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Abstract

The mobility of particles is generally lowered by the presence of a confining medium, both because

of geometrical effects, and of the interactions with the confining surfaces, especially when the latter

are charged. The water/mineral interface plays a central role in the dynamics of ions: The ionic

mobility in clays is often understood as an interplay between the diffusion of mobile ions and their

possible trapping at the mineral surfaces.

We describe how to build a two-state diffusion-reaction scheme from the microscopic dynamics

of ions, controlled by their interaction with a mineral surfaces. The starting point is an atomic

description of the clay interlayer using molecular simulations. These provide a complete description

of the ionic dynamics on short time- and lengthscales. Using the results of these simulations, we

then build a robust mesoscopic (Fokker-Planck) description. In turn, this mesoscopic description

is used to determine the mobility of the ions in the interlayer. These results can then be cast into a

diffusion-reaction scheme, introducing in particular the fraction of mobile ions, or equivalently the

distribution coefficient Kd. This coefficient is of great importance in characterizing electrokinetic

phenomena in porous materials.

PACS numbers:

Keywords: clay, ion transport, diffusion, two-state, multiscale, coarse-graining
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1. INTRODUCTION

Electrokinetic phenomena are related to the transport properties of mobile charged species

(ions) near charged surfaces (e.g. colloids or macroscopic mineral surfaces). The presence of

solid surfaces influences dramatically the ionic mobility, especially in porous media such as

compacted clays, where geometrical confinement is reinforced by the interactions between

the ionic species and the charged surfaces. This retention property has made clayey materials

good candidates for the long term storage of chemical and nuclear waste, which often contain

charged species.

The water/mineral interface plays a central role in the overall dynamics of ions, which is

usually described using the sorption concept: An ion can be trapped temporarily, immobi-

lized for some time, thereby reducing its mobility. The extensive literature on the related

sorption data (empirical partitioning coefficients Kd) obtained by geologists and engineers

provide a convenient tool for the modeling and prediction of ion mobility in these materi-

als [1–4]. On the microscopic scale however, there is no clear-cut distinction between trapped

and mobile ions. In compacted clays, the water content is very low, and there has been some

evidence that the usual macroscopic equations (e.g. Navier-Stokes for solvent flow, Poisson-

Boltzmann for ionic distributions) are at the limit of their validity [5]. A detailed description

of ionic mobility is still at hand, however, using Molecular Dynamics (MD) simulations [6–

10]. They provide an atomically resolved description of ion (and water) motion near the

mineral surfaces, and allow for the computation of the short-time diffusion coefficient of

ions.

The purpose of the present paper is to provide a link between the molecular simulations

and the simplified diffusion-reaction picture, by an appropriate coarse-graining strategy. In

section 2, we highlight some MD results on ionic diffusion in clay interlayers. These results

are then used in section 4 to build a robust mesoscopic (Fokker-Planck) description, in which

the interactions of the ions with the surfaces are introduced as an effective external potential,

and the interactions of the ions with the solvent are described by a unique friction parameter.

In turn, the mesoscopic model is used in section 5 to build a diffusion-reaction scheme, by

first determining the mobility of the ions in the interlayer as a function of the strength of

their interaction with the surface. These results are eventually cast into a diffusion-reaction

scheme, introducing in particular the fraction of mobile ions, or equivalently the distribution
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coefficient Kd.

2. MOLECULAR MODELING OF COMPACTED CLAYS

The most detailed information on water and ion dynamics in clay interlayers can be

obtained by molecular modeling, which provides an atomically resolved description of the

system. Molecular simulations are done for a montmorillonite clay model whose unit cell

formula is M0.75 Si8 (Al3.25 Mg0.75) O20 (OH)
4
, where M is the counterion. Clay particles

are formed by stacks of aluminosilicate layers. Each layer of montmorillonite consists of

three sheets : An octahedral sheet of Al oxide between two tetrahedral sheets of Si oxide

(see figure 1). Substitutions of AlIII by MgII give rise to a negative charge on the mineral

compensated by cations (M). The above clay is an idealized montmorillonite which is close

to the natural clay MX80 studied for its potential applications for the geological storage of

nuclear waste [11, 12]. The simulations are done with Li+, Na+, K+ and Cs+ counterions.

Na+ is one of the major natural cations in MX80 (with Ca2+) and Cs+ is a potential

radionuclide. Li+ and K+ are also studied to complete the comparison of diffusion properties

of the alkali cations.

