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Three-dimensional direct numerical simulations are used to study the energy cascade rate in

isothermal compressible magnetohydrodynamic turbulence. Our analysis is guided by a two-point

exact law derived recently for this problem in which flux, source, hybrid, and mixed terms are

present. The relative importance of each term is studied for different initial subsonic Mach numbers

MS and different magnetic guide fields B0. The dominant contribution to the energy cascade rate

comes from the compressible flux, which depends weakly on the magnetic guide field B0, unlike the

other terms whose modulus increase significantly with MS and B0. In particular, for strong B0 the

source and hybrid terms are dominant at small scales with almost the same amplitude but with

a different sign. A statistical analysis made with an isotropic decomposition based on the SO(3)

rotation group is shown to generate spurious results in presence of B0, when compared with an

axisymmetric decomposition better suited to the geometry of the problem. Our numerical results

are compared with previous analyses made with in-situ measurements in the solar wind and the

terrestrial magnetosheath.

I. INTRODUCTION

Exact results in fully developed turbulence represent

strong boundary conditions that any model must satisfy

[1], even though there are only a few of such predictions.

The so-called “4/5 law" is an exact relation for incom-

pressible hydrodynamic (HD) turbulence. In the infinite

Reynolds number limit and assuming space homogeneity,

isotropy, and time stationarity, this law expresses how

the two-point third-order structure function for the ve-

locity field is connected to the energy cascade rate ε. In

particular, in Fourier space and in the absence of inter-

mittency, this exact relation leads to the well-known Kol-

mogorov energy spectrum Ek ∼ ε2/3k−5/3 [2, 3]. For in-

compressible magnetohydrodynamic (IMHD) turbulence,

a first attempt at deriving such relations was done by

Chandrasekhar [4], under the assumptions of infinite ki-

netic and magnetic Reynolds numbers, time stationar-

ity, space homogeneity, and full isotropy (i.e., rotation

and mirror symmetries). Later, Politano and Pouquet

[5, 6] derived the so-called 4/3 law for IMHD turbulence,

which gives a simple relation between two-point third-

order structure functions, the distance between the two

points, and the energy dissipation rate.

The validity of the exact law in IMHD turbulence has

been the subject of several numerical tests [see, e.g. 7–10].

For example, Mininni and Pouquet [7] reported high spa-

tial resolution results for decaying IMHD turbulence in

which the energy dissipation rate seems to reach asymp-

totically a constant value at large Reynolds numbers.

An extension of the exact IMHD law in presence of a

constant velocity shear was proposed and tested numer-

ically with direct numerical simulations (DNSs) of two-

dimensional (2D) IMHD [9]. Among several other uses,

the exact laws for IMHD turbulence provide a precise

identification of the inertial range [see, e.g., 11, and ref-

erences therein], and an estimate of the energy cascade

rate and the Reynolds numbers in experiments of tur-

bulence, in particular when dissipation mechanisms are

unknown such as in near-Earth space plasmas [12–15].

http://arxiv.org/abs/1802.05503v2
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Under the classical assumptions of homogeneity, sta-

tionarity, and infinite kinetic/magnetic Reynolds num-

bers, Banerjee and Galtier [16] derived an exact law

for isothermal compressible MHD (CMHD) turbulence.

Their results revealed the presence of a new type of term

that acts in the inertial range as a source (or a sink) for

the energy cascade rate [see also, 17]. It is worth notic-

ing that in IMHD turbulence there is only one type of

term, the flux, that transfers energy in the inertial range

[1, 18]. Because of its complexity, the expression of the

exact law in CMHD is not unique [e.g., see 19]. For ex-

ample, Andrés and Sahraoui [20] have re-derived the law

using the plasma velocity, the compressible Alfvén veloc-

ity, and the plasma density as primitive variables. The

authors found four different categories of terms that are

involved in the inertial range. Besides the flux and the

sources previously reported, the authors also found two

new types of terms to which they referred to as hybrid and

β-dependent terms (with β the ratio between the plasma

and magnetic pressure). One of the goals of the present

paper is thus to investigate numerically the relative im-

portance and the contribution of each of these terms to

the exact law in CMHD isothermal turbulence.

The role of density fluctuations in the solar wind en-

ergy cascade rate was investigated by Carbone et al. [21].

Using Ulysses solar wind data the authors found a bet-

ter scaling relation with a heuristic compressible model

than with the IMHD exact relation, showing therefore

the relevance of density fluctuations in the cascade pro-

cess (see a discussion of this model in Hadid et al. [22]).

Following a more rigorous approach, Banerjee et al. [23]

used the exact law for isothermal CMHD [16] to analyze

the fast solar wind data from the THEMIS mission. The

authors performed a term-by-term analysis, showed the

existence of an inertial range over more than two decades

of scales, and found that the compressible fluctuations

increase (from 2 to 4 times) the estimation of the turbu-

lent cascade rate with respect to the estimations stem-

ming from the incompressible model. Hadid et al. [22] ex-

tended the previous analysis (still using THEMIS data)

to the slow solar wind which is known to be more com-

pressible. In this case they found that the compressible

energy cascade rate is increased even further (because of

higher density fluctuations in the slow solar wind when

compared to the fast wind) and that it obeys a power-

law scaling with the turbulent Mach number. However,

it is worth noticing that in all these recent studies [22–

24] several source terms of the exact CMHD law have

been neglected. It is another goal of the present paper to

check carefully if the assumptions made to neglect these

terms are indeed satisfied in DNS close to the solar wind

conditions.

