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Salt exclusion in charged porous media: A coarse-graining strategy in the case of
montmorillonite clays
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UPMC Univ Paris 06, UMR 7612, Laboratoire Liquides Ioniques et Interfaces Chargées, F-75005, Paris,

CNRS, UMR 7612, Laboratoire LI2C, 4 place Jussieu, F-75005 Paris, France

We study the exclusion of salt from charged porous media (Donnan effect), by using a coarse-
grained approach. The porous medium is a lamellar system, namely a Montmorillonite clay, in
contact with a reservoir which contains an electrolyte solution. We develop a specific coarse-graining
strategy to investigate the structural properties of this system. Molecular simulations are used to
calibrate a mesoscopic model of the clay micropore in equilibrium with a reservoir. Brownian
Dynamics simulations are then used to predict the structure of ions in the pore and the amount of
NaCl salt entering the pore as a function of the pore size (the distance L between clay surfaces) and
of the electrolyte concentration in the reservoir. These results are also compared to the predictions
of a Density Functional Theory which takes into account the excluded volumes of ions. We show
that the calibration of the mesoscopic model is a key point and has a strong influence on the result.
We observe that the salt exclusion increases when κL decreases (where κ is the inverse of the Debye
length) and that this effect is modulated by the correlations between ions. Two different regimes
are revealed. At low concentration in the reservoir, we observe a regime controlled by electrostatics:
the Coulomb attraction between ions increases the amount of salt in the interlayer space. On the
opposite, at high concentration in the reservoir, the excluded volume effect dominates.

I. INTRODUCTION

A common feature of most materials acting as mem-
branes or retention barriers in various industrial and en-
vironmental processes is to consist of charged porous ma-
terials. Examples ranging from polymeric or inorganic
membranes for ionic exchange or reverse osmosis (e.g.
for seawater desalinization) to natural minerals in soils
(through which rainwater flows) and deeper geological
formations (e.g. aquifers, or cap rocks above oil and gas
reservoirs) illustrate the diversity of situations in which
the flow of a fluid through a charged porous medium plays
a crucial role. In particular, clays are considered as suit-
able materials for the confinement of toxic or radioactive
waste [1, 2]. In the very long term, the geological medium
is expected to act as the main barrier preventing the re-
lease of waste in the biosphere. This is one of the reason
explaining why the transport of charged species through
clays has recently received a growing attention, both from
the experimental and theoretical points of view. Owing
to the very low permeability of compacted clay, the dif-
fusion of ions, as tracers or in finite concentrations, is
thought to be the main transport mechanism.

The mechanical (swelling) and retention properties of
clays are related to their permanent negative charge,
compensated by counterions. They consist of aluminosil-
icate layers stacked into anisotropic particles. Most of
the counterions are located in the nanoporosity left be-
tween the mineral layers. The imperfect packing of these
particles into platelets gives rise to larger pores, with a
size distribution that depends on the precise nature of
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the clay and the sample history (formation, compaction,
hydration state,...). When placed in contact with a water
or electrolyte reservoir, these micropores (ranging from
a few nm to tens of nm) can be saturated with water
and some salt will also be allowed into this porous mate-
rial. A schematic representation of this system is drawn
in Figure 1.
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FIG. 1: Schematic representation of the system studied in this
paper: A lamellar charged porous medium is in contact with
a reservoir. The surface charge is compensated by counteri-
ons. Because of this excess charge, the electrostatic potential
in the micropore Ψint differs from that in the reservoir Ψext.
The reservoir contains a bulk electrolyte aqueous solution at a
concentration Cext, which partly penetrates into the microp-
ores. We study how the equilibrium concentration Cint inside
the micropore depends on the value of Cext (Donnan effect).

The diffusion of ions through this porous medium is
driven by the ion distributions in the micropores. For
example, anions are repelled by the negative charge of
the clay layers and are excluded from the smallest pores
of the material, which effectively acts as a barrier for
these ions. This simple fact partly explains the experi-
mental observation that anions diffuse slower than water
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and cations through clay barriers. However, a clear ex-
planation of this phenomenon is still lacking. In partic-
ular, little is known about how the size of the micropore
affects the amount of salt (including the anions) that can
be incorporated in the medium as a function of the salt
concentration in the reservoir. The inclusion of salt plays
a crucial role in screening the repulsive electrostatic inter-
actions between clay particles, and thus in the mechanical
stability of the material. More directly, a larger salt con-
centration increases the amount of potentially hazardous
species passing through it.