The parameters used in the interaction potentials are taken from literature and detailed

in previous articles [8, 9]. For the counterions, we use the Lennard-Jones parameters of

Koneshan [13]. The simulation box contains two clay layers of eight unit cells each. The

positions of the clay atoms are taken from X-ray data [14]. The lateral dimensions of the

layer are then 20.72 × 17.94 Å2, its thickness 6.54 Å. At low relative humidities, water

can enter in the interlayer in order to solvate the counterions and form one, two or three

layers of water in the interlayers, depending on the compaction, humidity and the type of

counterion. Only the monohydrated state is simulated, here with N = 36 water molecules

in each interlayer space, i.e. 6 water molecules per counterion. In this case, the space is too

constrained for the cation to be fully hydrated by water. Hence cations are always in direct

contact with the surface clay atoms. A snapshot of the simulation box is given in figure 1.

Prior to dynamic studies, the average interlayer spacings for each type of cation is eval-

uated by Monte Carlo simulations in the (N , σzz=1 bar, T=298 K) ensemble. We found

12.25 Å, 12.3 Å, 12.4 Å and 12.7 Å for Li+, Na+, K+ and Cs+ respectively. These results

agree with RX diffraction experiments [15–18] and other simulations on montmorillonites
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[19–22]. After equilibration, the interlayer structural properties are calculated by fixing in-

terlayer spacings at their average value. Moreover, the hexagonal cavities formed by silicon

and oxygen atoms of opposite surfaces are maintained face to face during the simulations.

This allows an easier interpretation of the preferential paths of the cations along the sur-

face of the clay layer. All MD simulations were performed using the DLPOLY software. A

timestep of 1 fs was used, and a set of 720 ps simulations was carried out for each cation (2

to 4 runs per cation). Simulations were done in the NV T ensemble, with T=298 K, using

a Nosé-Hoover thermostat.

Water and cation distributions in the direction perpendicular to the clay surface are

shown on figure 2 for one interlayer space. The peak of water oxygen atoms widens with

increasing size of the cation and even starts to split in the case of K+ and Cs+. The opposite

is observed for the cation distributions. An obvious explanation is that the distance between

surfaces is controled by the size of the largest species. In the case of small cations, the size

of the water molecule is determining and the interlayer spacings remain around 12.3 Å : The

cations are free to go from one surface to another according to their interactions with the

surface atoms and their hydration state. In the case of large cations, the size of the cation

becomes more important and the water moves perpendicular to the clay surface more easily.

It is already known that alkali cations have different behaviours towards water and clay

surfaces. Experimentally, Na- and Li-montmorillonites can swell until the tri-hydrated state

(three water layers in the interlayer space) under increasing humidity, although Cs- and

K-montmorillonites can only reach the monohydrated state [15]. Simulations show that

in the bihydrated case, Na+ remains in the middle of the interlayer space, surrounded by

six water molecules, like in its first hydration shell in bulk water [9]. On the contrary,

Cs+ remains close to the clay surface, even in a fictitious bihydrated state. The maps of

their preferential positions along the clay surface in the monohydrated state are given on

figure 3 with those of Li+ and K+. They illustrate the different behaviour of the alkali

cations. Large cations (Cs+ and K+) exhibit a site-to-site diffusion above surface silicon

atoms. They complete their solvation shell with the three oxygen atoms linked to the

silicon. Small cations (Na+ and Li+) prefer oxygen surface atoms to silicon and hexagonal

cavity centers. A previous study showed that when the clay layers are allowed to move

horizontally (in the two directions parallel to the surfaces) the hexagonal cavities silicon

atoms are preferentially facing each other in the case of Cs-montmorillonite. It is not the
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case with Na-montmorillonite. However, even with another relative shift of the hexagonal

cavities, a preference of Na+ for surface oxygen atoms was already observed [8].

3. COARSE-GRAINING STRATEGY

Molecular simulations provide a picture of water and ion dynamics in clays on short

timescales (ns) and small lengthscales (nm). On the macroscopic scale of observation, and

for engineering purposes, these molecular details are not necessary, and a coarser representa-

tion at the macroscopic scale (>mm) is generally adopted. In order to link this microscopic

information to macroscopic observables, and especially to the apparent diffusion coefficient

of each species, one usually separates the geometrical confinement effect from the physical

interactions with the mineral surfaces. For the geometrical part, a set of empirical parame-

ters is introduced : Porosity ε, constrictivity δ and tortuosity τ . Porosity is the fraction of

the volume accessible to the diffusive species. Constrictivity is a geometrical factor account-

ing for the closing/opening of diffusion pathways: δ > 1 if the pore width increases along

the diffusion path, δ < 1 in the opposite case [23–25]. Tortuosity quantifies the length of

the diffusion pathways in the medium with respect to a straight trajectory. Only ε and the

ratio δ/τ 2 are available experimentally. In addition to geometrical effects, the interactions

of the diffusing particles with the mineral surfaces are accounted for in the framework of a

diffusion-reaction scheme. An ion can remain temporarily trapped at the mineral surface,

thereby reducing its apparent diffusion coefficient, according to the ”chemical” reaction :

mobile 
 adsorbed (1)

