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Background: Serious games have recently immerged as a good tool for physical rehabilitation. This new 
technology can be used at home, to complement a traditional, clinic based, rehabilitation program. To 
implement a serious game at home, we need to use multiple sensors to record patients’ data. Many 
serious games use visual motion capture techniques, like the Kinect camera, due to their low price and high 
portability. On the other hand, some other systems use inertial sensors to collect data at a higher degree of 
accuracy. In previous works, we showed that a serious gaming system could benefit from combining data 
from different sensors. However, the use of inertial sensors, in a home-based setting, remains a challenge 
since they need to be supplied by an independent battery source, which could influence the acceptability 
of such systems.
Methods: In this paper, we present an energy consumption study, performed on the inertial sensors used in 
our serious game system.
Results: The results show that the sensors are rarely affected by environmental factors. They also show that 
the sensors can function continuously for about 14 hours without battery recharge.
Conclusion: Finally, these results allowed us to establish an optimal set up configuration for home based 
rehabilitation using serious games.

© 2018 AGBM. Published by Elsevier Masson SAS. All rights reserved.
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E-mail address: tien-tuan.dao@utc.fr (T.T. Dao).
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1. Introduction

Physical rehabilitation is a long process that requires the inter-
vention of a specific team of experts [1]. Usually, a patient under-
going this process will perform some sessions at the clinic, with 
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expert supervision, and will be required later to do some exer-
cises at home to remain active between clinical sessions. However, 
there are no current solutions for experts to monitor patient move-
ments while performing exercises at home. In addition, patients 
drop home sessions due to the lack of motivation, and the high 
repetitiveness of these assigned exercises. Recently, these chal-
lenges have been the center of interest for many engineers and 
scientists, who used serious games as a complimentary tool for re-
habilitation.

Researchers have implemented serious games for different 
types of pathologies. Parkinson’s disease (PD) is one of these 
pathologies. Yu et al. developed a real-time Parkinson’s rehabili-
tation environment using a visual motion capture system [2]. The 
system is implemented in a clinic and requires the patient to reach 
and step in different directions and speeds. A virtual avatar mim-
ics the patient’s movements on the screen. However, the system 
was never tested on PD patients. Paraskevopoulos et al. also stud-
ied serious games for PD rehabilitation [3]. They proposed a new 
design guideline for PD rehabilitation games, and developed two 
serious games. They tested these games on five PD patients. Stroke 
rehabilitation is another interesting pathology for serious games. 
Zannatha et al. developed a serious game using Kinect camera and 
EMG sensors [4]. The system has 4 games for upper limb reha-
bilitation, but was not tested on stroke patients. Some researchers 
were interested in general health and wellbeing of the elderly. 
Lozano-Quilis et al. developed an augmented reality system for 
multiple sclerosis using the Kinect camera [5]. The system has 
3 different exercises, and was tested on 11 patients. The results 
showed that the patients accepted the system and felt safe while 
executing the exercises.