The partial insertion of the electrolyte solution into
the micropores is an example of the so-called Donnan
effect, as it is represented in Fig. 1. The Donnan ef-
fect usually describes the behavior of charged particles
near a semi-permeable membrane, which fail to distribute
evenly across the two sides of the membrane, because
of the presence of a charged substance unable to pass
through it. This creates an electrostatic potential bar-
rier between the two compartments. In the present case,
the difference in electrostatic potential between the two
”compartments”, namely the reservoir and the microp-
ore, is due to the immobile charged clay layers. The Don-
nan equilibrium, which appears between the ionic concen-
tration in the micropores and in the reservoir, strongly
depends on the porosity of the system, represented in
the simple model of Fig. 1 by the intersurface distance,
denoted by L in the following. Typically, if L is much
bigger than the Debye length of the external electrolyte
solution, the charge of the porous material is screened by
the counterions and the coions (anions, since clays are
negatively charged) can penetrate into the pore. On the
other hand, if L is much smaller than the Debye length, a
Donnan electrostatic potential difference arises between
the fluid inside the micropore and the reservoir [3]. The
anions are then excluded from the pores. The Donnan
effect can be quantified by calculating the concentration
in the micropores of anions, namely coions of the porous
medium, as a function of their concentration in the reser-
voir, for a given porosity L.

The standard description of the Donnan effect is based
on continuous models in which ions are treated as point
particles interacting at the mean-field level via the elec-
trostatic potential. Such an approach, commonly based
on the Poisson-Boltzmann equation (PB), is valid when
the size of the ions is small compared to the distance be-
tween them and to the size of the pores. Some recent
works based on continuous models used atomic simula-
tions to improve the description of interactions between
ions and the walls representing the porous medium [4–7].
For nanometric pores and high salt concentrations that
might be encountered under geological conditions, adopt-
ing continuous descriptions requires great caution. At the
other extreme, molecular simulations have proved very
powerful for the study of clay interlayers (the nanoporos-
ity containing a few discrete layers of water inside the
clay particles), and more recently on the direct vicinity
of basal and lateral surfaces of clay particles. They pro-

vided new insight in experimental observations on the
structural [8–13], thermodynamical [14–20] and dynam-
ical [21–27] properties of clays. Most notably, they re-
vealed at the molecular scale the subtle interplay govern-
ing the interactions between the mineral layers, the coun-
terions and water molecules. This specificity was also ob-
served on external surfaces of clay particles [28, 29], and
could influence their effective charge, modifying in turn
the properties further away from the surface.

The atomistic simulation of larger, water saturated
pores, remains however computationally expensive [30].
Increasing the system size indeed implies a larger num-
ber of interactions between atoms to be computed and a
longer (not only computational, but also physical) time
needed to sample correctly the larger phase space. The
objective of this paper is thus twofold: (i) we aim at
studying the Donnan effect in a lamellar charged porous
medium, and (ii) to attain this goal, we develop a coarse-
graining procedure. More precisely, molecular simula-
tions are first used to calibrate a mesoscopic model of a
clay micropore in equilibrium with a reservoir of an aque-
ous sodium chloride solution. Brownian simulations are
then used to study the Donnan effect, i.e. to evaluate
the amount of salt entering into the pore as a function of
pore size and salt concentration in the reservoir. These
results are finally compared to the predictions of Density
Functional Theory. The continuity between the levels
of description allows us to assess the validity of coarser
models, which are simpler and faster to make predictions,
e.g. in an engineering context.

The paper is organized as follows. In Sec. II A, the
description of the clay system at the atomic scale allows
us to draw the principles of our coarse-graining proce-
dure. The different theoretical methods used to develop
the coarse-grained model and to study the Donnan ef-
fect are then described in Sec. II B-II D. Sec. III A is
devoted to the calibration of coarse-grained interaction
parameters. In Sec. III B, the insertion properties of
co-ions in the porous medium as functions of the inter-
layer spacing and of the electrolyte concentration in the
reservoir are investigated for the coarse-grained model.
Results obtained from numerical simulations and DFT
are compared and discussed. The last section contains a
conclusive discussion.

