
HAL Id: hal-01913039
https://hal.sorbonne-universite.fr/hal-01913039v1

Submitted on 5 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A review of models for bubble clusters in cavitating
flows

Daniel Fuster

To cite this version:
Daniel Fuster. A review of models for bubble clusters in cavitating flows. Flow, Turbulence and
Combustion, 2018, �10.1007/s10494-018-9993-4�. �hal-01913039�

https://hal.sorbonne-universite.fr/hal-01913039v1
https://hal.archives-ouvertes.fr


Journal of Flow Turbulence and Combustion manuscript No.
(will be inserted by the editor)

D. Fuster

A review of models for bubble clusters
in cavitating flows

Received: date / Accepted: date

Abstract This paper reviews the various modeling strategies adopted in
the literature to capture the response of bubble clusters to pressure changes.
The first part is focused on the strategies adopted to model and simulate the
response of individual bubbles to external pressure variations discussing the
relevance of the various mechanisms triggered by the appearance and later
collapse of bubbles. In the second part we review available models proposed
for large scale bubbly flows used in different contexts including hydrodynamic
cavitation, sound propagation, ultrasonic devices and shockwave induced cav-
itation processes. Finally we discuss the main challenges of cavitation models.
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1 Introduction

Cavitation and fast bubble dynamic processes have been investigated over the
last century using theoretical, experimental and numerical techniques. The
first investigations, back in 1917, aimed at understanding the response of hy-
drodynamic cavitating flows [166] and the interaction mechanisms between
the bubbles and pressure waves [146,206,167]. Since then, the prediction and
measurement of high temperatures during the collapse of bubbles, the emis-
sion of shock pressure waves and the appearance of high speed jetting have
helped us to unveil various mechanisms taking place in cavitating flows, being
a constant source of inspiration for engineers and researchers trying to take
advantage of the processes triggered by the collapse of bubbles for diverse
applications.
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The main difficulty when investigating bubbly flows is the existence of
fast out–of–equilibrium processes involving the collective response of bub-
bles. Despite the development of experimental techniques, the difficulty to
perform measurements of fast processes taking place at small scales together
with the intrinsic difficulties to investigate multiphase flows has motivated
the development of models that can eventually be used to understand and
guide the optimization of the process at hand. Controlling the process of
bubble inception, predicting the nucleation frequency, understanding the in-
teractions of turbulence with heat and mass transfer in multiphase flows, and
understanding the influence of collective effects during the collapse of bubble
clusters are still cornerstones for the optimization and development of a wide
variety of applications based on cavitation.

The development of hydrodynamic cavitation models is an active area
of research motivated by the major industrial challenges when determining
the role of cavitation in various applications including diessel injection noz-
zles [80,10], high speed flows around hydrofoils [105,170,106,118,102], and
hydraulic machineries [137]. Erosion [64,61] and how the turbulence is influ-
enced by the presence of multiple phases in cavitating flows are examples of
phenomena for which there is not yet a clear modeling strategy.

Another classical problem where the development of numerical methods
and models is critical to guide the further development of technologies is the
optimization of high intensity ultrasounds devices widely used to enhance
mixing, to fragment solid particles and to promote certain chemical reac-
tions. Single–Bubble SonoLuminiscence [77] is a classical example used to
illustrate the extreme conditions generated during the collapse of bubbles
in high intensity ultrasound fields but the application of ultrasounds for in-
dustrial applications remain a major challenge due to reproducibility and
scalability problems.

A better understanding of the interactions among collapsing bubbles and
a surrounding rigid or elastic wall will find application in various fields includ-
ing surface cleanning techniques [34,56], where the collapse of bubbles can
be used to clean surfaces difficult to access, and various medical applications
based on the interaction between pressure waves and bubbles. Shockwave
lithotripsy, where the collapse of bubbles can play a crucial role in the process
of kidney stone destruction [15,65,110,139], High Intensity Focused Ultra-
sound techniques (HIFU), where the shear stresses and thermal effects are
two competing mechanisms influenced by the presence of bubbles with an un-
clear role in the overall efficiency of medical treatment techniques, and drug
delivery applications, where encapsulated bubbles need to be transported
and then exploded to release drugs in specific parts of the body significantly
increasing the efficiency of the treatment process, are only some examples
where experimental observations do not allow to discriminate between the
various mechanisms proposed to explain the effects observed. Detailed nu-
merical studies on the interactions between pressure waves, elastic solid sur-
faces and bubbles are currently being used for a better understanding of the
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process and to define precise strategies for the further development of these
technologies as well as improving our understanding of processes such as the
mechanisms of head injuries induced by shock impacts [28].

It is also important to mention applications related to wave propagation
in multiphase flows where the precise role of very small amount of bubbles in
a system is not fully clarified yet. In different geophysical problems it is im-
portant to identify the influence of the presence of gas in large scale systems
such as marine ecosystems (e.g. oceans), where sonnars and seismometers
are usually used to inferre the properties of the sediments and crustal layers,
volcanos [187,218,168] and petrophysical systems where models are crucial
to interpret seismic data to detect the presence of gas in geological strata
[185,198,88]. The interesting reflection and transmission properties of di-
luted bubbly systems are currently used to design new metamaterials [129]
and to protect offshore structures in processes such as drilling and controlled
underwater explosions [89].

This article is a review of available models for cavitating flows and bub-
ble dynamics. After a qualitative description of the process of cavitation,
we review models used to investigate the individual response of a spherical
bubble to a pressure disturbance and the information they provide about
the influence of various variables on the bubble response. Then we present
a survey of currently available numerical methods and models able to solve
for the three-dimensional collapse of a single bubble. In the second part of
the manuscript we review multi–scale models for diluted bubbly flows and
the extension of these models to problems where the presence of both phases
co–exist without the possibility to consider one phase as disperse. In the last
section we discuss the major challenges that cavitation models face and fu-
ture lines of development.

2 Qualitative description of relevant physical phenomena in
bubble clusters

The appearance and subsequent dynamic response of a bubble cloud have
associated multiple problems with very different temporal and length scales
that make the overall problem of cavitation and bubble cluster dynamics
difficult to model. We include below a qualitative description of a general
problem where cavitation occurs.

When the liquid pressure is lowered below a certain threshold cavitation
inception occurs. Once the bubble nuclei are activated the extremely fast
bubble expansion velocity induces a significant agitation in the surrounding
liquid. The initial bubble expansion is typically a process much faster than
any characteristic diffusion time–scale and therefore it is typically assumed
that neither thermal effects nor mass transfer effects play a significant role
in the initial bubble growth.
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Then the pressure difference between the bubble and its surrounding
drops quickly and the expansion velocity decreases, while the characteris-
tic velocity of thermal and mass diffusivity effects (proportional to Dt/R0)
increases as a consequence of the agitation induced during the initial stages
of the inception process. Thus the Peclet and Sherwood number, represent-
ing the ratio between advection and heat/mass diffusion, decrease and mass
transfer processes across the interface become relevant. At this stage bubbles
under expansion start filling with vapor and the gas/vapor pressure recovers
up to the vapor pressure.

If the process of bubble inception is intense enough, bubble coalescence
and breakup processes and turbulence interact with each other developing
large scale vapor pockets where surface tension forces are not sufficient to
keep bubbles spherical. In this region, mass and heat transfer processes con-
trolling the bubble growth are significantly influenced by the flow turbulence
due to the enhancement on the effective thermal and mass diffusivity and
the nucleation sites activated serve as a constant source of bubbles that grow
and detach in a cyclic process [90].

The process finishes when the pressure recovers and the gas/vapor mix-
ture compresses making the vapor condense. In this stage the compression
velocity can be much faster than the characteristic condensation velocity
and bubbles collapse violently in an adiabatic process where neither heat nor
mass transfer effects play a significant role. This process is typically followed
by a series of rebounds that induce significant agitation on the flow at very
small scales (or the order of few microns) until the vapor fully condenses and
the remaining non–condensable gas, disgregated into small bubbles after the
bubble collapse, reaches equilibrium with the surrounding liquid.

The mechanisms and the response of the individual bubbles as well as
their collective response is markedly different in each of the stages described
above requiring ad-hoc techniques difficult to extrapolate and generalize for
all the stages of the cavitation process. While models devoted to capture the
individual response of bubbles in a pressure varying field are useful to iso-
late the main mechanisms influencing the response of a gas/vapor bubbles,
large scale models are devoted to capture the large scale interaction between
phases and turbulent structures created in the flow at large scales. In the
next sections, we review the main models proposed in the literature used to
understand the response of single bubbles and bubble clusters.

3 Basic equations

Before getting to the specific modeling issues of cavitating flows it is useful
to recall the basic equations for a multicomponent and multiphase system
from the perspective of contiuum mechanics. Of course contiuum models have
limitations that will be discussed further on, but still they constitute a solid
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base for the development of consistent models for bubbly flows.

The continuity and momentum equation for the ith phase are

∂ρi
∂t

+ ∇ · (ρiui) = 0, (1)

∂ρiui
∂t

+ ∇ · (ρiuiui) = −∇pi + ∇ · τ ′i, (2)

where ρ is the density, u is the fluid velocity vector, p is the fluid pressure
and τ ′ = µ

(
∇u+ (∇u)T

)
− 2

3µ∇ ·uδ is the viscous stress tensor depending
on the dynamic viscosity µ. The interface position can be defined by tracking
a function I defining the position of the interface and that must obey the
advection equation,

∂I

∂t
+ uI ·∇I = 0, (3)

where uI denotes the interface velocity.

When we consider either compressibility or thermal effects we need to
add the energy equation. One possibility is to use the total energy equation

∂ρiEi
∂t

+ ∇ · (ρiEiui) = −∇ · (uipi) + ∇ · (τ ′
iui)−∇ · qi, (4)

where Ei = ei + 1
2 |u|

2 is the total energy and qi = −κi∇Ti is the diffusive
heat flux obtained from the Fourier’s law. Note that other forms of the energy
equation are alternatives to close the system of equations. For instance the
internal energy equation is

ρicp,i
DTi
Dt

= βT,iTi
Dpi
Dt

+ Φv −∇ · qi, (5)

where βT is the thermal dilatation coefficient and Φv is the viscous dissipation
function. This equation can be rewritten as an equation for pressure by using
the relation of density, pressure and temperature differences through the
definition of the speed of sound, polytropic coefficient and thermal dilatation
coefficient

dρ =
γ

c2
dp− ρβdT. (6)

Combining Eqs. 1, 5, 6 the following equation for pressure is found

1

ρic2eff,i

Dpi
Dt

= −∇ · ui +
βT,iΦv,i
ρicp,i

− βT,i
ρicp,i

∇ · qi, (7)

where 1
ρc2eff,i

=
[
γi
ρic2i
− β2

T,iTi

ρicp,i

]
. Note that for pure substances such as ideal

gases (βT ≈ 1/T ) and liquids like water (γ ≈ 1, βT ≈ 0) the classical equation
for pressure

1

ρic2i

Dpi
Dt

= −∇ · ui (8)
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is justified if we neglect viscous dissipation and thermal diffusion effects.