This mechanism is quantified by a partitioning coefficient Kd, which is the ratio between

the concentrations of bound and mobile forms of each chemical species. At the macroscopic

scale, the apparent diffusion coefficient is deduced from the ”free” diffusion coefficient D0

using :

Da = D0 ×
δ

τ 2
× ε

(ε + ρKd)
(2)

with ρ the dry density of the medium.

As mentioned earlier, there is no clear-cut distinction on the molecular scale between

mobile and bound ions. Therefore, the definition of a diffusion-reaction model from the mi-

croscopic dynamics (as obtained by MD simulations) is not without its ambiguities. We now
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suggest a tentative method to connect the atomic level of modeling developed in section 2 to

the more approximate one just described. The general coarse-graining strategy involves two

steps. The first one defines a mesoscopic description, calibrated on the molecular dynamics

results, i.e. taking advantage of the microscopic insights gained from molecular modeling.

The solvent is described as a continuum, and the ion/surface interaction is included as an

effective potential. The second step derives, from the mesoscopic model, the parameters

defining the diffusion-reaction scheme, namely a dimensionless analogue of Kd, and the ki-

netic rates of exchange. Section 4 describes the first step, while the second is postponed to

section 5.

4. MESOSCOPIC DESCRIPTION

This section describes how to calibrate the continuous solvent description of the inter-

layer on MD simulations. Such an approach uses the actual results on the complex system

(described in section 2) instead of an infinite dilution reference.

When the solute (ion) moves slower than the solvent (water) one can average over the

solvent degrees of freedom [26], and describe the solute/solvent interaction by a single friction

parameter γ (in s−1) : The friction force on an ion is proportional to its velocity (Fsolv =

−mγv), and the resulting diffusion coefficient is given by Einstein’s relation D0 = v2
T /γ, with

vT =
√

kBT/m the thermal velocity of the ion. The value of the friction can be extracted

from MD simulations using a fit of the velocity auto-correlation function (VACF) [27]:

Z(t) =
1

3
〈v(t) · v(0)〉 =

kBT

m
exp(−γt) (3)

The right-hand side is the analytical form for Brownian motion, and the VACF is obtained

by analysis of the MD trajectories. A typical value for Cs+ is γ ∼ 5 ps−1. However, the

final results of our approach on the definition of Kd, do not depend on the precise value of

γ. This point will be discussed in section 5.

The interaction of the ion with the mineral surface is introduced as an external (free

energy) potential V , which can be computed by an inversion procedure from the ionic

density profiles obtained by molecular dynamics simulations. The solute dynamics is then

characterized by the time evolution of the probability density function f(x,v, t) of finding

an ion at a given position with a given velocity. The moments of f in velocity space are the
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ionic density and flux :

ρ(x, t) =

∫

f(x,v, t) dv (4)

j(x, t) =

∫

f(x,v, t)v dv (5)

This probability density evolves, within this simplified mesoscopic description, according to

the Fokker-Planck (FP) equation [28] :

∂tf + v · ∇f = ∇v ·
(

γv +
∇V

m
+

γkBT

m
∇v

)

f (6)

The potential V encompasses all interactions involving the ion (except from the ion/water

interaction, which is the friction): In addition to the ion/surface interaction, it can also

include an external field (e.g. an electrical field), which is necessary to determine the mobility

of the ions. To solve the FP equation numerically, we used a lattice method inspired by the

Lattice-Boltzmann methodology: The lattice Fokker-Planck method [29–32].

In order to investigate efficiently the effect of surface-ion interactions on ionic mobility

(and later on the parameters of the two-state model), we did not use a potential directly

derived from MD simulations, and used instead an analytical ansatz, which respects the

characteristic features of the true potential (topology, barrier height, ...). The magnitude of

the ion/surface interactions is quantified by the ratio Vs/kBT = βVs, where Vs is the barrier

connecting two adjacent free energy minima. The precise form of the potential is given by:

V (x, y) = Vs ×
[

3 + 2 cos
2π

a

(

x +
y√
3

)

+ 2 cos
2π

a

(

x − y√
3

)

+ 2 cos
2π

a

(

2y√
3

)]

(7)

with a the distance between two maxima (a ∼ 5.2 Å for montmorillonite).