II. SYSTEM AND METHODS

A. System and coarse-graining procedure

The clay under study is a Montmorillonite, whose
properties have been previously successfully investigated
from atomistic simulations. At the atomic level, each
clay layer consists of one sheet of octahedral aluminum
oxide between two sheets of tetrahedral silicon ox-
ides. A fraction of Al3+ and Si4+ are substituted
by cations of lower valence, Mg2+ and Al3+ respec-
tively. The Montmorillonite studied here contains only
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FIG. 2: Atomic structure of the clay layer. Top: Surface of the
clay layer; Middle: Lateral view of the clay, whose thickness
is equal to 6.54 Å; Bottom: Disposition of silicon and oxygen
atoms over the surface of the clay. The O atoms are in red,
H in white, Si in yellow, Al and Mg in green.

octahedral substitutions and its unit cell formula is:
Na0.75Si8(Al3.25Mg0.75)O20(OH)4. The negative charge
is thus 0.75 e per unit cell (σ = −0.016 e/Å2. It is lo-
cated in the middle of the clay layer and is compensated
by 0.75 monovalent counterions Na+. The atomic struc-
ture of the clay layer was taken from X-ray diffraction
measurements [31, 32]. The layer thickness is 6.54 Å.
This atomic structure is given in Fig. 2; the honeycomb
disposition of silicon and oxygen atoms near the surface
of the sheet is also indicated.

In the present study, these hydrated clay layers are as-
sumed to be in contact with a reservoir which consists
of an aqueous electrolyte solution. As already mentioned
in the introduction, the atomistic simulation of such a
system for several interlayer spacings and several elec-
trolyte concentrations in the reservoir is too expensive.
Thus, we propose a coarse-graining approach which relies
on two main simplifications: (i) the solvent is assumed
to be a continuous medium, characterized by its dielec-
tric constant εr and (ii) the clay layer is described by an
assembly of neutral and charged spheres, with the same
charge density as the atomic one, as shown in Fig. 3. The
first assumption is appealing because continuous solvent
models have proved since a long time to describe accu-
rately structural and dynamical properties of aqueous so-

FIG. 3: Coarse-grained description of the clay layer. Top:
Surface of the clay ; Middle: Lateral view of the clay, whose
thickness is equal to 6.54 Å; Bottom: Disposition of charged
and neutral spheres used to account for the charge disposition
and charge density near the surface of the clay (positions of
silicon and oxygen atoms over the surface of the atomic clay
is also indicated). The charged spheres are in red, neutral
spheres in white. The clay surface is a honeycomb of such
hexagones.

lutions of simple electrolytes [33, 34]. Usually, either the
so-called primitive model of electrolytes which treats the
ions as charged hard spheres or its soft-core variant are
used [35, 36]. Here, ions interact through the Coulomb
potential and a 1/r12 short-range repulsion. The second
assumption (ii) is necessary to keep the essential features
of clay layers while decreasing the number of particles of
the system.

The disposition of charged and neutral spheres which
constitute the clay layer at the mesoscopic level mimic
the atomic disposition of charged sites. The positions of
charged and neutral spheres follow a honeycomb hexago-
nal geometry, with a distance between the sphere centers
of 1.3 Å (see Fig. 3), which corresponds to the distance
between silicon atoms at the atomic scale. The charged
spheres (in red in Fig. 3) represent the net charge of
the clay surface mainly located over the silicon atoms. A
neutral sphere is added in between the charged ones to
account for the non-penetrability of the clay layer. The
charged spheres of the coarse-grained clay surface have a
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charge equal to −0.0625 e, which yields exactly the same
charge density as in the atomic layer. The main dif-
ference between the atomic and the coarse-grained clay
layers comes from the fact that the charges are located on
the surface of the clay in the coarse-grained description.
In the atomic description, Al, Mg, Si and H atoms are
positively charged, whereas O atoms of the surface and
of the tetrahedric and octahedric sheets are negatively
charged. Nevertheless, as it is demonstrated below, the
coarse-grained model results in ionic distributions in the
direction perpendicular to the clay surface in good agree-
ment with atomic ones. Two layers of charged and neu-
tral spheres are used to describe the two basal surfaces
of one clay layer. The layer thickness is the same as the
atomic one and edge neutral spheres are added to pre-
vent ions from prenetrating inside the clay (see Fig. 3,
middle).