Recently, several new results have been obtained in

compressible turbulence that are worth mentioning here.

For example, Zank et al. [25] used the nearly incompress-

ible MHD (NI MHD) equations [e.g., see 26] to describe

solar wind homogeneous or inhomogeneous turbulence

for plasma β <∼ 1. The authors presented a NI MHD

formulation describing the transport throughout the so-

lar wind of turbulence which was in its majority 2D, and

with a small slab component. Using Voyager 1 measure-

ments, Zank et al. [27] showed that inner heliosheath fast

and slow MHD waves incident on the heliopause gener-

ate, in the very local interstellar medium (LISM), only

fast MHD waves that propagate into this medium. The

authors suggested that this may be the origin of com-

pressible turbulence in the LISM.

On the other hand, Yang et al. [28] used DNS of me-

chanically forced CMHD turbulence to study the de-

gree to which some turbulence theories proposed for in-

compressible flows remain applicable in the compress-

ible case. In particular, intermittency, coherent struc-

tures, and energy cascade rates were studied with dif-

ferent forcing mechanisms. Grete et al. [29] extended

the classical shell-to-shell energy transfer analysis to the

isothermal compressible regime. The authors derived

four new transfer functions in order to measure, e.g., the

energy exchange via the magnetic pressure. Andrés et al.

[30] showed direct numerical evidence of the excitation

of magnetosonic and Alfvén waves in three-dimensional

(3D) CMHD turbulence at small sonic Mach numbers.

Using spatio-temporal spectra, in the low β regime, the

authors found excitation of compressible and incompress-

ible fluctuations, with a clear transfer of energy towards

Alfvénic and 2D modes. However, in the high β regime,

fast and slow magnetosonic waves were present with no

clear signature of Alfvén waves, a significant part of the

energy being carried by 2D turbulent eddies. Finally, An-

drés et al. [31] derived an exact law for 3D homogeneous

compressible isothermal Hall magnetohydrodynamic tur-
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bulence, without the assumption of isotropy. The authors

showed that the Hall current introduces new flux and

source terms that act at the small scales (comparable or

smaller than the ion skin depth) to significantly impact

the turbulence dynamics.

The main goal of the present paper is thus to investi-

gate the energy cascade rate in isothermal CMHD tur-

bulence using 3D DNSs. We present a comprehensive

analysis of the exact law, with a particular emphasis on

the nature of each term involved in the nonlinear cascade

of energy, and on the role of the background magnetic

field B0. Furthermore, we discuss our numerical results

in the context of the original observational results from

Refs. [22, 23]. We expect that our numerical findings will

help to clarify some subtle issues regarding the use of the

compressible exact law in DNSs and spacecraft data.

The paper is organized as follows: in Sec. II A we de-

scribe the CMHD equations; in Sec. II B we present the

exact law for fully developed isothermal CMHD turbu-

lence; in Sec. II C and II D we introduce the numerical

code and techniques used to compute the different cor-

relation functions; in Sec. III we expose our numerical

results and, finally, in Sec. IV we discuss the main find-

ings and their implications for the observational studies

in the near-Earth space.

II. THEORY

A. Compressible MHD

The 3D CMHD equations correspond to the continu-

ity equation for the mass density, the momentum equa-

tion for the velocity field in which the Lorentz force is

included, the induction equation for the magnetic field,

and the differential Gauss’ law. These equations can be

written as [see, e.g., 30, 32],

∂ρ

∂t
= −∇ · (ρu), (1)

∂u

∂t
= −u ·∇u − ∇P

ρ
+

(∇× B)× B

4πρ
+ fk + dk, (2)

∂B

∂t
= ∇× (u × B) + fm + dm, (3)

∇ ·B = 0, (4)

where u is the velocity field fluctuation, B = B0+b is the

total magnetic field, ρ is the mass density, and P is the

scalar pressure. For the sake of simplicity we assume that

the plasma follows an isothermal equation of state, P =

c2sρ, where cs is the constant sound speed, which allows

us to close the hierarchy of the fluid equations (no energy

equation is further needed). Finally, fk,m are respectively

a mechanical and the curl of the electromotive large-scale

forcings, and dk,m are respectively the small-scale kinetic

and magnetic dissipation terms.

Alternatively to the magnetic field B, the compress-

ible Alfvén velocity uA ≡ B/
√
4πρ can be used (where

ρ is time and space dependent). In this manner, both

field variables, u and uA, are expressed in speed units.

Therefore, Eqs. (1)-(4) can be cast as [33],

∂e

∂t
= −u ·∇e− c2s∇ · u, (5)

∂u

∂t
= −u ·∇u + uA ·∇uA − 1

ρ
∇(P + PM )

− uA(∇ · uA) + fk + dk, (6)

∂uA

∂t
= −u ·∇uA + uA ·∇u− uA

2
(∇ · u) + fm + dm,

(7)

uA ·∇ρ = −2ρ(∇ · uA), (8)

where PM ≡ ρu2
A
/2 is the magnetic pressure. Note that

we have written Eq. (3) as a function of the internal

compressible energy for an isothermal plasma, i.e., e ≡
c2s ln(ρ/ρ0), where ρ0 is a constant (of reference) mass

density. In the rest of the paper we shall assume that the

fields considered are regular and therefore differentiable.

Singular fields may exist in the inviscid case, leading to

the appearance of anomalous dissipation [34–36].