Implementing any system at home requires appropriate sensors 
to capture motion data. Two types of sensors are generally used for 
this purpose, visual motion capture sensors (e.g. Kinect) and iner-
tial measurement units (IMU). The Kinect camera is widely used 
in serious game rehabilitation since it presents a portable solu-
tion with low cost [4,5]. However, Kinect has very low accuracy 
when used to estimate joint angles. Previous studies have shown 
that Kinect could estimate knee angle with an error of about 14.5◦
[6–8]. This error is high when compared to the values accepted 
by medical experts to analyze joint data (6◦ for higher extremi-
ties [9] and 5.5◦ for lower extremities [10]). These problems can 
be avoided by using IMU sensors that are able to estimate an-
gles at a higher degree of precision using complex mathematical 
filters [11,12]. Moreover, new studies have started investigating if 
a combination of different sensors could lead to higher precision 
in joint angle estimation. Atrsaei et al. studied a fusion algorithm 
using unscented Kalman [13]. The results showed that the new 
algorithm helped improving the position estimation of some up-
per body segments but not the angle estimation. Glonek et al. 
proposed an algorithm that averages inputs from Kinect and IMU 
sensors to estimate joint angles [14]. The study was validated with 
one subject performing multiple exercises. Other studies have tried 
to use multiple Kinect camera to capture human movements in a 
living lab [15]. In a previous work, we also proposed a new fusion 
algorithm between Kinect and IMU sensors, to better estimate the 
knee angle while performing a serious game rehabilitation exercise 
[6]. However, studies proposing the use of multiple types of sen-
sors have not investigated how to use this technology in a home 
based environment to monitor patients or execute rehabilitation 
programs. The addition of wireless sensors and the necessity to 
recharge them between sessions could influence the user accept-
ability for these solutions. That is why we studied, in this paper, 
the battery and current consumption for the Shimmer3 IMU [16]
that will be used with our previously developed serious game sys-
tem [17–19].
The paper is organized as follows. Section 2 presents the studies 
performed, which includes the battery and current consumption 
study of the IMU sensors. Section 3 highlights the results of the 
battery consumption. Section 4 discusses the results. Finally, Sec-
tion 5 concludes the study.

2. Materials and methods

2.1. IMU study

This test was performed on Shimmer3 IMU sensors [16], 
to identify how many sessions a patient can perform, without 
recharging the sensor. Our choice of sensor is based on our previ-
ous use of Shimmer3 in a data fusion study, between IMU sensors 
and Kinect camera [6]. In the study, Shimmer3 proved to be a very 
accurate sensor for joint angle estimation. The sensor contains a 
tri-axial accelerometer, gyroscope, and magnetometer that are al-
ways switched on during our tests. All these signals are needed to 
achieve a more accurate estimation of joint angle [6]. The study 
can be divided into two parts: battery life study and current con-
sumption study.

2.1.1. IMU battery life
The battery life study includes 3 tests: 1) Effect of communica-

tion distance and sampling rate on battery life; 2) Effect of motion 
on battery life; and 3) Effect of multisensory streaming on battery 
life.

The sensors are charged until their batteries are full. Then, 
the sensors are connected to a developed application (using C#) 
that saves their data to a file in real-time. The application allows 
streaming data from one to seven different sensors, using the Blue-
tooth communication protocol. The objective is to determine the 
effect of different conditions on battery life. Note that these tests 
were performed until battery depletion.

2.1.2. IMU average current consumption
The current consumption study includes 5 tests: 1) Current 

consumption until battery depletion at 51.2 Hz; 2) Effect of com-
munication distance and sampling rate on current consumption; 
3) Effect of motion on current consumption; 4) Effect of multisen-
sory streaming on current consumption; and 5) Effect of placing 
sensor behind human body on current consumption.

For these tests, the sensor is taken out of its box, and the elec-
tronic chip is modified to allow the use of a multimeter (Fig. 1). 
Three trials were done for each test to ensure the reproducibility. 
The same application described above is used to connect the sen-
sor to the PC. The multimeter is connected to the PC via a USB 
port, and an application allows us to save multimeter data to a 
file. The first test was performed to make sure that current con-
sumption is homogeneous for a certain amount of time, which can 
allow us to record multiple trials continuously without recharging 
the sensor. For the other tests, the sensor(s) streamed for 10 min-
utes and the current was collected from the multimeter. Note that 
the test that requires moving the sensor was done manually.

2.1.3. IMU real-time current consumption
This study aimed to provide a detailed description of the cur-

rent pattern in real time, when the sensor is streaming to the 
PC. For this reason, we adopted the same scheme described in 
paragraph 2.2, but we replaced the multimeter with a digital oscil-
loscope (10 mV/div). The current was recorded for 10 minutes at 
different streaming sampling rates. The delay between the received 
packets was also calculated to better understand the sending/re-
ception mechanism put in place by the IMU manufacturers.
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Fig. 1. Electric scheme for current measurement.

Fig. 2. Battery depletion time for different distances at different sampling rates.