In those cases where we need to model the influence of various components
(eg. air and water) we add the species conservation equation for the mth
component

ρm
DYi,m
Dt

= ∇ ·
(
DM
i/m∇Yi,m

)
(9)

where Yi,m is the mass fraction of the component in the ith phase and DM
i/m

is the mass diffusion coefficient of the component in the mixture.

Across the interface the local balances establish the relation between the
liquid and gas/vapor properties at the interface

J = ρg(u
I − ug) · n = ρl(u

I − ul) · n (10)

JJu · nK = JpK + Jτ · nIK + σκ (11)

Jκ∇T · nK = J∆Hv (12)

JJYmK + JρlDM
m/i∇Ym · nK = 0, (13)

where J·K denotes the jump of a given variable through the interface region,
σ is the surface tension coefficient, n is the normal vector to the interface
and J is the mass transfer flux. This flux can be obtained by assuming that
equilibrium conditions prevail at the interface at every instant but it is also
possible to relax this assumption and to use a model providing the mass
transfer flux provided the instantaneous local conditions at the interface. For
example in the Hertz-Knudsen-Langmuir model [120,101] used in the context
of simulation of bubbles in [149,211,99], the vaporization flux is obtained as

J = αevap

(pIeq − pIb,vap)√
2πrvapTint

, (14)

where pIeq is the vapor equilibrium pressure computed with the interface tem-

perature and pIb,vap is the actual vapor pressure.

The system of equations is closed by chosing an Equation Of State (EOS)
for each phase. From the state equation we can obtain various quantities such
as the speed of sound, the thermal dilatation coefficient, etc. It is very popular
in the context of cavitating flows to use the general stiffened EOS written in
the Mie–Gruneisen form (see for example [173,108])

ρiei =
pi + ΓiΠi

Γi − 1
(15)

which defines the sound speed as

c2i = Γi
pi +Πi

ρi
. (16)

but any other choice of the EOS is also possible.
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4 Dynamics of a single bubble

4.1 Rayleigh-Plesset based models

4.1.1 Non-condensable gas bubbles

Understanding and modeling the response of single bubbles is crucial before
building more complex models involving the interaction of various bubbles.
Rayleigh [166] and later contributions by Plesset [157] developed the simplest
of the models capturing the dynamic response of a single bubble in a pressure
varying field. Imposing spherical symmetry, neglecting heat and mass trasfer
fluxes across the interface and considering the liquid an incompressible sub-
stance, the continuity and momentum conservation equations in the liquid
(Eqs. 1-2) can be integrated from the liquid interface to infinity to obtain
the Rayleigh–Plesset (RP) equation

R̈R+
3

2
Ṙ2 =

pIl − p∞
ρl

(17)

where p∞ is the pressure far from the bubble (assumed to be a known function
of time) and pIl is connected to the bubble pressure through the Laplace
equation (Eq. 11)

pIl +
2σ

R
+ 4µl

Ṙ

R
= pb. (18)

When the gas content obeys the perfect gas equation, the bubble pressure
is assumed to be uniform and the response of the bubble is adiabatic the
bubble pressure and bubble radius are directly related through the equation,

pb = p0

(
R0

R

)3γ

. (19)

This simple model is able to capture the radial motion of bubbles and it is
still widely used nowadays to predict the temporal evolution of the radius of
a gas bubble in a time-varying pressure field.

A simplified solution of equation 17 during the bubble expansion is found
in the controlled inertia regime where we neglect the acceleration term and
one can directly relate the interface radial velocity with the pressure differ-
ence as

Ṙ =

√
2

3

pl(R)− p∞
ρl

. (20)

This expression only provides a real solution when pl(R) ≥ p∞ and it is usu-
ally used to predict the expansion rate of bubbles after inception.

Another simplified analytical solution is obtained for the so–called Rayleigh
collapse problem, where a bubble with some initial pressure p0 is suddenly
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exposed to a liquid at a reference pressure p∞. In absence of surface tension
the Rayleigh collapse time is [27]

tRC = 0.915R0

√
ρl

p∞ − p0
(21)

which defines the averaged compression velocity

Ṙ =
1

0.915

√
p∞ − p0

ρl
. (22)

Equations 20 and 22 indicate that bubble expansion and collapse are almost
symmetric processes where the averaged bubble expansion or compression
velocity is proportional to the square root of the pressure difference between
the bubble and the far field pressure. As we will see later, this has been a key
ingredient on the development of effective phase–change models for large–
scale cavitating flows.

The Rayleigh–collapse time gives a very good estimation of the collapse
time experimentally observed in a variety of situations, but the instantaneous
velocities that the bubble interface reaches are significantly larger than those
predicted by Eq. 22. Whereas the collapse time only depends on the maxi-
mum bubble radius and the external pressure when p∞ � p0, the peak value
of pressure determining the intensity of the collapse depends on the pressure
ratio p∞/p0, which can be very large for low values of p0.

During the instants close to the time at which the bubble radius is mini-
mum various effects neglected in the initial RP model play a crucial role in
the conditions generated during the bubble collapse. A strong assumption
during the last stages of the bubble collapse is the liquid incompressibil-
ity condition. Keller and Miksis [115], Gilmore [81] and Tomita [193] have
proposed different corrected versions of the Rayleigh–Plesset equation that
accounts for compressibility effects showing that the amplitude of the re-
bound is significantly attenuated during the bubble collapse processes. The
relevance of compressibility effects and the accuracy of the various modified
equations is discussed by Prosperetti and Lezzi [165,130], and an interesting
assymptotic analysis on the radiative decay of non–linear bubble oscillations
at small Mach numbers has been recently presented by Smith & Wang [186].
For strong bubble collapses mechanisms such as the damping originated by
emission of shock waves during the collapse are not captured by the correc-
tions mentioned above and one has to resort to the numerical solution the
full Navier–Stokes in the liquid [71,122,76]. These studies reveal that the
errors introduced by Rayleigh–Plesset–like models is not negligible for very
strong collapses, where the emission of a shock wave from the bubble seems
to play a major damping role that is manifested in the differences on the
amplitude of the bubble rebound amplitude predicted by RP models and Di-
rect Numerical Simulations (DNS). Note that for very strong collapses other
assumptions made in the initial model are questionable. For instance the
perfect gas model is probably not sufficient to represent the bubble behavior
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when plasma is generated during very short instants at the bubble core and
one needs to accurately represent the gas response and its properties for an
accurate estimation of the conditions generated inside the bubble.

4.1.2 Gas/vapor bubbles

An important limitation of the original Rayleigh–Plesset model is that it
neglects mass and heat transfer processes across the interface. Several the-
oretical and experimental studies show that heat- and mass-transfer effects
have a non-negligible influence on the bubble response [27,26,128,204,60].
Models including heat and mass transfer processes are typically based on the
modified version of the Rayleigh–Plesset equation [163]

RR̈ = −3

2

(
Ṙ− J

ρl

)2

+
RJ̇

ρl
+ 2

J

ρl

(
Ṙ− J

ρl

)
+
pb − p∞

ρl
− 2σ

ρlR
− 4µl

ρl

Ṙ

R
(23)

For a general case the hypothesis of an adiabatic transformation does not
hold and bubble pressure and volume changes are influenced by heat and
mass transfer processes across the interface. Under the assumption of uniform
pressure inside the bubble it is possible to combine the continuity, momentum
and the internal energy equations inside the bubble to obtain an ODE for
the bubble pressure [38,162]

ṗb = − 3

R

(
(γ − 1)qIb + γpbṘ− γ

pb
ρIb
J

)
, (24)

where qIb = −κb ∂Tb

∂r

∣∣
r=R

is the heat flux across the interface from the bubble.
It is easy to show that when the heat and mass transfer flux across the
interface are neglected the bubble response is adiabatic and equations 19
and 24 are analogous. In the limiting case of pure vapor bubbles at low
frequencies in which the bubble pressure remains constant and equal to the
vapor pressure at every instant, ṗ ≈ 0, we can use Eq. 24 to obtain an explicit
equation for the bubble interface velocity as a function of the heat and mass
fluxes across the interface

Ṙ = −γ − 1

γ

qIb
pb

+
J

ρIb
. (25)

Because heat and mass fluxes are indeed related through Eq. 12 we can write
the bubble expansion velocity as a function of the heat fluxes across the
interface only as

Ṙ =
γ − 1

γ

qIb
pb

+
JqIKbl
∆HvρIb

(26)

which can be further simplified if we neglect temperature gradients inside
the bubble to

Ṙ =
κl

∆HvρIb

∂Tl
∂r

∣∣∣∣
r=R

. (27)



10 D. Fuster

A particular solution of this equation is obtained by Plesset [159] for vapor
bubbles growing in supersaturated liquids in absence of convection

Ṙ =

√
3

π

ρlcp∆T

ρv∆Hv

√
DT
l

t
. (28)

This equation reveals that, unlike the case of inertial bubble growth derived
in Eq. 20, if the bubble pressure reaches a regime where it is able to sustain
an approximately constant value close to the vapor pressure the dynamic
response of the bubble is not controlled by pressure differences. Instead heat
and mass transfer effects across the interface become important and param-
eters such as the thermal boundary layer thickness in the liquid around the
bubble play a major role in the dynamic response of the bubble.

The transition between regimes where the bubble response is controlled
either by pressure differences or by liquid heat diffusion processes is not clear
in real cavitating flows and we may expect to find different regimes depend-
ing on the specific application. For instance, during the initial process of
inception and bubble collapse the inertia controlled regime applies (Eq. 20)
given that the characteristic response time of the bubble is much faster than
the characterstic times of mass and heat transfer. But after inception, if the
system is able to evolve to regimes where the gas/vapor pressure is approxi-
mately equal to the vapor pressure, the process of bubble growth from walls
and the growth of large scale bubble clouds may be controlled by liquid heat
diffusion effects (Eq. 27) where certainly turbulence will play a role in the
dynamic growth of the bubbles. This is likely the case in hydrodynamic cav-
itation flows.

The simplest of the models able to deal with the presence of gas/vapor
mixtures is the full equilibrium model, also known as cold–vapor model, which
assumes that the bubble reaches equilibrium conditions with its surrounding
at every instant and that the temperature remains constant. In this case, the
influence of the vapor pressure on the bubble pressure is simply modeled as
a function of the partial pressure of non-condensable gas, pg, and the vapor
pressure at the reference temperature, pv(T0),

pb(R, T ) = pg(R) + pv(T0), (29)

neglecting all flux terms in the Rayleigh-Plesset equation. The full equilib-
rium model has strong limitations, for instance, it is unable to recover the
limiting solution obtained by Plesset [159] given that it neglects the influence
of any transient effect related to the mass and heat transfer process on the
dynamic response of the bubbles.