B. Exact law for CMHD turbulence

Following the usual assumptions for fully developed

homogeneous turbulence (i.e., infinite kinetic and mag-

netic Reynolds numbers and a steady state with a bal-

ance between forcing and dissipation [11, 16, 17, 37, 38]),

an exact law for CMHD turbulence can be obtained as

[16, 20],
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−2εC =
1

2
∇ℓ ·

〈

[(δ(ρu) · δu+ δ(ρuA) · δuA + 2δeδρ
]

δu − [δ(ρu) · δuA + δu · δ(ρuA)]δuA

〉

+ 〈[R′
E − 1

2
(R′

B +RB)− E′ +
P ′
M − P ′

2
](∇ · u) + [RE − 1

2
(RB +R′

B)− E +
PM − P

2
](∇′ · u′)〉

+ 〈[(RH − R′
H)− ρ̄(u′ · uA) +H ′](∇ · uA) + [(R′

H −RH)− ρ̄(u · u′
A) +H ](∇′ · u′

A)〉

+
1

2
〈
(

e′ +
uA

2

′2
)[

∇ · (ρu)
]

+
(

e+
uA

2

2
)[

∇
′ · (ρ′u′)

]

〉

− 1

2
〈β−1′

∇
′ · (e′ρu) + β−1

∇ · (eρ′u′)〉, (9)

where εC is the total compressible energy cascade rate.

We have defined the total energy and the density-

weighted cross-helicity per unit volume respectively as

E(x) ≡ ρ

2
(u · u+ uA · uA) + ρe, (10)

H(x) ≡ ρ(u · uA), (11)

and their associated two-point correlation functions as,

RE(x,x
′) ≡ ρ

2
(u · u′ + uA · u′

A) + ρe′, (12)

RH(x,x′) ≡ ρ

2
(u · u′

A + uA · u′). (13)

In addition, we have defined the magnetic energy den-

sity as RB(x,x
′) ≡ ρ(uA · u′

A
)/2. In all cases the prime

denotes field evaluation at x′ = x + ℓ (ℓ being the dis-

placement vector) and the angular bracket 〈·〉 denotes an

ensemble average. It is worth mentioning that the prop-

erties of spatial homogeneity implies (assuming ergod-

icity) that the results of averaging over a large number

of realizations can be obtained equally well by averaging

over a large region of space for one realization [39]. Fi-

nally, we have introduced the usual increments and local

mean definitions, i.e., δα ≡ α′ − α and ᾱ ≡ (α′ + α)/2

(with α any scalar or vector function), respectively.

We recall that the derivation of the exact law (9) does

not require the assumption of isotropy and that it is in-

dependent of the dissipation mechanisms acting in the

plasma (assuming that the dissipation acts only at the

smallest scales in the system) [see also, 11, 17, 37]. In a

compact form, the exact law for CMHD turbulence (i.e.,

Eq. 9) can be schematically written as,

−2εC =
1

2
∇ℓ · FC + SC + SH + Mβ, (14)

where FC, SC, SH and Mβ represent the total compress-

ible flux, source, hybrid and β-dependent terms, respec-

tively, which are defined as

FC ≡ 〈[(δ(ρu) · δu+ δ(ρuA) · δuA + 2δeδρ
]

δu − [δ(ρu) · δuA + δu · δ(ρuA)]δuA〉, (15)

SC ≡ 〈[R′
E − 1

2
(R′

B +RB)](∇ · u) + [RE − 1

2
(RB +R′

B)](∇
′ · u′)〉

+ 〈[(RH −R′
H)− ρ̄(u′ · uA)](∇ · uA) + [(R′

H −RH)− ρ̄(u · u′
A)](∇

′ · u′
A)〉, (16)

SH ≡ 〈
(P ′

M − P ′

2
− E′

)

(∇ · u) +
(PM − P

2
− E

)

(∇′ · u′)〉+ 〈H ′(∇ · uA) +H(∇′ · u′
A)〉

+
1

2
〈
(

e′ +
uA

2

′2
)[

∇ · (ρu)
]

+
(

e+
uA

2

2
)[

∇
′ · (ρ′u′)

]

〉, (17)

Mβ ≡ − 1

2
〈β−1′

∇
′ · (e′ρu) + β−1

∇ · (eρ′u′)〉. (18)

The quantity in eq. (15) is associated with the en- ergy flux, and is the usual term present in the exact law
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of incompressible turbulence [20]. This term is written

as a global divergence of products of increments of dif-

ferent variables. It is worth mentioning that the total

compressible flux (15) is a combination of fourth- and

third-order terms, which makes a major difference with

the incompressible case where the flux terms are usually

third-order correlation functions. The occurrence of a

fourth-order correlation function is a direct consequence

of the total energy definition in the CMHD model (see

Eq. 10), which is cubic in the fields. The purely com-

pressible source terms in Eq. (16) may act as a source (or

a sink) for the mean energy cascade rate in the inertial

range. These terms involve two-point correlation func-

tions (namely RE , RB and RH) and are proportional to

the divergence of the Alfvén and kinetic velocity fields.

The hybrid term offers the freedom to be written ei-

ther as a flux- or as a source-like term. However, when

written as a flux-like term it cannot be expressed as the

product of increments, as the usual flux in incompress-

ible HD and MHD turbulence [2–6, 40] or the flux term

in Eq. (15). On the other hand, the mixed β-dependent

term (already reported as a flux-like term in Banerjee

and Galtier [16] under certain conditions) has no counter-

part in compressible HD turbulence [17, 41] and cannot,

in general, be expressed either as purely flux or source.