3. Results

3.1. Battery life

Firstly, the effect of communication distance and sampling rate 
on battery life was studied. The results of this study are shown 
in Fig. 2. The results obtained with two different distances (10 cm 
and 5 m) from the PC were compared to results obtained in a pre-
vious study done on Shimmer1 [20].

The second study investigates the effect of motion on battery 
life. Since we needed to simulate motion for a long period of time, 
we attached the sensors to a small electric fan, and let it run 
overnight. The test was performed at 51.2 Hz, as it is the sampling 
rate used in our previous studies to estimate body joint angles. 
This sampling rate proved to be sufficient enough to access the 
movement of the human body, which varies generally between 
1–10 Hz in frequency [21]. The results show that when attach-
ing the sensor to an electric fan overnight at 51.2 Hz, the sensor 
streamed for 14.88 h, compared to 14.9 h for a static sensor.

The third study shows the effect of multisensory streaming on 
battery life. The test was performed with 7 sensors versus 1 sen-
sor, streaming continuously at 51.2 Hz, until battery depletion. The 
results show that when connecting 7 sensors at the same time 
at 51.2 Hz, they streamed for a mean battery depletion time of 
14.71 h compared to 14.9 h when using one sensor.
Fig. 3. Current dissipated during the test until battery depletion at 51.2 Hz.

Fig. 4. Average current for different distances at different sampling rates.

3.2. Average current consumption

The first current consumption study investigated the changes 
in the average current consumed, for every 10 min, in order to fig-
ure out if this average changes overtime. If the average is constant 
during a period of time, the measured current averages can be re-
liable, and we will avoid the need to recharge the sensor before 
each current consumption test. The result of this study is shown 
in Fig. 3.

The effect of the distance and sampling rate on average cur-
rent consumption is shown in Fig. 4. The mean average current 
consumed presents the mean of 3 trials of 10 minutes each. The 
average is computed through computing the mean of the average 
10 minute current consumed over 3 trials.

When moving the sensor for 10 minutes we obtained a mean 
average current equal to 34.8 ± 4.46 mA versus 34.63 ± 4.52 mA 
for a static sensor.

Multisensory streaming was studied for 2 different sampling 
rates 51.2 Hz (the sampling rate of interest) and 256 Hz (the high-
est sampling rate). Three trials were tested for each sampling rate. 
At 51.2 Hz, when streaming 1 sensor we obtained a mean aver-
age current of 34.63 ± 4.52 mA vs 34.48 ± 2.41 mA for 7 sensors. 
At 256 Hz, when streaming 1 sensor we obtained a mean average 
current of 38.55 ± 4.49 mA vs 34.48 ± 1.92 mA for 7 sensors. Fi-
nally, when placing the sensor behind a human body with respect 
to the remote central node, we obtained a mean average current 
of 35.14 ± 4.62 mA vs 34.8 ± 4.52 mA for a sensor placed next to 
the PC.
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Fig. 5. Real-time dissipated current during streaming at 51.2 Hz.

Fig. 6. Delay between samples received by the PC while streaming at 51.2 Hz.

3.3. Real-time current consumption

The real-time current dissipated during streaming at 51.2 Hz 
was recorded using a digital oscilloscope. The results are presented 
in Fig. 5. The figure shows that there are periodically peaks of cur-
rent consumption, and almost a constant current during the rest 
of the time. The period of these peaks is about 40 ms. Other tests 
at different sampling rates showed no difference in these periods 
of peaks, and only a slight change in the average constant current 
consumed. We also measured the delays between samples received 
by the PC, presented in Fig. 6.

4. Discussion

The battery life and current consumption study shows that the 
usage conditions rarely affect Shimmer3 sensor efficiency. The first 
battery life test showed that the distance and the sampling rate 
do not affect battery life. Fig. 2 shows that Shimmer1 battery life 
is lower than that of Shimmer3 but varies in the same manner. 
Shimmer 1.0 does not contain a magnetometer, and its battery 
has a capacity of 280 mA h versus 450 mA h in Shimmer3, which 
could explain these results. The second battery life test, concern-
ing sensor movement showed no significant difference in battery 
life between a static and a dynamic sensor. The same observation 
was noted when comparing multisensory streaming versus single 
sensor streaming.