The density profiles corresponding to this model potential are the steady state solutions

of equation 6 with V given by equation 7. The solution statisfies the Boltzmann law:

ρ(x, y) ∝ exp(−βV (x, y)). Results are shown in figure 4. These profiles are to be compared

to those obtained with the fully atomic description of figure 3: The K+ and Cs+ behaviours

are relatively well reproduced for the intermediate (b) and high (c) values of βVs. There

is clearly room for improvement in the Na+ case (a), although it already reflects its more

diffuse behaviour. One should keep in mind that in the Li+ and Na+ cases the hydration

tendency is rather different from the K+ and Cs+ cases, and that the results of section 2 were

obtained for the monohydrated state only, with the constraint of face-to-face clay layers. In
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this situation, Li+ (and to a smaller extent Na+) tend to avoid the center of the interlayer

(see the two peaks on figure 2), so that a strictly two dimensional modeling as the one

undertaken here is not fully appropriate. The study of the bihydrated state, in which Li+

and Na+ are clearly located in the midplane of the interlayer [20, 33] is under progress. This

will open the way to the study of more hydrated states.

5. IONIC MOBILITY AND THE DIFFUSION-REACTION SCHEME

The second coarse-graining step consists in the definition of the two-state model from the

mesoscopic (FP) description. The underlying idea is that in such a model, the reduction

in mobility is traced back to the fixation of some ions on a surface: only a fraction fm is

considered as mobile. The link between microscopic mobility and two-state model is thus

provided by the equality fm = µapp/µ0, where µ0 = 1/γ is the ”free” mobility of the ions,

that is when no interactions with the surfaces are present.

Thus we first need to determine the mobility of the ions interacting with the mineral

surfaces. This is achieved by applying an external force Fext on the ions, in addition to

the one arising from the clay layer itself. In practice, equation 6 is now solved with (∇V −
Fext)/m on the right-hand side. At steady-state, the average velocity is proportional to

the applied field, the proportionality coefficient being related to the apparent mobility :

vst = µapp/m×Fext. The latter is of course lower than the ”free” mobility µ0. The mobility

µapp is reported as a function of βVs in figure 5. The value is rescaled by µ0. The two

components of the mobility tensor, obtained by applying the force along each direction, are

equal. Isotropy of the mobility is a known consequence of the symmetry of the honeycomb

lattice [34, 35]. As expected, the mobility decreases with increasing affinity for the surface

(increasing βVs). Two regimes are observed, with a crossover at approximately βVs ∼ 1.

Their significance will be discussed below, when interpreted in terms of Kd.

Within the two-state diffusion-reaction scheme, the ratio µapp/µ0 is precisely the fraction

of mobile ions fm, that is the ions that are not bound to the surfaces. Translating this

fraction of mobile ions in terms of the partioning coefficient Kd, one obtains :

Kd =
1 − fm

fm

=
µ0 − µapp

µapp

(8)

Note that the definition of Kd is slightly different from the one given above, because no
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geometrical effects are included in the present description. In particular, this definition

makes Kd dimensionless. Our purpose is to give a microscopic basis to a simple two-state

model, which is generally the starting point of even coarser models, such as the one presented

in section 3. The simplicity of the latter allows to include other features of the real material

(distribution of porosity sizes, presence of minerals other than clay, ...) which are out of

the scope of the present study. Equation 8 clearly shows that Kd only depends on the ratio

µapp/µ0. In our simple model, which neglects ionic correlations, and in the high friction limit

(the one relevant here), this ratio is in fact independent of the value of the friction γ, as was

mentioned earlier.

Results for Kd as a function of the interaction parameter βVs are represented on a logarith-

mic scale in figure 6. The two regimes appear now more obviously : For strong interactions

with the walls or at low temperature, the diffusion follows an Arrhenius law, with an ac-

tivation energy of Vs, the barrier that an ion needs to overcome to move from one energy

minimum to the next; for weak interactions or at high temperature, no such activated diffu-

sion is seen. These results are consistent with the trajectories observed in MD simulations

for sodium (weak interaction case) and cesium (strong interaction case).