Preston et al [162] have used linear solutions to analytically obtain the
overall heat and mass transfer coefficient across the interface for vapor diffu-
sion limited problems in order to estimate the heat and mass transfer fluxes
needed in Eq. 24. The main advantage of this approach is that it explicitly
evaluates the heat and mass transfer flux across the interface and therefore
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the evolution of the bubble pressure is simply given by the solution of the
ODE given in Eq. 24 which is easily coupled with the solution of the Rayleigh–
Plesset equation. However this model still assumes that the interface tem-
perature is constant and that the mass flux is controlled by vapor diffusion
inside the bubble, which is problematic for pure vapor bubbles where heat
transfer effects in the thermal boundary layer in the liquid must be modelled.

More sofisticated models accounting for heat and mass transfer fluxes
across the interface account for the radial variation of properties inside the
bubble and must deal with the numerical difficulties related to the discontinu-
ity on the velocity, pressure and the heat fluxes across the interface imposed
by the local balances across an infinitely thin interface. Models initially pro-
posed by Nigmatulin and Khabeev [149], and later developed by different
authors [93,94,188,131,208,7,211,99,117], include the solution of the energy
equation both inside and outside the bubble and the solution of the species
equation to capture the process of vapor diffusion within the gas/vapor mix-
ture inside the bubble. Most of these works also model the kinetics of phase
change through an equation that allows for an explicit calculation of the flux
as a function of the difference between the equilibrium pressure at the in-
terface conditions and the current vapor pressure (Eq. 14). This expression
is useful for numerical purposes as it allows for an explicit evaluation of the
flux at a given instant but it introduces some uncertainty on the values of
the accomodation coefficient αevap required in the model [92].

The overall mass transfer flux can be seen as a combination of mecha-
nisms in serial, each of them introducing a certain resistance on the overall
mass transfer process, and therefore the total flux is given by the slowest
mechanisms which usually are diffusion mechanisms such as vapor mass dif-
fusion inside the bubble or thermal diffusion in the liquid. In these situations
exact value of the accommodation coefficient is not critical to obtain phys-
ically meaningful results. In particular, in the linear oscillation regime it is
possible to theoretically show that the influence of αevap is restricted to situ-
ations where the vapor content is large and the excitation frequency is very
high. Otherwise heat and mass diffusion mechanisms control the overall mass

flux across the interface (e.g. when the Sherwood number Sh =
ωR2

0

Dm
is of or-

der one or below [74]). In the case of a strong bubble collapse, Storey and
Szeri [188] have shown that the presence of small amounts of gas limit the
condensation rate of vapor inside the bubble by mass diffusion. This mecha-
nism prevents the bubble to disappear and limits also the peak compression
velocities that one can reach. Even when vapor mass diffusion controls the
overall collapse processes numerical studies have shown that the kinetics
of phase change influence the dynamics of vapor bubbles [91] and the vio-
lence of the collapse generated [73]. Parametric studies based on a complete
one–dimensional model accounting for mass transfer effects reveal that the
dependency of the peak temperatures reached during the bubble collapse on
the ambient temperature is directly linked to the mass transfer model [72],
revealing the intricate mechanisms between the process of phase change and
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the collapse process of a gas/vapor bubble.

4.1.3 Gas/vapor reacting bubbles

Reaction processes can become relevant during the bubble implosion when
the extreme conditions reached inside the bubble trigger various chemical
processes associated to the generation of radicals from gas molecules. Even
from pure water vapor molecules radicals can be generated at the bubble
core during the bubble implosion in an endothermic process that signifi-
cantly limits the peak temperatures predicted [55]. Note that these processes
are significantly attenuated at the bubble interface where the interface tem-
perature remains low and therefore radicals recombination occurs.

Particularly interesting is the investigation of bubbles containing reacting
mixtures, which finds application in the promotion of chemical process by the
use of cavitation [135]. Under particular conditions the mixture gas detona-
tion leads to the appearance of shockwaves inside the bubble that break the
assumption of pressure uniformity inside the bubble. Figure 1 depics the ra-
dial pressure and reaction heat profiles during the collapse of a single bubble
containing an initial mixture of H2 − O2 − H2O − Ar in proportions near
stoichiometric conditions where the reaction reaction heat (qr) is represented
using the derived variable, q′r,

q′r =

{
sign(qr) log10 |qr| |qr| > 1
0 |qr| ≤ 1

(30)

defined positive when the reaction is exothermic and negative when the reac-
tion is endothermic. The simulations are obtained using the model proposed
by Hauke et al [99] and the chemical reaction mechanism proposed in [6].

The simulations show how during the compression stage molecules con-
tained inside the bubble are broken into radicals in an endothermic process
(blue zone for t < 2.602 · 10−5 s) when the temperature and pressure are
above a given threshold. This process mainly take place at the bubble core
because at the interface, the temperature remains low and no radicals are
generated. In fact, the radicals which are produced inside the bubble are re-
combined nearby the interface when they diffuse towards it, being the reason
of the exothermic zone observed near the interface in Figure 1.

As in this case, if we reach autoignition conditions at the bubble center a
flame propagates towards the interface at a velocity of around 1500 m/s. As
the flame approaches the interface the conditions are less extreme and the
flame speed decreases until it is finally extinguished. The combustion takes
place very fast and the reactives are quickly exhausted at the center whereas
at the interface, where the reaction rate is negligible, the concentration re-
mains high. The water molecules generated during the combustion process
are broken in an endothermic process which again mainly takes place at the
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Fig. 1: Spatial and temporal representation of the reaction heat (q′r) and
pressure during the implosion. The uniform pressure assumption does not
hold and shockwaves induced by the detonation process are observed.

bubble center. Interestingly the molecule dissociation process makes the to-
tal number of molecules at the center sudently increase creating a pressure
difference between the bubble center and the interface that can lead to inter-
nal shockwaves inside the bubble that break the classical pressure uniformity
assumption (see Figure 1).

Another important conclusion from these models is that the generation
of radicals mainly takes place at the bubble center, being the concentration
near the interface significantly reduced due to the low temperature of the
interface influencing the efficiency of cavitation induced reactions for non–
volatile molecules.

4.2 Theoretical solutions for linear bubble oscillations

The linear solution of the full model equations is one of the few theoretical
solutions available to better understand the response of bubbles to a pressure
perturbation for a given known frequency ω. In addition they can also be
used to validate numerical methods [18]. Assuming solutions of the form R =
R0(1+R′ exp (ıωt)) for a given external excitation p∞ = p0(1+p′∞ exp (ıωt)),
with both the radial and pressure perturbation being much smaller than
unity, the Rayleigh–Plesset equation simplifies to

R′ = − 1

ω2
0 − ω2 + 2iδω

p∞
ρlR2

0

p′∞, (31)

which establishes the relation between external pressure disturbances and
bubble volume changes.
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Analytical expressions for the damping factor, δ, for pure-gas bubbles
have been reviewed in [5]. The resonance frequency or Minnaert frequency
[146], ω0, can be interpreted as the frequency at which the bubble oscillation
amplitude for a given pressure perturbation is maximal.

The approximated expression of the resonance frequency,

ω2
0 ≈

pb,0
ρlR2

0

<(Φ), (32)

also determines the value of the amplitude of the bubble oscillation in the
low frequency limit (ω � ω0), when Equation 31 can be rewritten as

R′(ω → 0) = − p∞
ρlω2

0R
2
0

p′∞ ≈ −
p′∞
<(Φ)

. (33)

This relation shows that volume and pressure disturbances are linked through
the transfer function Φ = −p′b/R′, which represents the relation between the
bubble volume (e.g. density) and bubble pressure fluctuations in the lin-
ear limit. It is possible to interpret this function as an effective polytropic
coefficient for the bubble pb/ρ

γeff
b = C, where γeff = Φ/3. Should Φ be a

real function, a barotropic Equation Of State (EOS) can be defined for the
gas/vapor mixture as pressure can be directly computed from density. Oth-
erwise both density and temperature are needed to compute the pressure
inside the bubble.

Generalized solutions for gas/vapor bubbles have been discussed in [116,
149,74,164]. The general expression for the transfer function Φ found in
[74] shows that although this function depends on several nondimensional
quantities, the problem is reduced to the nondimensional bubble oscillation
frequency (e.g. the Peclet number) and the vapor fraction Y0 when all the
physical properties of the system are fixed. Figure 2 shows the general solu-
tion of Φ as a function of the bubble Peclet number, Pe = ωR0

DT
b /R0

, and the

vapor content for an air/water system. The limiting solutions of the effective
polytropic coefficient include the isothermal limit γeff → 1 (for gas bubbles
at low frequencies), the adiabatic limit γeff → γ (for gas bubbles at high
frequencies) and the constant vapor pressure limit for pure vapor bubbles os-
cillating at low frequencies (γeff → 0) where the bubble pressure is constant
if the temperature is constant, pb = pvap(T0).

In order to distinguish between various oscillation regimes we can compare
the full expression for Φ reported in [74] with that obtained with simplified
models typically used to represent the bubble response such as the adiabatic
gas model (Φad = 3γ), the full equilibrium model (Φeq = 3(1 − Y0)) and
models accounting for mass transfer effects limited by either vapor diffusion
or thermal diffusion in the liquid boundary layer [18]. Figure 3 shows the
regime map of the mechanisms controlling the bubble response as a function
of the vapor content and the Peclet number. The diagram is built by repre-
seting those regions where different approximate expressions of the transfer
function contain less than 10% error compared to the exact value of Φ. We
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distinguish a high frequency regime (Peb > 100) where neither mass nor heat
have time to respond to pressure changes and both, gas and vapor respond
almost adiabatically. In this regime Eq.19 is valid taking the total pressure
inside the bubble, including both gas and vapor, as p0. This situation is likely
to occur during the initial instants of the bubble expansion after inception
and also during the violent collapse of bubbles when the vapor behaves al-
most as a non-condensable gas. At low frequencies, different regimes can be
defined depending on the oscillating frequency and the vapor content. The
bubble response is isothermal and the full equilibrium model is applicable
for a range of vapor content that increases as we decrease the excitation fre-
quency. Preston’s model [162], that includes the full–equilibrium model as
a particular solution, applies below the red line and captures the transition
between the full-equilibrium model and the adiabatic model for bubbles con-
taining a non–negligible amount of gas. As the vapor fraction approaches to
one liquid heat diffusion controls the mass transfer rate across the interface
and therefore the dynamic bubble response.

It is particularly interesting to investigate the transition between the full
equilibrium model and the region in which heat diffusion effects in the sur-
rounding liquid control the bubble response. Theoretically this transition
depends on the critical Peclet number [74]

Pec = 3
1− Y0

Y0

γ − 1

γ

(
cp,bT0

∆Hv

)2
κl
κb
, (34)

where heat diffusion does control the bubble response when Peb � Pec. This
condition can be also expressed as

1

3

Y0

1− Y0

γ

γ − 1

ρl
ρb
Σ∗ � 1 (35)

where the parameter Σ∗ =
ΣR2

0ω

cp,bT0

√
DT

L

is a non-dimensional version of the

Brennen’s parameter Σ =
ρ2b∆H

2
v

ρ2l cp,lT0

√
DT

l

[26] to evaluate the relevance of ther-

mal effects. This result reveals that liquid heat diffusion effects are specially
relevant in systems with large enthalpy of vaporization with small liquid’s
diffusivities, being thermal effects always important in systems close to the
saturation line (Y0 → 1). This is consistent with the Plesset’s solution ob-
tained for pure vapor bubbles [159] where the bubble growth is given by
transient heat transfer effects in the thermal boundary layer surrounding
the bubble (Eq. 28). Otherwise, full-equilibrium conditions prevail at the in-
terface and the bubble content reaches instantaneous equilibrium with its
environment at every instant.