Note also that the mixed β-dependent term stems from

the magnetic pressure gradient term in the momentum

Eq. (2).

The schematic representation in Eq. (14) thus reflects

the nature of each term in the exact law for CMHD tur-

bulence [20], and helps us quantify the impact of each

contribution to the nonlinear energy cascade rate. It is

worth mentioning that in the observational works in Refs.

[22, 23], FC, part of Mβ (under the assumption of sta-

tistical stationarity of the β parameter), and part of SH

were considered in the evaluation of the solar wind en-

ergy cascade rate. The remaining terms were considered

as sources and assumed to be sub-dominant in the iner-

tial range [see, 42]. We will return to this issue in Sec.

IV.

Under a sufficiently strong guide field B0, and assum-

ing that the flow is statistically axisymmetric and has a

weak dependence along the direction of the guide field,

we can integrate Eq. (14) over a cylinder of radius ℓ⊥ and

obtain an approximate scalar relation for anisotropic tur-

Run B0 MS 〈δEu〉 〈δEb〉

I 0 1/4 0.13 0.14

II 2 1/4 0.15 0.05

III 8 1/4 0.16 0.06

IV 0 1/2 0.13 0.14

TABLE I. Parameters used in Runs I to IV: B0 is the mag-

netic guide field, MS is the sonic Mach number, 〈δEu〉 and

〈δEB〉 are the average fluctuating kinetic and magnetic ener-

gies reached in the stationary state.

bulence in symbolic form (see also, Sec. II D),

−4εCℓ⊥ = FC + QSC
+ QSH

+ QMβ
, (19)

where FC ≡ FC · ℓ⊥/ℓ⊥ and the integral functions corre-

spond to

QT ≡ 2

ℓ⊥

∫ ℓ⊥

0

T(ℓ∗⊥)ℓ
∗
⊥dℓ

∗
⊥, (20)

with T(ℓ⊥) = SC(ℓ⊥), SH(ℓ⊥) and Mβ(ℓ⊥), respectively.

C. Numerical code

The 3D CMHD Eqs. (1)-(4) are numerically solved

using the Fourier pseudo-spectral code GHOST [43, 44]

with a new module for compressible flows based on pre-

vious developments [45, 46]. The numerical scheme used

ensures the exact energy conservation for the continuous

time spatially discrete equations [44] (as well as conserva-

tion of all other quadratic invariants in the system). We

used a linear spatial resolution of N = 512 grid points

in each direction in a cubic periodic box. For simplic-

ity, we used identical dimensionless viscosity and mag-

netic diffusivity, ν = η = 1.25 × 10−3 (i.e., the mag-

netic Prandtl number is Pm = ν/η = 1). In all our

runs, the minimum wave number is kmin = 1 for a box

of length L0 = 2π, and N = 512 leading to a maxi-

mum wavenumber kmax = N/3 ≈ 170 (resulting from

the 2/3 de-aliasing rule). At all times, we checked that

kD/kmax < 1, kD being the dissipation wave number, or

in other words, that the simulations were well resolved.

The initial state of our simulations corresponds to den-

sity, velocity and magnetic fields amplitude fluctuations

equal to zero. For all times t > 0, the velocity field and

the magnetic vector potential are forced by a solenoidal
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mechanical and an electromotive forcing, respectively, at

the largest scales of the numerical box (i.e., in the shell

of modes in Fourier space with 1 ≤ kf ≤ 3, where kf are

the forced wave numbers). The mechanical and electro-

motive forcings are random and uncorrelated, and they

inject neither kinetic nor magnetic helicity. Furthermore,

the set of random phases of the two forces are indepen-

dent. These random phases are slowly evolved in time,

to avoid introducing long-time correlations, but also to

prevent introducing very fast spurious time scales. To

this end, a new set of random phases is generated for

each forcing function every 1/2 turnover time. Finally,

the forcings are linearly interpolated from their previ-

ous states to the new random states on 1/2 turnover

time, and the process is then repeated (for more details

about the random forcing scheme used here, see [30]).

We performed four numerical simulations with initial

subsonic Mach numbers MS = u0/cs (tipically, u0≈1)

and with different background magnetic field B0 (see Ta-

ble I). This allows us to investigate different regimes of

CMHD turbulence, with a special emphasis on the mag-

netic guide field and the level of compressibility of the

plasma. In all cases studied here B0 is along the ẑ axis.

D. Correlation functions

For the computation of correlation functions in mul-

tiple directions (and thus to increase statistical conver-

gence by averaging over all these directions), we use the

angle-averaged technique presented in Taylor et al. [47].

This technique avoids the need to use 3D interpolations

to compute the correlation functions in directions for

which the evaluation points do not lie on grid points.

This significantly reduces the computational cost of any

geometrical decomposition of the flow [48]. In particular,

and considering that we have simulations without and

with a magnetic guide field, for which we can expect the

fields to be respectively statistically isotropic or axisym-

metric, we have used two decompositions: the one based

on the SO(3) rotation group for isotropic turbulence, and

another one based on the SO(2)×R symmetry group (i.e.,

rotations in the x̂− ŷ plane plus translations in the ẑ di-

rection) for anisotropic (axisymmetric) turbulence.