As for the modelling of ions of the electrolyte solu-
tions, every ion is assumed to interact with the clay sur-
faces through a short-range repulsion (proportional to
1/r12) in addition to the Coulomb potential. For the
sake of simplicity, this short-range repulsion between ions
and the spheres which constitute the clay is assumed to
be the same for neutral and charged spheres. The key
point of our coarse-graining procedure is that the range
of this ion/surface repulsion is calibrated by using Molec-
ular Dynamics simulations. More precisely, the distribu-
tion profiles of ions in the direction perpendicular to the
clay surface are computed both from Molecular Dynam-
ics simulations and from Brownian Dynamics simulations
on the mesoscopic level, for several ion/clay repulsion pa-
rameters. These calculations are performed for systems
containing infinite clay layers (no reservoir) with a large
interlayer distance and only for one ionic concentration.
The fitted parameters are then kept for all other calcu-
lations. The details of this fitting procedure are given in
section IIIA.

On the mesoscopic scale, alternative theoretical de-
scriptions of the coarse-grained system may also be used
to study the Donnan effect. The simplest model is to
treat ions as point charges and the clay surfaces as infinite
and uniformly charged planes in contact with a reservoir.
Thus, the concentration of coions between the charged
planes can be obtained in the Poisson-Boltzmann approx-
imation. This description is again a coarse-grained de-
scription of the real system, in which the excluded volume
of the clay (namely the minimal distance of approach be-
tween ions and the clay) has to be calibrated using results
at a more detailed scale. Nevertheless, such a coarse-
grained description, which assumes that ions are point
charges, neglects the excluded volumes of ions themselves
so that it is unable to account for the insertion of ions
for relatively small interlayer distances or for large exter-
nal electrolyte concentration. Thus, we propose a more
precise theoretical description of the system, which takes
into account the excluded volumes of ions. In the present
paper, Density Functional Theory (DFT) is used to cal-
culate the ionic densities in the porous medium in contact

with a reservoir by using the Mean Spherical Approxi-
mation (MSA) to account for the excluded volumes of
ions. Since the Poisson-Boltzmann aproximation can be
rephrased as a DFT calculation, we keep the DFT for-
malism in both cases, when ions are assumed to be either
point charges or charged hard spheres. The principles of
this calculation are given in Sec. II D.

B. Molecular Dynamics simulations

Molecular dynamics simulations are used here only to
perform the coarse-graining of the interaction between
ions and the clay surfaces. The simulation box at the
atomic level contains one clay layer of 6.54 Å width along
the z-direction, cut into two halves, whose horizontal di-
mensions are 35.88×41.44 Å2. The net charge of the clay
surface is then −24 e. The interlayer distance L is here
the distance between the oxygen atoms of the surfaces of
the clay. Periodic boundary conditions in all dimensions
are used so that a periodic stacking of infinite clay layers
is simulated. The space between the layers is filled with
water, 24 Na+ counterions and a salt at the concentra-
tion Csalt. We use the SPC/E water model [37], known
to accurately reproduce structural and dynamical prop-
erties of water, in particular its dielectric constant and
diffusion coefficient. The force field used to describe the
interactions between clay atoms, water atoms and ions
consists of pairwise interactions. The interaction between
two atoms contains a direct electrostatic (Coulomb) con-
tribution and a Lennard-Jones potential to account for
short-range repulsion and long-range dispersion forces:

Vij(rij) =
qiqj

4πε0rij
+ 4εij

[(
σij

rij

)12

−
(

σij

rij

)6
]