Also note that the imaginary part of the transfer function becomes of
the order of the real part in those cases where the vapor content is large
and liquid heat diffusion control the bubble response (Figure 2), therefore,
the transition between the full–equilibrium model and the heat and mass
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diffusion regimes provide a theoretical background about the range of appli-
cability of the barotropic approximation in the linear regime. Certainly non–
linear effects have an influence on the regime maps theoretically obtained and
although preliminary numerical simulations indicate that the overall qualita-
tive picture does not change [18], more detailed analyses about regimes where
either gas/vapor expansion or mass transfer processes control the dynamic
response of the bubbles are required.

4.3 Direct Numerical Simulation of cavitating bubbles

While useful to discuss the main mechanisms controlling the response of bub-
bles to pressure changes, one–dimensional models have serious limitations. It
is well known that the presence of any source of asymmetry (e.g. wall or grav-
ity) leads to the appearance of a high speed jet during the collapse of the
bubble [150,189]. The generation of a high velocity jet [127], the large viscous
stresses in bubbles collapsing close to a solid wall [214] and the appearance
of vortex rings responsible of a significant energy dissipation and agitation at
small scales, are only few examples of mechanisms that cannot be captured
by the solution of a spherically symmetric problem. Three dimensional effects
are also relevant at large scales when surface tension effects are negligible and
the interface is no longer spherical. Numerical methods are then a very useful
and powerful tool to investigate the impact of three-dimensional effects on
the dynamic response of bubbles and its consequences on the surrounding
liquid and nearby walls. In this section we review the main methods devel-
oped to investigate the three–dimensional response of single bubbles.

4.3.1 Models

Initial models proposed for the simulation of bubbles in liquids [158,19,20]
directly solved for the advection of the interface position (Eq. 3) using the
Front Tracking (or marker) method that consists in updating a set of discrete

points sitting at the interface using the kinematic condition dxI

dt = uI . An
important limitation of this technique is that it is not trivial to deal with
coallescence and breakup processes. The advantage is that like in Rayleigh-
Plesset–based models, under the assumption of uniform properties inside the
bubble, the equations solved are significantly simpler. As discussed above,
modeling the bubble interior as a region of uniform pressure directly relat-
ing the bubble pressure and volume is a reasonable approximation in various
situations where the bubble response is either fully isothermal or adiabatic.
By tracking the interface position explicitely the discontinuities imposed by
the local balances across the interface (Eqs. 10-11) are naturally imposed.
The most important methods resorting to these assumptions are Boundary
Integral (BI) methods and free surface methods.
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In BI methods (also known as Boundary Element Method) the liquid flow
is assumed to be potential which allows directly solving for the velocity of a
Lagrangian set of points following an interface without the need of discretiz-
ing the full Navier-Stokes in the bulk. The fact that the flow is potential
limits the range of application of these models to Stokes and inviscid (high
Reynolds) flows. Also, because the properties inside the bubble are assumed
to be uniform these models cannot capture all the phenomena taking place
inside the gas phase (vapor/gas diffusion, heat transfer, chemical reactions,
turbulence, etc...). Firstly used to investigate the dynamic response of bub-
bles by Plesset & Chapman [158] and developed later by Blake and coworkers
to simulate problems involving the three dimensional collapse of a single bub-
ble [19,20], these models have been useful to investigate the bubble dynamic
response near walls and the process of jet formation and its consequences
at large Reynolds in incompressible liquids [19,20,33,209]. Recent extensions
have included liquid compressibility effects [119,201,203,202] but the funda-
mental limitations of these models remain.

Free surface methods generalize the models used in BI methods by taking
into account viscous effects in the liquid bulk. Initially proposed by Harlow
and Welch [96] and used in the context of bubble collapse in the numeri-
cal methods proposed by [213,160,51], these methods are based on the dis-
cretization and solution of the full Navier–Stokes equations in the liquid
phase where the presence of the gas phase imposes the boundary condition
at the interface through the interface balances (Eqs. 10-13). Simulations re-
ported in [160] have revealed that viscous effects become important during
the process of jetting formation influencing significantly the peak velocities
that can be reached. Delale et al [51,52] have used these methods to investi-
gate the structure of shock wave propagation in incompressible liquids where
all the effective medium compressibility can be attributed to the presence of
compressible bubbles.

In recent years, models based on Eulerian–Eulerian approaches have at-
tracted most of the attention because they deal with the process of fragmen-
tation/coallescence naturally without the need of highly deformed meshes
that adapt to the interface contour at every instant. Two key ingredients for
these methods are: (i) how to represent and advect the interface position and
(ii) how to take into account the discontinuity on the field variables estab-
lished by the local balances (Eqs. 10-13).

The interface is typically represented using the volume fraction of the
reference phase α that obeys the advection equation

∂α

∂t
+ uI ·∇α = 0. (36)

Because in the general problem where phase change occurs the velocity is not
continuous through the interface it is useful to rewrite the equation above as
a function of any arbitrary velocity field u as

∂α

∂t
+ u ·∇α = (uI − u) · nδ(xI) (37)
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where we have used the relation ∇α = −nδ(xI) to obtain a term on the right
hand side of the equation that, using Eq. 10, can be related to the change
on the volume fraction of the gas phase due to vaporization in those places
where an interface exists. Note that most of current models presented for the
simulation of single bubbles neglect mass transfer effects across the interface
(large Peclet regime) and therefore we can write Eq. 37 as

∂α

∂t
+ ∇ · (uα) = α∇ · u. (38)

In addition to the representation of the interface position, the main dif-
ferences between Eulerian–Eulerian models stem from the way the jump on
properties across the interface are handled. Some models relax the constrains
imposed by balances across the interface still solving for the distribution of
variables inside the bubble. In the seven equation model initially proposed
in [14], pressure temperature and velocities can be different for each phase
contained in a given computational grid and additional terms are added in
the equations to model the influence of the complementary phase on the
evolution of momentum and energy on a given phase. Different variants of
this model have been proposed based on additional constrains on the ve-
locity, pressure and temperature differences in mixed cells [114,174,176,154]
being these models an active area of research in various problems involving
two phase flows, phase change, etc [46,47]. Their use for DNS of cavitating
bubbles is limited given that the system of equations solved is modified to
introduce relaxation parameters that only approximate the dynamics of im-
miscible two–phase flows. How to calibrate the relaxation time required by
the model based on physical principles, the convergence properties of three
dimensional methods in problems involving interfaces and how accurate these
approaches represent the solution of the exact problem where the interface
is infinitely thin are still open questions [175].

Another popular alternative is the homogeneous model where we write
evolution equations for all the averaged quantities using the volume frac-
tion α by multiplying each conservative equation for the ith phase by its
corresponding volume fraction, summing over all the phases to obtain evo-
lution equations for each averaged quantity. Compared to the corresponding
equations for single phase flows, the conservation equations for the mixture
include additional terms that account for the influence of jump conditions
on the averaged fluid quantities (see for example [21] for the treatment of
surface tension effects). In particular the averaged Navier–Stokes equations
in presence of surface tension read

∂ρ

∂t
+ ∇ · (ρu) = 0, (39)

∂ρu

∂t
+ ∇ · (ρuu) = −∇p+ ∇ · τ ′ + σκ∇α, (40)

∂ρE

∂t
+ ∇ · (ρEu) = −∇ · (up) + ∇ ·

(
τ ′u

)
−∇ · q + u · σκ∇α, (41)
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where formally we have considered that in those cells containing an inter-
face the pressure jump due to viscous and mass transfer effects is small and
therefore p1 − p2 ≈ σκ.

The EOS for the mixture required to close the system of equations is
different depending on the model assumptions. The classical approximation
for the speed of sound of a mixture

1

ρc2
=

αg
ρgc2g

+
αl
ρlc2l

(42)

is only formally valid for adiabatic systems where there is not either heat
nor mass exchange across the interface (adiabatic conditions). Some other
relations can be applied by assuming both phases in thermal equilibrium or
in full thermodynamic equilibrium but the range of validity of these hypoth-
esis for a general problem where dynamic effects become important remain
unknown. How to define EOS for mixed cells is a major challenge for the
correct simulation of cavitating flows including mass transfer effects and the
interactions between interface and shockwaves.

4.3.2 Numerical methods

In addition to the physical equations, numerical methods have an important
impact on the quality of the solutions obtained and the phenomena that
can be captured. One important ingredient of numerical methods dealing
with multiple phases is how to track and advect the interface position. Front
Tracking methods, used in the Boundary Integral methods and free surface
solvers mentioned above, are rarely developed nowadays in the context of
bubble dynamics (an exception is [100]) and most of current lines of research
on the numerical simulation of cavitating bubbles focus on Eulerian–Eulerian
approaches.

The two most important numerical methods used to solve Eq. 38 are the
Level Set (LS) and the Volume Of Fluid (VOF) method. LS methods are
based on a continuous and smooth function that takes a given value at the
interface location being Diffuse Interface Methods (DIM) a particular fam-
ily of them [2,173]. These methods resort to the use of numerical schemes
that introduce a certain amount of artificial diffusion relaxing the representa-
tion of the interface as a discontinuous transition between two phases. Thus,
both the numerical method and the model must deal with interfaces that
have a certain diffusive length. Precisely one of the main drawbacks of these
algorithms is the natural trend of the method to artifically diffuse interfaces
degrading the quality of the solution near the interface with respect to the
description of the model problem where the interface is assumed to be sharp.
Although some remedies have been proposed [151,181,35], this limitation still
poses problems, especially at long times, in those regions where the interface
contour is not correctly resolved.
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Riemann methods coupled with DIM have been sucessfully applied to in-
vestigate the bubble collapse in a compressible liquid using quasi-conservative
problem proposed by Abgrall for the simulation of compressible multicom-
ponent problems [1]. Johnsen and Colonius [109] and Tiwari et al [190] have
extended Abgrall’s formulation to solve the Euler equations using shock-
capturing WENO schemes, showing the capability of these kind of methods
to simulate the collapse of an air bubble in water in absence of surface tension
forces [110,111] as well as the collapse of bubble clusters near a wall [171,191].
More recent formulations introduce viscous effects [39], mass transfer effects
in high speed cavitating systems [156] and surface tension forces [79,177],
but in these later works the authors have not investigated the the method
to simulate bubble collapse processes. The Level Set approach has been also
used by Nagrath et al [148], who use a Finite Element Formulation (FEM) to
report simulations of collapsing bubbles solving the full Navier–Stokes equa-
tions including surface tension forces and viscous effects. In this case, the
Ghost fluid method is used to avoid the numerical problems related to the
jump of properties across the interface.