The procedure used to average each term in Eq. (9)

over several directions can be summarized as follows: in

the isotropic SO(3) decomposition, the correlation func-

tions are computed along different directions generated

by the vectors (all in units of grid points in the simula-

tion box) (1,0,0), (1,1,0), (1,1,1), (2,1,0), (2,1,1), (2,2,1),

(3,1,0), (3,1,1) and those generated by taking all the in-

dex and sign permutations of the three spatial coordi-

nates (and removing any vector that is a positive or neg-

ative multiple of any other vector in the set) [47, 49]. This

procedure generates 73 unique directions. Field incre-

ments are then computed for all multiples of the 73 vec-

tors. In this manner, the SO(3) decomposition gives the

correlation functions as a function of 73 radial directions

covering the sphere in an approximately homogeneous

way [47], and whose averaging results in the isotropic

correlation functions that depend solely on ℓ.

In the SO(2)×R case, the correlation functions are

computed using 12 different directions generated by in-

teger multiples of the vectors (1,0,0), (1,1,0), (2,1,0),

(3,1,0), (0,1,0), (-1,1,0), (-1,2,0), (-2,1,0), (-1,2,0), (-

1,3,0), (-3,1,0), (-1,3,0) (as before, all vectors are in units

of grid points in the simulation box), and the vector

(0,0,1) for the translations in the z direction. Once all

structure functions were calculated, the correlation func-

tions are obtained by averaging over the 12 directions

in the x̂ − ŷ plane, and the parallel structure functions

can be computed directly using the generator in the ẑ

direction. In other words, the SO(2) decomposition gives

the correlation functions along 12 polar directions in the

x̂− ŷ plane and after averaging, one obtains a final cor-

relation function as a function of the perpendicular polar

direction (i.e., ℓ⊥), while R (the group of translations

along ẑ) is used to compute the correlation function in

the ẑ direction (i.e., with spatial increments ℓ‖) [50]. It

is important to note that these two directions are not

independent, and that if Eq. (9) is used in this way to

estimate parallel and perpendicular fluxes ε
(‖)
C and ε

(⊥)
C ,

they won’t be independent either. In practice, the SO(2)

decomposition amounts to integrating Eq. (9) over the

surface of an infinite (or 2π-periodic in our case) cylin-

der of radius ℓ⊥, under the assumption that for strong

enough B0 the fields are statistically axisymmetric and

have weak dependence on the vertical (ẑ) coordinate, and

thus ℓ⊥ increments dominate the structure functions with
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ε
(⊥)
C ≈ εC . We can thus expect on one hand that this de-

composition will give better estimations of the flux when

B0 is strong. On the other hand, as the directions used

for the SO(2) decomposition are a subset of the 73 direc-

tions in the SO(3) decomposition, for zero or small B0

the two decompositions can be expected to show similar

scaling, albeit with poorer statistics in the former case.

As will be shown in the next section, this is indeed the

case.

It is also worth mentioning that Eq. (9) is expected

to hold for the mean values and not for each particular

direction. In each of these decompositions we thus av-

erage the 73 (or 12) correlation functions of each term

in Eq. (9) to investigate their relative importance in the

compressible energy cascade rate. Although the SO(3)

decomposition is better suited for isotropic turbulence,

it has been used before to investigate anisotropic tur-

bulence for the analysis of experimental results [51, 52]

and numerical simulations [49, 53–55]. The SO(2)×R

decomposition, designed specifically from the symmetry

group of axisymmetric turbulence, has been developed

and used to investigate anisotropic turbulence using nu-

merical simulations in [50]. In all cases, an improvement

in the statistical convergence of correlation functions was

observed when compared with correlation functions com-

puted in only a few directions.

III. NUMERICAL RESULTS

For all runs in Table I, we computed the terms in the

RHS of the exact law (9) using both the anisotropic and

the isotropic decomposition techniques presented in Sec.

II C. We investigate the different components and the

energy cascade rate as we vary the sonic Mach number

and the magnetic guide field in our simulations.

Figures 1(a) and 1(b) show for Run I the terms in the

RHS of Eq. (19) as a function of the perpendicular (ℓ⊥)

and the isotropic (ℓ) scale obtained using the anisotropic

and isotropic decomposition, respectively. Since there is

no privileged direction in Run I (B0 = |B0| = 0), we

find approximately the same variation and amplitude for

the different terms as well as for the total energy cascade

rate, independently of the decomposition used.

There are indications of a fully developed turbulence

10−1 100ℓ⊥

10−7

10−6

10−5

10−4

10−3

10−2

10−1

(a)

run I−Anisotropic decomposition

FC

QSC

QSH

QMβ
1 0 − 1 1 0 0ℓ⊥

10−4

10−2

100

εC

10−1 100
ℓ

10−7

10−6

10−5

10−4

10−3

10−2

10−1

(b)

run I− Isotropic decomposition

FC

QSC

QSH

QMβ
1 0 − 1 1 0 0

ℓ

10−4

10−2

100

εC

FIG. 1. Run I: B0 = 0 and MS = 0.25. Mean value of the

compressible flux FC (black), source SC (dark blue), hybrid

SH (gray) and β-dependent Mβ (light blue) terms of the exact

law (19) computed using the anisotropic (a) and isotropic

(b) decompositions. Solid lines correspond to positive values

while dashed lines correspond to negative values. Inset: total

energy cascade rate computed using Eq. (19).

