 1 and dim(W 1 ) ≥ 2, respectively, with W 1 the eigenspace associated to the second smallest eigenvalue of the corresponding Schrödinger operator H := -1 2 ∆ + V (x). Our asymptotic results were confirmed by numerical results. Rigorous mathematical justification for the fundamental gaps obtained asymptotically and numerically for the GPE in this paper is on-going. Finally, we remark here that the fundamental gaps in the degenerate case are the same as those in the nondegenerate case when one requires the solution φ of (1.6) to be real-valued function instead of complex-valued function.
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 21 Fig. 2.1. Ground states φ β g (x) (left) and first excited states φ β 1 (x) (right) of GPE in 1D with Ω = (0, 2) and a box potential for different β ≥ 0.

Fig. 2 . 3 .

 23 Fig.2.3. Fundamental gaps in energy of GPE with a box potential in 1D with Ω = (0, 2) (top), in 2D with Ω = (0, 2) × (0, 1) (middle), and in 3D with Ω = (0, 2) × (0, 1) × (0, 1) (bottom).
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 24 Fig. 2.4. Fundamental gaps in energy δ E (β) (left) and chemical potential δµ(β) (right) of GPE in 1D with Ω = (0, 2) and V (x) = V 0 (x -1) 2 for different V 0 > 0 and β ≥ 0.
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 25 Fig. 2.5. Fundamental gaps in energy (left) and chemical potential (right) of GPE in 1D with Ω = (0, 2) and non-convex trapping potentials: (I) V (x) = -10x 2 , and (II) V (x) = 10 sin(10(x -1)) for different β ≥ 0.

  where a, b ∈ C satisfying |a| 2 + |b| 2 = 1 implies ϕ a,b 2 = 1. Then a and b will be determined by minimizing E(ϕ a,b ). Plugging (2.28) into (1.8), a simple direct computation implies that
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 26 Fig. 2.6. Ground states φ β g (top row), first excited states -vortex solution |φ β 1 = φ β 1,v | (second row), excited states in the x 1 -direction φ β 1,x (fourth row) and excited states in the diagonal direction φ β 1,c (fifth row) for β = 0 (left column), β = 10 (middle column) and β = 500 (right column). Here the phase of the vortex solution -first excited state -is displayed in the third row.

Fig. 2 . 7 .

 27 Fig. 2.7. Energy Eg(β) := E(φ β g ) < E 1 (β) := E(φ β 1 = φ β 1,v ) < E 2 (β) := E(φ β 1,x 1 ) = E(φ β 1,x 2 ) < E 3 (β) := E(φ β 1,c) of GPE in 2D under a box potential with Ω = (0, 2) 2 for different β ≥ 0 (top) and the fundamental gaps in energy δ E (β) (bottom). Here a band crossing in energy happens at β = 0 for the excited states (cf. top).
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 28 Fig. 2.8. The fundamental gaps in energy of GPE in 3D under a box potential with Ω = (0, 1) 3 .
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 31 Fig. 3.1. Ground states (left) and first excited states (right) of GPE in 1D with a harmonic potential V (x) = x 2 /2 (dot line) for different β ≥ 0.
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 33 Fig. 3.3. Fundamental gaps in energy of GPE with a harmonic potential in 1D with γ 1 = 1 (top), in 2D with γ 1 = 1 < γ 2 = 2 (middle), and in 3D with γ 1 = 1 < γ 2 = γ 3 = 2 (bottom).
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 3435 Fig. 3.4. Fundamental gaps in energy (left) and chemical potential (right) of GPE in 1D with V (x) = x 22 + V 0 cos(kx) satisfying V 0 k 2 = 0.5 for different β, V 0 and k.

(3. 16 )

 16 ϕ a,b (x) = aϕ 1 (x) + bϕ 2 (x), x ∈ R 2 , where a, b ∈ C satisfying |a| 2 + |b| 2 = 1 implies ϕ a,b 2 = 1. Then a and b can be determined by minimizing E(ϕ a,b ). Plugging (3.16) into (1.8), we have for β ≥ 0
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 36 Fig. 3.6. Ground state φ β g (top row), first excited state -vortex solution |φ β 1 = φ β 1,v |(second row) and higher excited state in x 1 -direction φ β 1,x (bottom row) of GPE in 2D with a harmonic potential (γ = 1) for β = 0 (left column), β = 10 (middle column) and β = 100 (right column). The phase of the first excited state φ β 1 = φ β 1,v is displayed in the third row.
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 38 Fig. 3.8. The fundamental gaps in energy of GPE in 3D under a harmonic potential V (x) = (x 2 1 + x 2 2 + x 2 3 )/2 for different β ≥ 0.