Geometrical VOF methods take especial care to compute the flux of α
using the geometrical reconstruction of the interface at every timestep to
limit the diffusion induced by the numerical discretization of the advection
equation. The price to pay is their computational cost and the difficulties to
develop high order advection schemes preserving the fundamental advantages
of the method (e.g. mass conservation at the discrete level in the incompress-
ible limit). Except few exceptions [76] these methods have not been widely
developed yet in the context of cavitation. Instead algebraic VOF are becom-
ing popular for the simulation of cavitating bubbles [145,122,121,214]. These
methods are very similar to DIM and require to manipulate the fundamental
transport equation for the color function to introduce terms that limit the
diffusion of the interface. The impact of these artificial terms on the accuracy
of the results obtained is not fully clarified yet.

VOF methods are usually combined with pressure-based solvers where
density is replaced by pressure as a primitive variable that is obtained solv-
ing for Eq. 7. Some interesting properties of these methods include that: (i)
it is possible to easily combine them with the VOF method, allowing for
a sharp representation of the interface position; (ii) it is straightforward to
implement advanced methods for surface tension extensively developed and
tested in problems where the fluid can be considered as an incompressible
substance; and (iii) they are not restricted by the acoustic CFL condition for
stability at expenses of degrading for lengths smaller than a critical wave-
length controlled by the time step and the speed of sound of the fluid [76].

The classical version of pressure-based solvers do not guarantee exact
mass, momentum and energy conservation due to discretization errors, which
significantly impact the validity of the results when unresolved structures
appear. In addition, because these methods do not guarantee energy conser-
vation at the discrete level, they cannot capture the correct speed of shock
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Fig. 4: Numerical simulation of a bubble collapsing near a wall using the
solver presented in Fuster & Popinet [76]. Interface contour and pressure
field in the middle plane.

waves, which limits the applicability of these solvers to low Mach numbers.
These limitations have motivated the development of alternative formulations
[207,104,54,76] that keep the density and the energy as a primitive variables
still solving for Eq. 7 to obtain the pressure that is used to update both mo-
mentum and the total energy after the advection step. This requires to solve
an implicit equation for pressure, which significantly increases the computa-
tional cost with respect to explicit solvers. These solvers have been shown to
capture the correct shock speed of supersonic flows, they are especially suit-
able to investigate problems where one of the phases is weakly compressible
or even fully incompressible substance, and satisfy basic relations such as
the balance between pressure and capillary forces in an equilibrium state [3]
which is difficult to achieve in other formulations including surface tension
forces. They are also very roboust and compare favorably with experimental
results of the collapse of a bubble close to a wall as well as the theoretical
predictions of the Keller–Miksis equation for linear, weakly non-linear and
moderately intense oscillations [76]. Figures 4-5 show the potential of this
solver to investigate the formation of the jetting phenomenon as well as the
generation of vortex ring structures associated to the non-spherical bubble
collapse process.



A review of models for bubble clusters in cavitating flows 23

Fig. 5: 2D cut of the void fraction (right) and vortex structures defined
according to the λ2 < 0 criterion (left) colored with the velocity normal to
the wall after the primary collapse of a bubble near a wall depicted in Figure
4.
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5 Modeling bubble clusters

5.1 Bubble clusters in the diluted limit

5.1.1 Models for diluted systems

Modeling bubble clusters is not an easy task due to the difficulties related
to the representation of general multiphase flows in problems where it is not
possible to capture all the scales of the flow. A subset of models assume that
the bubble concentration is low, αg � 1, finding equations for a system con-
taining a known number of spherical bubbles per unit volume n and known
initial bubble radius distribution where the void fraction can be obtained as
αg = 4/3πnR3. Because in the dilute limit bubbles remain relatively far from
each other it is reasonable to assume that a Rayleigh–Plesset type equation
accurately reproduces the oscillatory response of bubbles at the local scale
using the far field pressure obtained from the averaged equations. Note that

because the averaged inter–bubble distance d scales as d ∼ R0α
−1/3
g the

threshold for the validity of the diluted limit assumption is expected to reach
relatively large void fractions (αg < 0.1). In addition, bubbles remain spheri-

cal if the characteristic Weber number (We = ρlU
2R0

σ ) is small although DNS
simulations and experimental studies have shown that the Rayleigh–Plesset
model still provides a reasonable assumption of the averaged gas volume vari-
ation even in the presence of strong assymetries induced by the presence of
jets which leads to the conclusion that the response of bubbles smaller than
1mm are probably well captured by Rayleigh–Plesset based models.

In the particular case of an invisicid bubbly liquid the continuity and mo-
mentum equations in the liquid (Eqs. 1-2) simplify to the Bernoulli equation

∂φ

∂t
+

1

2
(∇φ)2 +

pl − p0

ρl,0
= 0. (43)

This equation can be used to solve the problem of N oscillating bubbles in
a liquid where the forcing background potential Φ∞ is known. Because the
potential is a linear function, it is possible to decompose the potentials as
a sum of the background potential and the sum over the potential emitted
by every single bubble in the system and to write a system of N Bernoulli
equations evaluated at the interface of each individual bubble to obtain the
dynamic response of all bubbles. A particular solution of this problem for
the limiting case of an incompressible liquid in absence of relative motion
between bubbles is

RiR̈i +
3

2
Ṙ2
i =

pi − p∞
ρl

+ I∗, (44)

I∗ = −
N∑
j 6=i

[
R̈jR

2
j + 2Ṙ2

jRj

dij

]
, (45)

which recovers the traditional Rayleigh-Plesset equation when the bubble is
isolated. A generalized solution including for liquid compressibility effects is
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derived in [69].

Harkin et al [95] present particular solutions of this problem taking into
account the relative motion between bubbles to investigate the coupled pul-
sation and translation of oscillating bubbles and Ilinskii et al [103] present
general solutions of this approach for large bubble clusters using both Hamil-
tonian and Lagrangian mechanics. One interesting conclusion from this model
is that if we define an effective pressure peff = p∞−ρlI∗, the influence of far-
ther away bubbles (which increase as r2) collectively exert greater influence
on I∗ than the influence of a single bubble nearby, whose effect decreases as
1/r [103]. That means that the averaged disturbance induced by all bubbles
present in the system on the pressure felt by a bubble is usually more im-
portant than any pressure disturbance induced by a nearby bubble, which is
a key assumption of the averaged models described below. Although these
models have been sucessfully used to investigate some collective effects [23,
215] they are problematic and computationally intensive when N is large.

Eulerian-Eulerian models based on volume averaged equations (Eqs. 39-
40) were initially used in the context of wave propagation in bubbly liquids
by Mallock [141], Campbell & Pitcher [31] and Van Wijngaarden [195,196].
In the dilute limit it is justified to assume that ρ ≈ ρl(1− αg) and following
a similar procedure to that used to derive Eq. 7 it is possible to writte an
equation for the averaged pressure

1

ρlc2l

Dp

Dt
+ ∇ · u =

∂αg
∂t

. (46)

The system of equations is closed adding the averaged momentum equation
(Eq. 40) and computing αg = 4/3πnR3, where the evolution of the bubble
radius is given by the solution of the Rayleigh–Plesset equation. Calflish et al
[30] used a multi–scale approach to show that this model is O(α2

g) accurate
in problems where we can neglect advection terms in order to be consistent
with the assumptions adopted.

Later works used the concept of ensemble averaging developed in the
context of turbulent flows defining averaged quantities based on probabilistic
functions (some examples of these formulations include [58,59]). The main
advantage of these methods is that, as it occurs in turbulent flows, they al-
low defining averaged quantities for properties defined in the bulk from an
inifinite number of realizations. Zhang and Prosperetti [216,217] rigorously
derive the ensemble averaged equations accounting for the relative motion
between bubbles and liquid obtaining equations that are shown to be O(αg)
accurate for non-linear problems. Some other differences respect to the Van
Wijngaarden’s formulation is that they relax some important assumptions
adopted by allowing for a relative motion between the phases and capturing
the influence of fluctuations on the bubble translational velocity.

The solution of averaged equations in non-linear regimes require the use
of numerical methods to solve both, the dynamic oscillation of the bubbles
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and the averaged equations at the large scales. Kubota [123] proposed to use
this model for the prediction of cavitation activity around hydrofoils treat-
ing the liquid as an incompressible substance and assuming no slip between
the two phases. Bubble dynamic effects are simply modeled by solving the
Rayleigh–Plesset equation and setting pb = pv(T0) constant along the simula-
tion. Taking the averaged equations and using the Rayleigh–Plesset equation
to relate the changes on the void fraction with pressure Kubota finds an
equation for pressure where a source term depends on the dynamic response
of the bubbles modelled using the Rayleigh–Plesset model. A similar model
proposed by Preston et al [161] has shown how bubble dynamic effects are
very important in non-linear regime, significantly reducing the range of appli-
cability of barotropic models applied to the averaged quantities (e.g. density
and pressure). This stresses an important point: the fact that both gas and
liquid obey a barotropic relation does not imply that the averaged mixture
response is barotropic too.

Various authors [9,133,134] report numerical simulations of the the en-
semble averaged equations for polydisperse mixtures where Eq. 38 is partic-
ularized for the case of a system containing spherical bubbles with concen-
tration αg,

∂αg
∂t

+ ∇ · (uαg) = 3αg
R2Ṙ

R3
. (47)

For polydisperse mixtures the method requires the solution of the RP equa-
tion for the full PDF distribution of bubble radius in each computational grid,
which is an expensive computational operation for disperse bubble clouds.
Alternatively Fuster & Colonius [69] propose an Eulerian-Lagrangian formu-
lation based on the volume-averaged approach to solve the equations for the
contiuum phase (e.g. the liquid) from the averaged equations for the mixture
(Eqs. 39-41). Thus, the influence of the disperse phase is treated as source
terms in the continuity, momentum, and energy equation for the liquid that
for αg < 1 become [69,37]

∂ρl
∂t

+∇ · (ρlu) = ρl

[
∂αg
∂t

+ u · ∇αg
]

(48)

∂ρlu

∂t
+∇ · (ρluu) +∇ · (pI) = ρbu

[
∂αg
∂t

+ u · ∇αg
]

(49)

∂ρlel
∂t

+∇ · (uρlel) +∇ · (up) = ρlel

[
∂αg
∂t

+ u · ∇αg
]

(50)

To compute αg, we multiply each individual bubble volume by a discrete
kernel that smears its value onto the computational grid, and, at each point
in the domain, sum this over all bubbles. The evolution of the volume of each
individual bubble is obtained from the solution of a RP-like equation which
is a generalization of the incompressible bubble-cluster model of Ilinskii et
al. [103] to compressible liquids, and likewise assumes spherical bubbles and
potential flow in the vicinity of the bubbles. By taking a cell based approach
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Fig. 6: Numerical simulation of the development of large scale vortices gen-
erated by a bubble cloud raising in a supersaturated liquid.

this model is grid dependent, much in the same way a Large Eddy Simula-
tion of turbulence depends on the grid spacing. As the grid is refined to the
size of an individual bubble, the model exactly represents the dynamics of an
isolated spherical bubble. At the other extreme, the model is demonstrated
to converge to the solution to ensemble-averaged models for low spatial reso-
lution with much less computational expense compared to the corresponding
ensemble-averaged approach. The interaction between diluted bubble clus-
ters and shock waves have been investigated in recent works by Maeda et
al [140] comparing favoroubly for problems related to medical applications.
Models based on similar ideas have been also proposed to investigate the
attenuation of waves by bubble clusters to protect offshore structures and
sealife [89] and problems related to hydrodynamic and ultrasonic cavitation
[138] in regions where the gas/vapor phase can be considered disperse. One
interesting observation of the results provided by these models is the pre-
diction of significant pressure and velocity fluctuations that can be directly
attributed to the heterogeneous distribution of the disperse phase in a given
situation. These effects are completely neglected in ensemble averaged mod-
els that only provide information about the averaged response of the system
over an infinite number of realizations.