regime that is compatible with a Kolmogorov-like scaling

[2, 7, 11, 25, 56] and with a constant energy cascade rate

(see inset in Fig. 1). Note that at this moderate spatial

resolution we cannot expect a wide inertial range. Nev-

ertheless, the one evidenced here is sufficient for a first

quantitative study of the different contributions to the
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10−1 100ℓ⊥

10−7

10−6

10−5

10−4

10−3

10−2

10−1

(a)

run II−Anisotropic decomposition

FC

QSC

QSH

QMβ
1 0 − 1 1 0 0ℓ⊥

10−4

10−2

100

εC

10−1 100
ℓ

10−8

10−7

10−6

10−5

10−4

10−3

10−2

(b)

run II− Isotropic decomposition

FC

QSC

QSH

QMβ
1 0 − 1 1 0 0

ℓ

10−6

10−4

10−2

εC

FIG. 2. Run II: B0 = 2 and MS = 0.25. Same description as

in Fig. 1 applies.

exact law.

In the same format as Fig. 1, Figs. 2 and 3 display the

results for Runs II and III respectively. As expected, the

presence of a magnetic guide field B0 strongly affects the

statistical results. First, the compressible flux decreases

slightly when B0 is applied. We also see the appearance

of a negative contribution (for Runs II and III) when the

isotropic decomposition is used; this disrupts the scaling

law that emerges. A comparison with the anisotropic de-

composition reveals that the disruptions are a spurious

10−1 100ℓ⊥

10−7

10−6

10−5

10−4

10−3

10−2

10−1

(a)

run III−Anisotropic decomposition

FC

QSC

QSH

QMβ
1 0 − 1 1 0 0ℓ⊥

10−4

10−2

100

εC

10−1 100
ℓ

10−7

10−6

10−5

10−4

10−3

10−2

10−1

(b)

run III− Isotropic decomposition

FC

QSC

QSH

QMβ
1 0 − 1 1 0 0

ℓ

10−6

10−4

10−2

εC

FIG. 3. Run III: B0 = 8 and MS = 0.25. Same description

as in Fig. 1 applies.

effect due to the assumption of isotropy, which is not ful-

filled in the runs with moderate to strong magnetic guide

field [e.g., see 57]. Second, we find an increase of the

source, hybrid and β-dependent (although in this case

it is less important) integral terms when the magnetic

guide field increases. For Run III, the source and hybrid

terms become even dominant (in absolute value) at small

scales; however, since they have the same amplitude but

with a different sign they cancel each other leaving the

compressible flux as the main contribution to the cas-



9

10
−1

10
0

ℓ⊥

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

(a)−FC

−F1a

−F1b

−F2

FIG. 4. (a) Total compressible flux FC (solid) and its com-

ponents F1a (dashed-dot), F1b (dot) and F2 (dashed) as a

function of ℓ⊥, for Runs I (gray) and IV (black).

cade rate. Still for Run III, it is interesting to note that

it is precisely when the compressible flux dominates (in

absolute value) that the source and hybrid terms behave

differently. Finally, we see that the compressible cascade

rate εC is more difficult to evaluate in the presence of B0

because the inertial range becomes narrower (a higher

spatial resolution seems to be necessary to get a reliable

evaluation of this quantity). Note that in this case the

fluctuating kinetic and magnetic energies become smaller

(by a factor of ≈3) in comparison with the cases without

guide field, resulting from the fact that we kept the forc-

ing amplitude fixed for all simulations independently of

the value of B0.

A. Flux term

The compressible flux in Eq. (15) can be decomposed

as FC = F1a + F1b + F2 with

F1a ≡
〈

[(δ(ρu) · δu+ δ(ρuA) · δuA

]

δu〉, (21)

F1b ≡− 〈[δ(ρu) · δuA + δu · δ(ρuA)]δuA

〉

, (22)

F2 ≡ 2〈δeδρδu〉. (23)

The term F1 = F1a + F1b can be identified as the com-

pressible version of the (incompressible) MHD Yaglom

−0.2 0.0 0.2

e

0.0

0.5

1.0

×107

(a)run I

run IV

0.9 1.0 1.1

ρ

0.0

0.5

1.0

×107

(b)run I

run IV

0.0 0.5 1.0

|u⊥|

0.0

0.2

0.4

0.6

0.8

×107

(c)

run I

run IV

0.0 0.5 1.0

M turb

S

0.0

0.2

0.4

0.6

0.8

×107

(d)

run I

run IV

FIG. 5. Histograms of the internal energy e (a), the mass

density ρ (b), the absolute value of the perpendicular velocity

|u⊥| (c) and the turbulent sonic Mach number M turb
S (d), for

runs I (grey) and IV (black lines).

flux [18] and F2 corresponds to a new purely compress-

ible flux. Figure 4 shows the total compressible flux FC

and its components F1a, F1b and F2 as a function of ℓ⊥

for Runs I and IV (both with B0 = 0) for MS = 0.25 and

MS = 0.5 respectively. Figure 5 displays the histograms

over all the numerical domain of the internal compress-

ible energy density e, mass density values ρ, the absolute

value of the perpendicular velocity |u⊥|, and the point-

wise turbulent Mach number M turb
S ≡ u/cs for Runs I

and IV. In Fig. 4 one can see, in comparisson with Run

I, that in run IV, which has a larger Mach number, the

purely compressible component F2 is also significantly

larger (at least one order of magnitude through all spa-

tial perpendicular scales), while the Yaglom-like terms

F1a and F1b remain approximately the same. Further-

more, while e and |u⊥| have almost the same statistical

values for both runs, the distribution of density values

for MS = 0.5 has a larger spread around the reference

density value (ρ0 = 1) than the one for MS = 0.25. Also,

we obtain a distribution for the internal energy density

e which is compatible with previous results in the liter-
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ature [e.g., see 58–61]. Note that the statistical proper-