The current consumption seemed homogeneous for the first 
8 h (Fig. 3) when we performed a test until battery depletion. 
This means that we can test current consumption without recharg-
ing the sensor after each trial. The average current seems to be 
slightly affected by distance (Fig. 4). However, when it comes to 
sensor movement, multisensory streaming and on body stream-
ing, the current consumption does not exhibit significant changes. 
These results show that Shimmer3 sensor is not affected by envi-
Table 1
Optimal conditions for home based rehabilitation using serious games.

Criteria Recommendations Purposes

Distance from the system At least 2 meters Optimal condition for 
Kinect joint estimation

Room dimensions At least 4 × 4 meters Patient movement in 
spacious area

Room lighting Well-lit room Optimal condition for 
Kinect joint estimation

Clothe type Shorts and t-shirts 
with well-fitting size

Maximal contact between 
inertial sensor and the 
body

Number of sensors A maximum of 7 
sensors

Maximal number in a 
Bluetooth piconet

Sensor battery Recharge after 25 
sessions

Battery depletion after 14 
hours of usage

ronmental factors. The only constraint of the system is a maximum 
number of 7 sensors.

The third study was to investigate the real-time current dissi-
pated during streaming. The Fig. 5 shows that there are peaks of 
current consumption at times. Since the frequency of current con-
sumption peaks did not change with different sampling rates, we 
proposed a hypothesis that the sensor saves the samples recorded 
at a particular sampling rate, and then allocates periods of 20 ms 
to send all the saved data. Thus, with higher sampling rates, there 
is no increase in the number of peaks, but an increase in the 
mean current dissipated, which causes the battery to deplete much 
faster. To confirm this hypothesis, we measured the delay between 
the received samples by the PC, presented in Fig. 6. The results of 
this study confirmed our hypothesis, as there are some samples 
that are received with big delays. These delays happen when the 
sensor sends a sample at the end of a sending window, and then 
sends the next one in the next sending window. After these peaks, 
the delays get smaller as the sensor sends the samples continu-
ously.

Therefore based on these results, and optimal conditions pro-
posed by the Kinect manufacturers, we can propose an optimal 
configuration for a home based serious game system (Table 1). We 
recommend a minimal distance of 2 meters between the user and 
the visual sensor, to obtain an optimal joint recognition through 
the Kinect body joint estimation, this requires a room of at least 
4 × 4 meters, where the furniture is not allowed between the 
player and the sensors. Moreover, the visual sensor works in an 
optimal condition when the room is well lit. When it comes to in-
ertial sensors, the type of clothes worn by the user affects them 
generally. That is why we recommend that the users wears shorts 
and t-shirts, or clothes that are not larger than their size, in order 
to maximize the contact between the sensor and the body joint. 
These recommendations are presented in Table 1.

5. Conclusion

In this paper, we presented a study of the energy consump-
tion of Shimmer3 inertial sensors. This technical study shows that 
shimmer sensors can hold up to 14 hours when streaming con-
tinuously at 51.2 Hz. The study also investigated how the cur-
rent is consumed in real-time, which could help us understand 
how to optimize the use of these sensors. In particular, this study 
showed that Shimmer3 sensors are not affected by environmen-
tal factors, and thus can be used without any limiting conditions. 
The user should only charge the battery once after about 25 re-
habilitation sessions of 30 mins each. Moreover, our system that 
uses the Kinect camera combined with inertial sensors has to 
take into account the limitations of the camera alone. Finally, we 
gave some recommendations on the optimal room and user con-
ditions to deploy serious games at home. In future works, we will 
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study the dynamic joint behavior to detect false movements, and 
generate feedbacks to help patients enhance their rehabilitation 
performance, and achieve our complete, real-time, home based re-
habilitation system [22].
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