Lagrangian-Eulerian approaches are appealing in order to account for the
relative motion between the fluid and the bubbles. Indeed these models have
been already used to capture the dynamics of bubble clusters where trans-
lation effects are relevant. Figure 6 shows a typical example of the response
of a cylindrical bubble cloud obtained with the numerical model proposed in
[192] coupled with the Epstein & Plesset model to predict the bubble volume
growth [62] in order to mimick the observations of bubble clusters rising in
supersaturated liquids [168]. Interestingly this very simple model is already
able to capture the appearance of large scale flow structures generated by
the collective motion of the bubbles showing strong coupling between the
transport of gas from the liquid bulk to the bubble interior and turbulence
in an auto-catalytic process that triggers the explosive growth of the bub-
ble cluster. However these first attempts to reproduce real observations also
point out the limitations of currently available models to correctly capture
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the correct growth of the bubble cloud and the terminal rising velocity of
the cluster observed experimentally. One of the reasons is the strong simpli-
fications adopted in the model, which neglects the influence of advection on
the mass transfer flux. As we will discuss below, this is also one of the main
limitation of cavitating flow models.

5.1.2 Linear solutions for diluted bubble clusters

The linearized version of the volume–averaged problem has been used by
D’Agostino and Brennen [44,45] and Omta [152] to obtain solutions for a
bubble cluster of finite size characterized by the cluster radius Rc containing
a monodisperse distribution of bubbles of size R0. One important result is
that, unlike the case of a single bubble where a unique resonance frequency
appears, bubble clusters exhibit multiple resonant frequencies given by

ωn = ω0
1√

1 +
3αg,0

(n−1/2)2π2

(
Rc

R0

)2
n = 1, 2, .... (51)

The highest resonant frequency corresponds to the single bubble natural
frequency, while the lowest resonant frequency, ω1 ≈ ω0

R0

Rc

π√
12αg,0

, is a char-

acteristic resonance of the overall bubble cluster. These two frequencies can
be used to discriminate the various frequencies appearing in a cavitating flow
depending if they lay below ω1, above ω0 or in–between.

Another fundamental problem widely investigated with ensemble–averaged
models is the linear wave propagation in a bubbly liquid [31,195,196,42,38].
For a problem with a known distribution of bubble radius f(a) obeying the
Rayleigh–Plesset equation, Eq. 46 takes the particular form

1

c2l

∂2p

∂t2
−∇2p = 4πρ

∫ ∞
0

a2R̈f(a)da, (52)

where, for a weak perturbation, R̈ ≈ −ω2R0R
′. Because the radius and

external pressure perturbation are connected through the linearized solution
of the Rayleigh–Plesset equation (Eq. 31) it is possible to rewrite Eq. 52 as
a wave equation for p,

1

c2eff

∂2p

∂t2
−∇2p = 0 (53)

where the effective sound speed, ce, is a complex quantity given by

1

c2eff

=
1

c2l
+ 4πn

∫ ∞
0

af(a)da

ω2
0 − ω2 + 2iδω

(54)

In most situations the effective sound speed is mainly governed by the dy-
namic response of the bubbles. In particular, for monodisperse bubble clouds
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and frequencies smaller than the bubble resonance frequency, ω � ω0, the
sound speed of the mixture simplifies to

ceff ≈
√

p0

αgρl
(55)

which is equivalent to the widely used low frequency limit [205] for pure gas
bubbles in the diluted limit

1

ρc2eff

=
αg
ρgc2g

+
1− αg
ρlc2l

≈ αg
p0
. (56)

General solutions accounting for frequency effects have been reviewed by
Commander & Prosperetti [38] finding good agreement between previously
reported experimental results and theoretical predictions for the case of pure
gas bubbles. This limiting solution can be used to validate numerical codes [8,
69,70,57]. Extensions of the theory to account for the effect of direct bubble-
bubble interactions have been numerical reported in [70].

Classical theories accounting for mass transfer effects assume that the
system’s temperature and pressure fluctuations are related through the equi-
librium curve [126]. However, those approaches have difficulties reproducing
experimental measurements in the dilute limit [40], where the liquid temper-
ature is probably not significantly affected by the presence of the vapor bub-
bles. Recently, general solutions accounting for mass transfer effects across
the interface have been found by [74,164]. The theoretical analysis shows that
there exists a low frequency limit solution that corresponds to Eq. 56 for non–
condensable gas bubbles. However, as we approach the saturation line and
phase change effects become important the low frequency limit for the phase
speed significantly decreases while the effective attenuation increases with
respect to the case of pure non–condensable gas bubbles. Another important
effect of mass transfer effects is that ω0 decreases drastically as the vapor
content inside the bubble increases (Eq. 32), reducing the range of applica-
bility of the low frequency limit solution [74].

5.2 Modeling bubble clusters containing large gas/vapor concentrations

While accurate and consistent in the dilute limit, some problems involving
cavitating flows require the general solution of a multiphase flow problem
where the dynamic of the gas/vapor pockets is not well represented by the
solution of the Rayleigh–Plesset equation. In problems where the gas/vapor
phase becomes predominant but it is still not possible to solve all the length
scales of the flow it is compulsory to develop models that must versatile
enough to deal with the process of inception and bubble collapse in regions
where the interface is not well resolved as well as to transport a well re-
solved interface in those regions where gas/vapor bags are much larger than
the grid size. The problem becomes specially challenging if one considers
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that the limited resolution makes compulsory to model the interaction be-
tween the interface, mass transfer effects and turbulence and that large scale
gas/vapor structures coexist with small bubbles as it is typically the case
in applications involving cavitation around hydrofoils, cavitation in nozzles,
etc...

Eulerian-Eulerian methods have been mainly proposed to solve the equa-
tions for the averaged mixture, being the evolution of the gas/vapor fraction
a key ingredient in these models. The evolution of the gas/vapor fraction in
each cell is obtained from the solution of Eq. 37 in the quasi–conservative
form

∂α

∂t
+ ∇ · (uα) = α∇ · u+ (uI − u) · nδ(xI) (57)

where the two terms appearing on the Right Hand Side (RHS) of Eq. 57
represent the change of void fraction due to the divergence of the averaged
field and the contribution to the net gas fraction change due to mass transfer.
Note that even in absence of a net flux across the interface, gas compression or
expansion can be responsible of a divergent velocity field u. The difficulties
to correctly solve the RHS of Eq. 57 in problems involving very different
spatial scales have lead to various authors to group and model the effects of
mass transfer (evaporation/condensation) and the gas/vapor expansion into
a single term

∂αg
∂t

+ ∇ · (uαg) = ṁ. (58)

A popular model to compute ṁ is proposed by Schnerr & Sauer [178]
who obtain the evolution of the void fraction using

∂αg
∂t

+ ∇ · (uαg) =
3αg
R

dR

dt
. (59)

The form of this equation is similar to the one derived for disperse bubbly
flows, but in this model the bubble radius velocity is obtained in the iner-
tial controlled regime given by Eq. 20. The Schnerr & Sauer model is often
expressed in the form of Eq. 58 as

ṁ =
3αg(1− αg)

Rb

ρgρl
ρm

sign(pv − p)

√
2

3

|pv − p|
ρl

(60)

which, unlike the models proposed above for disperse flows, allows computing
the evolution of αg even when the void fraction tends to one if one gives an
estimation of the bubble radius. One of the problems of the initial Schnerr
model is that it neglects all thermal and mass transfer effects on the dynamic
response of the bubble, it assumes that the inertial growth model (Eq. 20)
is applicable even for large gas/vapor fractions, and it requires to sed the
liquid with initial bubble nuclei whose characteristic size and concentration
is typically difficult to control and also to measure experimentally. Although
some authors have proposed some remedies to account for thermal effects on
the dynamic response of the bubbles by using the Plesset solution already
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ṁ+ ṁ−

[144] Cprod
ρl
ρv
αl

max(0,pv−p)
1/2ρlU

2
∞t∞

Cdestαg
max(0,p−pv)
1/2ρlU

2
∞t∞

[124] Cprod
ρv
ρl

α2
l (1−αl)

t∞
Cdest

ρv
ρl
αl

max(0,p−pv)
1/2ρlU

2
∞t∞

[172] Ccα
2
g(1− αg)2 ρlρg

max(0,pv−p)√
2πRgT

Ceα
2
g(1− αg)2 max(0,p−pv)√

2πRgT

Table 1: Resume of popular models for the computation of the gas/vapor
production and consumption terms.

mentioned above [210], the main limitations of the method remain.

Other models including those proposed by Merkle [144], Singhal et al
[183], Kunz et al [124,125] and Saito [172] propose to express ṁ as a com-
petition between a production and a destruction term, merging expansion,
compression and phase change processes into a single semi-empirical function
that depends on the pressure difference between the actual pressure and the
vapor pressure (see Table 1 for an explicit definition of the production and
consumption terms). Effectively these models act as the transient mass trans-
fer flux used in single bubble models and tend to keep the interface conditions
close to equilibrium conditions. The sensitivity of the results on the details
of the model remain a major challenge given the difficulties to calibrate the
model in different regions where different mechanisms may control the bubble
response. Only for those models including thermal and mass diffusion effects
[172] one may expect results to be less sensitive to the expressions given for
ṁ given that, as it occurs for the case of single bubbles described above, in
a general problem the overall mass flux will be determined by the slowest
process between the thermal transport in the surrounding boundary layer,
vapor diffusion inside the bubble, and the instantaneous phase change flux
modeled through the ad-hoc expression for ṁ.

There exists also models that do not directly solve for the transport equa-
tion of αg. Instead, a barotropic EOS is used to relate the averaged density

and pressure to implicitly define the vapor fraction as αg = ρ−ρl
ρg−ρl , where

ρg and ρl are assumed to be known and constant values (see for example
[41]). Particularly simple is the approach proposed by Scherr et al [179] who
propose to solve the modified Riemann solver and to evaluate the properties
whether the averaged density is above or below the saturation vapor density
at a given pressure and temperature. These very simple approaches have a
number of practical advantages, including the fact that they handle naturally
the processes of cavitation inception and mass transfer which are difficult to
model. The drawback is that they assume that the system’s temperature is
uniform and lack of fundamental background for the definition of a rigorous
barotropic EOS, on which the results obtained are going to be extremely
sensitive.