ties of the internal energy is relevant for star formation

dynamics [62]. The large spread in mass density fluc-

tuations plus the different turbulent Mach numbers in

both runs explain the strong increase in the amplitude

of F2. However, we see that even for MS = 0.5 the

contribution of F2 to the total compressible flux remains

negligible, which may be explained by the relatively low

density fluctuations δρ/ρ <∼ 10% as can be seen in Fig. 5

(b). Therefore, for small initial values of the sonic Mach

number and zero magnetic guide field, and for the range

of parameters considered in this study, we conclude that

the dominant contribution to the total compressible flux

is due to the Yaglom-like terms.

Finally, we recall that in the present runs we used

a solenoidal mechanical forcing for the velocity field.

In runs with a balanced solenoidal/compressible exter-

nal forcing one may expect to obtain different results.

This issue is particularly relevant for distant astrophysi-

cal plasmas such as the interstellar medium or supernova

remnants [59, 63], where compressible forcing plays an

important role in the injection of energy in the system.

B. Source, hybrid and β-dependent terms

The source, hybrid and β-dependent terms of the exact

law (9) arise exclusively because of the compressibility

of the plasma [30] (in the incompressible case they are

exactly null). In particular, while the source and hybrid

terms are proportional to ∇ ·u, ∇ ·uA and ∇ · (ρu), the

mixed β-dependent term is proportional to ∇ · (e′ρu).
All these terms may modify the energy cascade rate in

the inertial range, which is assumed to be constant at

those scales.

The source (16) can be cast as SC = SC1 + SC2, with

SC1 ≡ 〈[R′
E − 1

2
(R′

B +RB)](∇ · u)

+ [RE − 1

2
(RB +R′

B)](∇
′ · u′)〉, (24)

SC2 ≡ 〈[(RH −R′
H)− ρ̄(u′ · uA)](∇ · uA)

+ [(R′
H −RH)− ρ̄(u · u′

A)](∇
′ · u′

A)〉, (25)

where SC1 and SC2 correspond to the terms proportional

to ∇ · u and ∇ · uA, respectively. The hybrid term

(17) (which, as already mentioned, can be expressed

10−7

10−5

10−3

run I

10−6

10−5

10−4

10−3

10−2

run II

|SC1|

|SC2|

|SC|

10−1 100

ℓ⊥

10−5

10−4

10−3

10−2

(a)

(b)

(c)

run III

FIG. 6. Total source term SC (light gray) and its components

SC1 (dot black) and SC2 (dashed black) as a function of ℓ⊥

for Runs I (a) , II (b) and III (c).

as a source or flux-like term [16, 20]) can be cast as

SH = SH1 + SH2 + SH3, with

SH1 ≡〈
(P ′

M − P ′

2
− E′

)

(∇ · u) +
(PM − P

2
− E

)

(∇′ · u′)〉,
(26)

SH2 ≡〈H ′(∇ · uA) +H(∇′ · u′
A)〉, (27)

SH3 ≡1

2
〈
(

e′ +
u

′2
A

2

)[

∇ · (ρu)
]

+
(

e+
u2
A

2

)[

∇
′ · (ρ′u′)

]

〉,
(28)

where SH1, SH2 and SH3 correspond to the terms propor-

tional to ∇ · u, ∇ · uA and ∇ · (ρu), respectively. Note

that in recent observational works [22, 23], only the com-

ponent SH3 was used to compute the solar wind energy

cascade rate, besides the flux terms of Eq. (15). The

rest of the hybrid components, i.e., SH1 and SH2, were
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run III

FIG. 7. Total hybrid term SH (light gray) and its compo-

nents SH1 (dot black), SH2 (dashed black) and SH3 (dashed-

dot black) as a function of ℓ⊥ for Runs I (a), II (b) and III

(c).

assumed to be sub-dominant in the inertial range. We

will return to this point in Sec. IV.

Figures 6 and 7 show the absolute values of the source

and hybrid terms as a function of ℓ⊥ for Runs I, II and

III. Like above, the total (integrated) source and hybrid

terms increase with increasing magnetic guide field (but

while keeping the sonic Mach number constant). This

behavior reflects the fact that SC and SH are explicitly

proportional to B0 since uA includes the mean plus the

fluctuating magnetic field. Furthermore, both terms tend

to the same value in the small-scale limit.