From the knowledge of the amount of bound ions, it is also possible to determine: (a)

the localization of the bound and mobile states, and (b) the adsorption/desorption rates,

thereby completely specifying the diffusion-reaction model [35]. The results, not shown,

indicate that the border between fixed and mobile ions is independent of the precise value

of βVs, provided that the latter is large enough (that is, for strong affinity for the surface).

This justifies the notion of trapping site, because it makes reference to the mineral surface

only, and not to the ions moving in its vicinity. We refer the interested reader to a previous

publication [35].

6. CONCLUSION

We have demonstrated how a two-state diffusion-reaction model can be developed from

the microscopic dynamics of ions in compacted clays, following a two step coarse-graining

strategy. Molecular dynamics simulations first provide the information which is necessary

to calibrate a mesoscopic description of the clay/ion/water system. The latter allows for

a determination of ionic mobility near the clay surface, which in turn can be translated in
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terms of the diffusion-reaction scheme via the fraction of mobile ions fm, or equivalently the

distribution coefficient Kd.

This coarse-graining strategy extends the continuous solvent description used in the the-

ory of bulk electrolyte solution since Debye, Hückel and Onsager [36] to non infinitely diluted

reference states. It is of course not restricted to clays, and applies to any charged surfaces.

A generalization of the method is needed if one wants to consider semi-infinite systems (that

is a surface facing a bulk fluid), as opposed to the confined, quasi two-dimensional system of

a clay interlayer. However we expect no particular difficulty, except for the computational

cost of solving the FP equation in three dimesions. The method used in this paper, lattice

Fokker-Planck, is a method of choice to overcome this technical difficulty.
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[5] J.-F. Dufrêche, V. Marry, O. Bernard, and P. Turq, Coll. Surf. A 195, 171 (2001).

[6] N. T. Skipper, G. Sposito, F.-R. C. Chang, Clays Clay Miner. 43, 294 (1995).

[7] F.-R. C. Chang, N.T. Skipper, G. Sposito, Langmuir 11, 2734 (1995).

[8] V. Marry, P. Turq, T. Cartailler, and D. Levesque, J. Chem. Phys 117, 3454 (2002).

[9] V. Marry, F. Grün, C. Simon, M. Jardat, P. Turq, and C. Amatore, J. Phys. : Condens.

Matter 14, 9207 (2002).

[10] R. Sutton and G. Sposito, J. Colloid Interface Sci. 237, 174 (2001).
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FIG. 1: Snapshot of the simulation box for Cs-montmorillonite for the case of a water monolayer.

Oxygen atoms are in red, H in white, Si in yellow, Al in green and Cs in blue. The interlayer

distance corresponds to a water content of 6 water molecules per cation, a temperature of 298 K

and a pressure of 1 bar (normal to clay layers).

FIG. 2: Top : Distributions of water oxygen atoms along the direction perpendicular to the clay

surfaces. Bottom : Distributions of cations along the direction perpendicular to the clay surfaces for

Li- (solid line), Na- (dashed), K- (dotted-dashed) and Cs-montmorillonite (dotted). The distance

is given relative to the central layer midplane, and the distributions are in arbitrary units.

FIG. 3: Maps of cation distributions parallel to the clay surface for monohydrated Li-, Na-, K- and

Cs-montmorillonites. The distributions are given for the elementary cell (containing one hexagonal

cavity). Density increases with brightness. Dark and bright circles represent surface oxygen and

silicon atoms respectively.

FIG. 4: Equilbrium ionic density ρ(x, y) = exp(−βV (x, y)) corresponding to the effective potential

V used for the mesoscopic description. Small values of the interaction parameter βVs result in

a diffuse ionic profile, similar to that of Na+ (a), whereas larger values result in sharply peaked

densities, mimicking the Cs+ case (c). Inbetween, the resulting density is similar to the intermediate

behaviour of K+ (b). These profiles are to be compared to those obtained with the fully atomic

description of figure 3.

FIG. 5: Mobility µapp as a function of βVs which characterizes the affinity of the ions for the

surface. The value is rescaled by the ”free” mobility µ0 = 1/γ in absence of interactions with the

surface. Results are given for the two components (x, y) of the mobility tensor, which reveal the

isotropy of the honeycomb lattice. The mobility decreases with increasing interactions with the

surfaces.
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FIG. 6: Partitioning coefficient Kd as a function of the interaction parameter βVs. The semi-

logarithmic plot clearly reveals two regimes : For strong interactions with the walls or low temper-

ature (right), the diffusion is activated (Arrhenius law); for weak interactions or high temperature

(left), no such activated diffusion is seen. The solid line indicates the fit to an Arrhenius law with

activation energy Vs.
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