In addition to the advection equation we need to solve for the mixture
conservation equations (Eqs. 39-41). Various authors solve for the continuity
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and momentum equation for the mixture assuming both fluids as incompress-
ible substances and neglecting any influence of temperature on the process
[124,125,180,197] where a turbulence model is usually added to model the
influence of subgrid turbulence.

Models including thermal and compressibility effects have been mainly
developed to simulate shocked flows in presence of cavitation and cavitation
in cryogenic liquids where thermal effects are known to be relevant.

Regarding models for cryogenic cavitation Tseng et al [194] and Zhu et al
[220] solve for the enthalpy equation assuming both gas and liquid as incom-
pressible substances while Gnanaskandan [82] solves for the internal energy
equation to show results on the cavitating flow around a cylinder [83,84].
Saito et al [172] and more recently Goncalves and coworkers [86,85,36] use
formulations that include the equation for the total energy of the mixture
(derived from Eq. 4). Most of these models [194,220,82,172] still resort to
the calculation of the mass transfer flux through the semi-empirical models
described above. Only the recent work of Colombet et al [36] makes a first
attempt to impose the condition obtained from the energy balance across the
interface (Eq. 12) to obtain the total mass transfer flux from the heat flux
at the interface and the enthalpy of vaporization neglecting any temperature
gradient inside the gas/vapor phase. Another characteristic of these models is
that they require the definition of an EOS for the mixture that defines prop-
erties such as the effective sound speed. One possibility is to define an EOS
for the mixture using the the averaged pressure and the EOS of each single
substance. Goncalves & Patella [86] compares the use of this methodology
with an ad-hoc barotropic EOS where the averaged density and pressure are
directly related through the barotropic relation proposed in [53]. Remarkably,
the authors find that the barotropic EOS performs better than the mixture
of EOS for cavitation in standard liquids [86,85] while the barotropic EOS
model fails reproducing experimental results when thermal effects are rele-
vant [36]. This is consistent with the conclusions extracted from the linear
oscillation of vapor bubbles presented above where we have concluded that
in those regions where transient heat transfer effects control the dynamic
response of bubbles a barotropic EOS will have troubles to correctly repro-
duce the response of the gas/vapor mixture. The interest of these models
may extend beyond cryogenic liquids, given that heat diffusion effects are
certainly important in all problems where the heat flux controls the overall
mass transfer rate in standard liquids in those regions where the gas/vapor
pressure remains approximately constant and equal to the vapor pressure.

For high speed cavitating flows we face similar problems to those already
described for the DNS of single bubbles (Section 4.3.2). Thus the quality of
the solution obtained is strongly determined by the numerical methods used
to solve the physical equations and models including the explicit solution of
the energy equation, which are critical to correctly predict the appearance
of shocks and to capture the correct dynamic response of the interface. The
correct choice numerical method becomes especially important in situations
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where the Mach number is large, which can occur at relatively low velocities
when mass transfer effects are important and the effective sound speed of the
mixture reaches very low values. The formulation proposed by Saurel and Ag-
brall [173] already discussed for the case of DNS simulations has been widely
adopted in the literature [114,174,176,154] but the uncertainties about the
accuracy of these models remain [175].

5.3 Turbulence modeling

Modelling turbulent cavitating flows remains as a major challenge due to the
difficulties to extend the classical turbulence models extensively used and
developped in the context of single phase flows simulations. The two main
differences with respect to single phase flows are (i) the generation of turbu-
lence due to the volume changes induced by gas/vapor compressibility and
phase change and (ii) the generation of turbulence induced by the presence
of an interface itself.

The source of volume generated in a cavitating flow usually leads to large
expansion/compression velocities that induce significant turbulence at small
scales. Note that the vapor density at vapor pressure is extremely low and
therefore the volume of vapor generated is typically of the order of one mil-
lion times the volume of liquid vaporized.

In the diluted limit bubbles can be seen as microscale agitators that in-
duce velocity perturbations in the flow due to the flow pressure variations.
In the linear regime the non–dimensional velocity fluctuations due to volume
variations scale as u′ ∝ ωR0

U∞
R′, where U∞ is a characteristic flow velocity of

the process and R′ is the non–dimensional bubble radius perturbation that is
related to the external pressure fluctuations through Eq. 31 as R′ = F (ω)p′.
Thus, compared to a single phase flow, bubbles introduce additional velocity
fluctuations that in the linear regime can be obtained as u′ ∝ ωR0

U∞
F (ω)p′

being especially important when the forcing frequency is close to the bubble
resonance frequency, when F (ω) takes very large values. It is also interest-
ing to note that F (ω) at low frequencies is F (ω → 0) ≈ 1

3(1−Y0) (Eq. 33).

This implies that as we approach the saturation curve and bubbles fill with
vapor (Y0 → 1) the perturbations induced by the bubble oscillation in the
system become more important for a fixed amplitude of the external pressure
variation. In highly–nonlinear and out–of–equilibrium systems the analysis
becomes more complicated but the overall picture is not expected to change
significantly. In addition, the increase on the turbulence level is known to
lead to an increase on the transport coefficients and therefore on the effec-
tive bubble growth. The coupled feedback between the turbulence and mass
transfer has been experimentally observed to lead an auto-catalytic process
that induces an exponential growth on the gas fraction in liquids supersat-
urated with dissolved gas[168]. Diluted bubbly flows are also encountered
during the first instants after nucleation and in the collapse stage, where
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bubbles are known to play a significant role on the effective increase of the
turbulence level and the effective transport coefficients in the flow.

The analysis becomes more intrincate as vapor fraction increases given
that different mechanisms counter-act to the natural increase of the turbu-
lence level as the void fraction increases. For example in some applications
related to hydrodynamic cavitation the increase on the effective drag and
pressure losses induced by the presence of bubble clusters usually leads to a
decrease on the effective velocity inside the bubble cluster, tending to limit
the increase of the effective Reynolds number. In ultrasonic applications the
significant damping of pressure waves induced by highly concentrated bubble
clusters significantly attenuate the amplitude of pressure perturbations and
therefore the level of turbulence from the oscillation of bubbles is expected
to saturate or even decrease. One of the major challenges in cavitating flow
models is then to be able to capture the balance between mechanims induc-
ing the gas/vapor fraction growth and those limiting it, which involves the
resolution of both the large scales associated to the overall structure of the
bubble cluster and the small structures developing inside the multiphase flow
and probably controlling the dissipation mechanisms.

In addition to the volume source induced by the presence of a highly
compressible substance undergoing phase change, the presence of an interface
itself influences the type of structures present in the flow as well as the
dissipation mechanisms. The development of physical models capturing these
effects at the subgrid scale are scarce due to the intrinsic challenges when
modelling multiphase flows and the difficulties to validate them with reliable
DNS and experimental data. To get further insight about the strong coupling
between the dynamic response of an interface and turbulence let’s consider
the generation of vorticity in an academic two-dimensional incompressible
multiphase flow. In this case the evolution of the total vorticity in a given
system can be expressed as [136,29]

d

dt

∫
ωdA =

∮
ν∇ω · ndS −

∫ b

a

JSωKds, (61)

where JSωK is the density of a vorticity source located at the interface defined
in absence of tangencial velocity jump as

JSωK =
∂

∂s

s
p

ρ

{
+ κJ(u · n)K(u · t). (62)

The first term contains the generation of vorticity due to variations on the
surface tension forces (e.g. curvature) along the bubble interface, normal vis-
cous stresses and mass transfer effects (these two last effects usually play
a minor role). The second term depends on the interface curvature κ, the
tangential velocity to the interface and the normal velocity jump. Because
the normal velocity jump is directly related to the mass transfer flux across
the interface, this expression reveals that mass transfer effects have an im-
pact on the generation and destruction of vorticity in a turbulent multiphase
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flow. Thus, the presence of an interface significantly modifies the generation
of turbulence in a given system even in the incompressible limit, being sur-
face tension and mass transfer effects two key mechanisms that significantly
influence the characteristics of the overall flow.

How to model the interaction between turbulence and an interface and
the impact of these effects on the overall averaged quantities is not easy given
the difficulties to propose theoretical models based on physical principles but
also due to the significant and usually unknown dissipation introduced by a
given numerical method when simulating a turbulent multiphase flow prob-
lem [68]. We summarize next some of the approaches that have been reported
until now to model turbulence in cavitating flows.

One solution is to use the natural diffusion of numerical schemes as an
implicit turbulence model which ideally captures the influence of the sub-
grid scales on the resolved structures. Using this approach, typically known
as Monocally Integrated LES (MILES) [66,67], there is no need to include
any physical model capturing the influence of unresolved structures on the
numerical solution. In the context of cavitating flows some examples include
those in [178,153,179,17,102,36].

Another classical alternative is the use of RANS models proposed as sim-
ple extension of already existing models for single phase flow. Various authors
[124,125,184,144,4,200,10,194,220] use a turbulence closure based on the k-ε
model with standard wall functions [113]

∂ρmk

∂t
+ ∇ · (ρmku) = ∇ ·

(
µt

Prt,k
∇k

)
+ P − ρε

∂ρmε

∂t
+ ∇ · (ρmεu) = ∇ ·

(
µt
Prt,ε

∇ε

)
+ [C1P − C2ρε]

ε

k

This model has been shown to provide reasonable approximations of the wall
pressure distribution in steady-state and transient sheet- and super–cavity
flows [124,125,200] but the density and stress distributions obtained typi-
cally exhibit a high sensitivity to the model parameters. Senocak Shyy [180]
use a nonequilibrium version of the k-ε model reaching similar conclusions:
while the predictions of pressure are not significantly influenced by the tur-
bulence model other quantities, such as wall shear stress and velocity profiles,
can be sensitive to it. Information about the application of this model for
different test cases is given in Shyy et al [182] and other variants of the k-ε
model include those from Johansen et al [107], who propose a filtered based
k-ε model. Saito [172] computes the turbulent viscosity using the modifica-
tion of the Baldwin-Lomax model [16] proposed by Degani–Schiff [50]. This
model requires the definition of a turbulent heat conductivity κt defined as
κt = µt/Prt. The model is validated for cavitating flow around a body of
hemi-sphere/cylinder geometry and by numerical simulations of 2D and 3D
unsteady cavitating flow around a NACA0015 hydrofoil.
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The k-ω SST model proposed by Menter [142], where the turbulence ki-
netic energy and specific dissipation rate are computed from the solution of
two PDEs, has become also popular to simulate hydrodynamic cavitating
flows [86,169,155]. In particular the recent work of Pendar et al [155] shows
interesting comparisons between the predictions of this model and the ex-
perimental results of [22] and LES simulations, showing that the model is
able to provide time–averaged values of the unsteady vapor shedding of the
cavity behind the sphere, but it is unable to capture the instabilities of the
cavity accurately.