Under the assumption of statistical stationarity of the

β parameter, the β-dependent term (18) can be con-

verted into flux-like and be more easily measured using

10−7

10−5

10−3

M
β

run III

run II

run I

10−1 100

ℓ⊥

10−5

10−4

10−3

M
β

(a)

(b)

run IV

run I

FIG. 8. β-dependent terms Mβ as a function of ℓ⊥ for (a)

Runs I (light gray), II (gray) and III (black), and for (b) Run

I (light gray) and IV (black), respectively.

single-spacecraft data [see, 20, 22, 23]. However, in the

present paper, we do not assume such additional hypoth-

esis about the β parameter. Figure 8(a) displays the to-

tal β-dependent term Mβ as a function of ℓ⊥ for B0 = 0,

B0 = 2 and B0 = 8 with MS = 0.25 (i.e., Runs I, II and

III respectively) while Fig. 8(b) shows the same quantity

for MS = 0.25 and MS = 0.5 with B0 = 0 (Runs I and

IV respectively). As for the other contributions, when

we increase the magnetic guide field, the β-dependent

term increases. We see, however, that it remains mainly

smaller than the other contributions and in particular

smaller than the compressible flux, which is compatible

with the analysis shown in Figs. 1 to 3. Finally, from

Fig. 8(b) we note that this term has a strong dependence

on the Mach number, as does the mass density fluctua-

tions (see Fig. 5). This can be also concluded directly

from Eq. (18). Note that in contrast to previous results

[22], here we consider the total density values, i.e., the

mean plus the fluctuating component.
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IV. DISCUSSION AND CONCLUSION

We presented the first detailed 3D numerical analysis

of the exact law for fully developed isothermal CMHD

turbulence [16, 20]. Following Andrés and Sahraoui [20],

we have separated the different contributions of the ex-

act law in four types of terms, i.e., the compressible flux,

source, hybrid and β-dependent terms. We run differ-

ent simulations with varying initial Mach number and

magnetic guide field. For all the runs, the compressible

flux was found to be the dominant component in the

exact law for CMHD turbulence. Furthermore, and as

expected, this term is not strongly affected by the pres-

ence of a magnetic guide field B0 since it is a product of

increments (and because the total density does not vary

significantly between two points in space). In contrast,

B0 was found to have a strong impact on the remain-

ing terms of the exact law (9) [see also, 20] and also on

the anisotropy of the flow [30, 57, 64–73]. Our numerical

findings show a clear increase in SC, SH and Mβ terms

as B0 is increased from 0 to 8. However, in all these

cases the addition of these terms remain negligible with

respect to the total compressible flux. Therefore, our en-

ergy cascade rate estimate has only a weak dependence

on the magnetic guide field. It is worth mentioning that

this result may be quite different if we consider the case

of a strong guide field (B0 > 10), supersonic turbulence

(MS > 1), and/or compressible driving of the velocity

field.

Using in-situ measurements from the THEMIS mis-

sion, Banerjee et al. [23] and Hadid et al. [22] have inves-

tigated the role of compressible fluctuations in the MHD

energy cascade rate for the fast and slow solar winds.

Those works were extended recently to the terrestrial

magnetosheath where a first estimation of the energy

cascade rate was obtained [24]. The authors computed

some of the terms of the exact law (9) and compared

their relative impact on the total compressible energy

cascade rate εC . In these original works, the authors

used an isotropic decomposition to compute the Yaglom-

like term (i.e., F1), the compressible flux (i.e., F2) and a

third flux-like term F3, which is a combination of a part

of the hybrid and the β-dependent (assuming statistical

stationarity of β) terms. In particular,

F3 = 2

〈(

ē+ β−1e+
u2

A

2

)

δ(ρ1u)

〉

, (29)

where ρ1 corresponds to the density fluctuations (the

part proportional to ρ0 has been written as a source and

has not been computed). It is straightforward to identify

the parts of SH3 and Mβ which are involved in Eq. (29).

In Refs. [22, 23], the authors have found for the major-

ity of the analyzed events comparable values of the com-

pressible energy cascade rate εC and the incompressible

one εI (computed from the exact law for IMHD turbu-

lence [5, 6]). That statistical result is compatible with

our numerical findings, in which the Yaglom-like flux is

the dominant component of Eq. (9) and is very close

to the incompressible Yaglom term [18]. However, some

of the spacecraft observations showed that the compress-

ible Yaglom flux and/or the (F2 + F3) term can play

a leading role in amplifying εC with respect to εI , in

particular in the slow solar wind (see Fig. 10 in Ha-

did et al. [22]). There are two possible explanations

to those situations, which are not necessarily mutually

exclusive. First, those events have larger density (and

magnetic field) fluctuations that go beyond the values

covered by our simulations in particular in the slow solar

wind where δρ/ρ <∼ 20% and the turbulent Mach num-

ber MS
turb <∼ 0.8. This should be particularly true for

the events that showed higher ratio of F1/FI up to 10

(see Fig. 10 in [22]). The other possibility is that some

missing (source) terms would have compensated (at least

partly) the F3 term in those works, as we showed in the

present simulations. Indeed, as recalled above, the ob-

servational results in Refs. [22–24] considered only the

contributions from SH3, while our simulations results in-

dicate that the other terms, SH1 and SH2, may well have

equal contribution, and consequently should be consid-

ered. As we mentioned in Sec. III B, the compressible

source terms involve local divergences that cannot be

computed reliably using a single spacecraft because of

the entanglement of the space and time variations (see

Eq. 16). Thus, in Refs. [22–24], the authors had to as-

sume that those terms are sub-dominant in the inertial

range (this was also based on numerical simulations of

supersonic hydrodynamic turbulence [42]). A future im-

provement of those observational works would be to try
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to estimate the missing (source and hybrid) terms us-

ing multispacecraft data from the Cluster or the MMS

mission to evaluate the local vector field divergences.

However, such methods remain to be developed. From

the numerical viewpoint, an improvement to the present

work would consist in making the code capable of captur-

ing higher density fluctuations and higher Mach numbers

than those studied here. This is needed to meet the phys-

ical conditions observed in particular in planetary mag-

netosheaths [24]. These problems will be investigated in

forthcoming works.
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