(4. 5 )E 2 + |b| 2 ) 2 + |a 2 + b 2 | 2

 522222 ϕ a,b (x) = aϕ 1 (x) + bϕ 2 (x), 0 ≤ x ≤ L 1 , where a, b ∈ C satisfying |a| 2 + |b| 2 = 1 implies ϕ a,b 2 = 1. Then a and b can be determined by minimizing E(ϕ a,b ). Plugging (4.5) into (1.8), we have for β ≥ 0 when a 2 +b 2 = 0, i.e. a = ±ib. By taking a = 1/ √ 2 and b = i/ √ 2, we get an approximation of the first excited state as (4.7) φ β 1 (x) ≈ φ 0 1 (x) := A 0 e i2πx/L1 , 0 ≤ x ≤ L 1 .

Lemma 4 . 5 . 1 ,

 451 Assume Ω = Ω 0 satisfying L 1 = L 2 := L and d ≥ 2, i.e. degenerate case, we have (i) in the weakly repulsive interaction regime, i.e. 0 ≤ β in the strongly repulsive interaction regime, i.e. β 1, and d = 2,E 1 (β) = β 2L 2 + π 2L 2 ln(β) + o(ln(β)), µ 1 (β) = β L 2 + π 2L2ln(β) + o(ln(β)). (4.17)

Proposition 4 . 6 (

 46 For GPE on a bounded domain with homogeneous Neumann BC). Assume Ω = Ω 0 and V (x) ≡ 0, we have (i) if d = 1 or L 1 > L 2 when d ≥ 2, i.e. non-degenerate case, if L 1 = L 2 := L, i.e. degenerate case, with 0 ≤ β 1 and d ≥ 2, (4.19) δ E (β) = π 2 2L 2 + β 8L 2 + o(β), δ µ (β) = π 2 2L 2 + β 4L 2 + o(β).For the degenerate case with β 1 and d = 2, (4.20) δ E (β) = π 2L 2 ln(β) + o(ln(β)), δ µ (β) = π 2L 2 ln(β) + o(ln(β)).

  Thus the diameter for the domain Ω becomes D := D Ω = D U / √ 2, and the lower bound in the fundamental gap (1.5) for the Schrödinger equation (1.2) becomes 3π 2

	Schrödinger equation (1.2). It is
	worth mentioning that if the domain U in (1.3) is bounded, the domain Ω in (1.2) (or (1.6)) can be defined as Ω = {x | √ 2x ∈ U } via the re-scaling y = √ 2 x.

  subtracting (2.3) from (2.4), noting (1.10), we obtain (2.23) in this parameter regime. Similarly, when β 1, subtracting (2.14) and (2.15) from (2.16) and (2.17), respectively, we get (2.23) in this parameter regime.

* This work was supported by the Ministry of Education of Singapore grant R-146-000-223-112.

Plugging (4.8) into (1.8) and (1.7), we obtain the last two equalities in (4.1).

From (4.1), it is straightforward to have (with the proof omitted here for brevity). Proposition 4.2 (For GPE on a bounded domain with periodic BC). Assume V (x) ≡ 0, we have

Based on the above analytical results and extensive numerical results not shown here for brevity [START_REF] Ruan | Mathematical Theory and Numerical Methods for Bose-Einstein Condensation with Higher Order Interactions[END_REF], we speculate the following gap conjecture.

Gap conjecture (For GPE on a bounded domain with periodic BC) Suppose the external potential V (x) is convex, we speculate the following gap conjecture (4.10)

4.2. Results for homogeneous Neumann BC. Assume that Ω ⊂ R d is a bounded domain and φ satisfies the homogeneous Neumann BC, i.e. ∂ n φ| ∂Ω = 0 with n the unit outward normal vector. In this case, the ground state φ β g is defined the same as in (1.9) provided that the set S is replaced by

, and the first excited state φ β 1 and the eigenspace W 1 are defined similarly.

Similar to Lemma 4.1 (with the proof omitted here for brevity), we have Lemma 4.3. For the ground state φ β g , we have for β ≥ 0

However, for the first excited state, we first consider a special case by taking Ω = Ω 0 and distinguish two different cases: (i) non-degenerate case d = 1 or L 1 > L 2 when d ≥ 2 (⇔ dim(W 1 ) = 1); and (ii) degenerate case

Lemma 4.4. Assume Ω = Ω 0 satisfying d = 1 or L 1 > L 2 when d ≥ 2, i.e. non-degenerate case, we have (i) in the weakly repulsive interaction regime, i.e. 0 < β 1,

(ii) in the strongly repulsive interaction regime, i.e. β

1,

Proof. Here we only present the proof in 1D case and extension to high dimensions is similar to that in Lemma 2.3. When d = 1 and β = 0, the first excited state can be taken as φ 0 1 (x) = √ 2A 0 cos(πx/L 1 ) for x ∈ [0, L 1 ]. When 0 < β 1, we can approximate φ β 1 (x) by φ 0 1 (x), i.e.