Despite the improvements on the quality of numerical results it is gener-
ally admitted that it is difficult to reproduce experimental observations using
RANS models given that they neglect any influence of the multiphase nature
of the flow in the turbulence model. Coutier–Delgosha et al [41] propose a
modified k-ε model based on the correction of the turbulent viscosity, such
that µt = f(ρ)Cµk

2/ε, with Cµ = 0.085 and f(ρ) = ρg + αng (ρl − ρg) n > 1.
This empirical correction is based on the observation that the standard k-ε
model over–estimates the viscous dissipation introduced in cavitating flows
supressing physical cyclic behaviors observed in a venturi section. Similar
findings have been reported by other authors (see for example [82,84]). Al-
though the definition of a modified viscosity circumvent the problem for a
specific application, this fact reveals the problems of single phase turbulence
models to correctly capture the physical mechanisms induced by the interac-
tion between an interface and a turbulent flow already discussed.

Due to the difficulties of RANS models to reproduce unsteady cavitating
flows mechanisms, in recent years many researchers have been testing LES
models obtaining a significant improvement in the predictions compared to
RANS models. Some examples include simulations around a sphere [82,84,
155] and a disk [169], the flow around an hydrofoil [199,170,106,118,102]
and simulations of the flow generated by a propeller [17]. In these mod-
els the subgrid scale turbulent viscosity, µk, is obtained by a “Local Eddy-
Viscosity” model in which the influence of the presence of multiple phases
on the problem is still neglected. Most of these works are only straightfor-
ward extensions of the methodologies followed for the simulation of single
phase flows including the classical Dynamic Smagonisky model [82,84], im-
plicit LES methods [17,102], and the “one equation eddy viscosity model”
[170,118,155]. Among the various results it is worth mentioning the work
of Pendar et al [155] who report LES simulations of supercavitation over a
sphere at a constant Reynolds number of 1.5 × 106 and a broad range of
cavitation numbers (0.36 < σ < 1) obtaining structures that are relatively
close to those experimentally reported in [22] compared to those previously
reported using RANS simulations.
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5.4 Nucleation

Another important process influencing the characteristics of cavitating flows
is the process of bubble nucleation. The amount of liquid vaporized or the rate
of bubble nuclei activated control the characteristics of the entire cavitating
flow but how to model these effects is still object of an intense research. This
work is not intended to provide a review of nucleation theories but it is still
worth mentioning some challenges when modeling these processes. Different
theories and mechanisms have been proposed by various authors to explain
the process of bubble nucleation [112,32] but the experimental validation of
these theories is difficult and in most of the applications it is not easy to dis-
criminate among the various proposed mechanisms the one that eventually
controls the process of nucleation in a given application.

Homogeneous nucleation models are designed to predict phase transition
from pure substances that enter in a metastable state. These models are
characterized by the prediction of the spinodal curve which establishes the
limits of metastability beyond which the presence of single substance is un-
stable and phase separation occurs naturally. The problem is that the lack
of consensus about how to theoretically obtain the spinodal curve and the
difficulties to experimentally obtain the EOS in a metastable state makes dif-
ficult to validate various different approaches proposed in the literature [49].
To measure the cavitation threshold in water has been particularly challeng-
ing given that different experimental techniques provide different negative
pressures beyond which bubble nucleation occur. Only using mineral inclu-
sions scientists have been able to obtain values consistent with the Classical
Nucleation Theory (-140 MPa) [219]. Other techniques including high inten-
sity ultrasounds in ultrapurified and degassed water have revealed that water
naturally nucleates at lower negative values being the interpretation of these
results is still topic of an intense research [13].

Heterogeneous nucleation models justify the process of bubble inception
by the growth of pre-existing bubble nuclei that are naturally present in the
system [48,97,98]. In this type of models, continuum equations are still valid
although the typical length scales required to capture the dynamic response
of pre-existing germs are very small (below 1 µm). Blake’s radius relates the
size of the bubble nuclei in a liquid and the maximum tensions the liquid can
stand before inception occurs for a spherical nucleus,

pc = pvap −
4σ

3Rc
, (63)

Rc
R0

=
√

3

(
1 +

p0 − pvap
2σ

R0

)1/2

, (64)

where σ is the surface tension and Rc is the critical radius for which the max-
imum negative pressure is reached. This result reveals the possibility to find
bubbly liquids in mechanical equilibrium where the liquid is in a metastable
state (e.g. under negative pressure). The expression above also allows ob-
taining the minimum nuclei size R0,min above which pre-existing bubbles
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will nucleate for a known pmin below the vapor pressure. Extensions of this
reasoning have been proposed in the literature to capture the influence of the
walls which is important to prevent the nuclei from dissolution [11,12,147]
or polydispersity [75].

All heterogeneous nucleation theories assume that the bubble nuclei are
in mechanical equilibrium with the surrounding medium at every instant
before inception occurs. In reality dynamic effects can be relevant in applica-
tions involving ultrasounds and shock waves where the excitation frequencies
can be of the order or above the bubble resonance frequency of pre-existing
germs, being the excitation frequency an important parameter in the process
of nucleation [63,43]. A rough estimation for the upper bound of the range of
applicability of these approaches can be obtained by imposing that a bubble
will only equilibrate its pressure with a varying external pressure fluctuation
of the surrounding medium if the excitation frequency ω is smaller than the

bubble resonance frequency, ω0 ∼ 1
R0

√
p0
ρl

. This implies that among the over-

all distribution of bubble nuclei pre-existing in a liquid, only those within the

range R0,min(pmin) < R0 < R0,max(ω), where R0,max(ω) ∼ 1
ω

√
p0
ρl

, will fulfill

the conditions for the Blake’s estimation to hold valid as an activation crite-
rion. This result must be taken cautiously as nucleation usually occurs close
to the walls and the hypothesis of sphericity is questionable but it sheds light
into the relevance of dynamic processes on the process of bubble nucleation.

Finally, another problem of heterogeneous cavitation models is that even
when they have been widely used to qualitatively describe the process of
bubble nucleation, to use them as a quantitative tool require to know pa-
rameters such as the size and geometry of pre–existing nuclei, which are
expected to dynamically evolve in time and to depend on parameters such
as the surface roughness that can be only controlled in laboratory designed
experiments [25,24]. To predict in real applications the density of nucleation
sites and the rate of depletion of these sites depends, among other factors, on
the influx of bubble nuclei in the system, the influence of the walls roughness
and hydrophobicity properties, the presence of impurities and mass diffu-
sion effects that induce memory effects on the process of bubble nucleation
[212,32]. Some authors propose the use of Molecular Dynamic simulations
to predict the natural formation of sub-micron bubbles in the flow [143] and
recent works have investigated the mechanisms of nanobubble formation and
stabilization in flat surfaces (see [132] for a review) but in practice there is
not yet a clear strategy about how to develop and validate models able to
reproduce the overall process of heterogeneous nucleation.

6 Conclusions and perspectives

The development of numerical methods and models for the simulation of bub-
ble clusters described above is making possible to explore problems of criti-
cal importance in fundamental science and engineering applications. Current
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numerical techniques are a useful tool to improve our understanding about
the intrincate mechanisms involving pressure variations and bubbles but cer-
tainly further developments are needed in order to capture the rich variety of
physical phenomena usually taking place in applications involving fast bub-
ble dynamic responses and cavitating flows.

Many of the models used for DNS of collapsing bubbles assume that the
response of the bubble is adiabatic (high Peclet number regime) neglecting
mass and heat transfer across the interface. These codes have shown to be a
useful tool for the investigation of the interaction of pressure waves and bub-
bles, the peak pressures and shear stresses generated by collapsing bubbles
near walls and to characterize the turbulent structures generated during the
collapse of a bubble. However, they are still limited to regimes where heat
and mass transfer effects are negligible. This is problematic as it has been
shown in numerical studies accounting for mass transfer assuming spheri-
cal symmetry. Part of the reason why mass transfer models have not been
included in three-dimensional Eulerian–Eulerian solvers is that mass trans-
fer significantly increase the complexity of the numerical methods required to
solve the equations. How to correctly impose the jump conditions established
by the balances across an infinitely thin interface remain a challenge in these
methods. In addition Riemann solvers and pressure based solvers require ex-
pressions for the sound speed in cells containing liquid and vapor mixtures,
for which there are not well-established expressions when phase change ef-
fects are relevant. The development of numerical codes able to handle phase
change process across the interface will require the validation of codes in
problems related to cavitating flows where mass transfer effects become rel-
evant either by using well–controlled experiments or theoretical solutions.

Another fundamental difficulty on the DNS of real cavitating bubbles is
how to model interfacial phenomena. The bubble drag and mass transfer pro-
cesses across the interface are only two examples of known processes to be
influenced by the presence of solid impurities and surfactants accumulating
at the interface but how to model these effects in continuum models is an
important modelling issue that has not been solved yet. The dynamics of the
triple contact point is also a major modelling issue for the DNS of the process
of bubble dynamics close to walls which has implications understanding the
process of heterogeneous nucleation and also reproducing the dynamics of
bubbles in contact with solid walls.

Models for large bubble clusters in the dilute limit have been shown to
relatively well capture various observations such as the propagation of acous-
tic and shock waves in bubbly liquids. However, modeling cavitating flows at
large void fractions still face important modeling issues that have not been
correctly addressed yet. For instance a large portion of models assume that
the mixture response can be modeled using a barotropic equation of state,
while numerical studies for single bubbles and also for bubble clusters in
the dilute limit show that mechanisms such as the dynamic response of the
bubbles and the heat and mass transfer effects through the interface usually
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invalidate the use of a barotropic EOS for the mixture directly relating the
averaged pressure and density. The use of correct EOS for the mixture de-
termining the effective sound speed of the mixture is challenging given that,
as shown in studies in the diluted limit, in most situations we cannot assume
that the bubble interface is equilibrium with the surrounding and therefore
the effective sound speed is a complex function. To revise the use of EOS
imposes additional restrictions on the numerical methods that can be used:
In those regions where mass transfer effects become important the sound
speed of the mixture is significantly reduced and therefore it is likely to en-
counter supersonic flows [78]. The use of numerical schemes able to correctly
capture shock–waves seems then compulsory to correctly solve flows where
phase change processes are important.

Other modeling difficulties discussed in this review include the develop-
ment of reliable models for bubble nucleation, mass transfer processes and
turbulence, the last two processes closely interacting with each other. The
difficulties of averaged models to capture the experimental observations have
been reported since long time to measure the turbulence intensity in cav-
itating flows [87] and also the density and stress distributions obtained in
hydrodynamic applications [180]. Current lines of research for large scale
bubble clusters are mainly focused on the use of large computational power
able to carry on LES simulations of cavitating flows. Although these sim-
ulation have started to reproduce effects experimentally observed [155], the
consistency and the range of applicability of the models and numerical meth-
ods used require revision in order to correctly account for the presence of
multiple phases and their effect on large scale quantities (e.g. averaged void
fraction, pressure distributions in surrounding objects, shear stresses...). To
clarify the role of phenomena at small (unresolved) scales on the large scales
in multiphase flows seems critical in order to develop advanced models able
to accurately predict the response of bubble clusters in real applications.
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101. H. Hertz. Über die Verdunstug der Flüssigkeiten, Inbesondere des Quecksil-
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