(1)

where qi and qj are the charges of atoms i and j, and
rij the distance between them. The Lennard-Jones pa-
rameters σij and εij are computed from individual σii

and εii using Lorentz-Berthelot mixing rules. We use
the individual parameters for ions in SPC/E water of
Dang et al. which were shown to correctly describe the
dynamics of ions in bulk water [38]; the parameters for
clay atoms are the ones of Smith [11]. The values of
all these parameters are exactly the same as those given
in ref. [39]. This description of the clay/water interface
has already proved to describe reasonably well a number
of experimental results on the thermodynamical, struc-
tural and dynamical properties of bulk clays at low hy-
dration (interlayer) [22, 23, 26, 27]. The long-range elec-
trostatic interactions are computed via three dimensional
Ewald summation [40]. Molecular dynamics simulations
are performed in the canonical (N,V, T ) ensemble using
the DLPOLY simulation package.
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C. Brownian Dynamics simulations

As stated before, the confined solution under study
is a complex multicomponent system of clay, solvent,
cations and anions (the counterions and coions). The
first coarse-graining step is to replace the solvent (wa-
ter) by its effective effects on the ions, thus treating it as
a continuous medium (McMillan-Mayer level of descrip-
tion). In the framework of the continuous solvent model,
Brownian Dynamics (BD) is a simulation method allow-
ing one to compute the trajectories of solute particles. It
is able to take into account the direct interaction between
solute particles as well as the indirect hydrodynamic in-
teractions. In the present study, we are interested in the
structural properties of the system so that hydrodynamic
interactions can be neglected. Here, the interest of Brow-
nian Dynamics is mainly that it allows one to sample the
phase space more efficiently than Monte Carlo simula-
tions.

On the mesoscopic time scale of Brownian Dynamics,
the motions are described in the position space only and
are governed by the generalized Smoluchowski equation.
When hydrodynamic interactions are neglected, the cor-
responding stochastic equation for the displacement of N
particles included in the simulation box from time t to
time t + δt is [41]

r(t + δt) = r(t) +
D◦

kT
F(t)δt + R, (2)

where T is the temperature, k is the Boltzmann con-
stant, D◦ is the self-diffusion coefficient of the particles
at infinite dilution, δt is the time increment, r is the
3N -dimensional configuration vector, and F is the to-
tal force acting on the particles at the beginning of the
step. R is a random displacement, chosen from a Gaus-
sian distribution with zero mean, 〈R〉 = 0, and vari-
ance 〈RRT 〉 = 2D◦δtI, where I is the identity matrix.
Since the simulation box contains charged particles, we
improve the efficiency of the simulation by evaluating
the probability of each displacement with a smart Monte
Carlo criterion [42, 43].

Solvent-averaged interactions between ions are as-
sumed to be pairwise additive, and are computed using
the following interaction potential, which contains pair-
wise repulsive interactions and the Coulomb part:

Vij(r) =
1

4πε0εr

[
|qiqj |

12(ai + aj)

(
ai + aj

r

)12

+
qiqj

r

]
(3)

Here ai is the radius of the ith ion, ε0 the dielectric con-
stant of the vacuum, εr the relative dielectric constant
of the pure solvent, taken equal to 78.54. The minimum
of the cation-anion potential corresponds to the sum of
the radii ai + aj . The ionic radii used in this paper
are 1.68 Å for the sodium ion and 1.99 Å for the chlo-
ride ion. These parameters correspond to hydrated radii,
and have already proved to describe accurately structural

x

z

45.5 Å 30.0 Å

L = 22.8 Å

FIG. 4: Snapshots of the simulation boxes of Brownian Dy-
namics. Sodium ions are in blue and chloride ions are in
cyan. The clay layers are infinite in the y-direction. Top:
Simulation box used to fit the coarse-grained repulsion pa-
rameter between ions and the clay surface, which contains
infinite clay layers. Bottom: Simulation box used to study
the Donnan equilibrium. The length of the reservoir in the
x-direction is 60 Å.

and transport properties of ions in bulk electrolyte solu-
tions [36, 44, 45].

The interaction potential between ions and the neu-
tral and charged spheres representing the clay layer is
also assumed to be given by eq. 3. Note that the re-
pulsive contribution between a neutral sphere of the clay
and an ion is supposed to be exactly the same as the one
between a charged sphere of the clay and an ion. The
short-range repulsion between ions and clays is then con-
trolled by the parameter ai relative to the spheres of the
clay. The fitting procedure of this parameter, denoted a
in the following, is presented below (see Sec. III A).

In every case, the simulation box contains two clay
layers with an interlayer distance L which is the dis-
tance between the centers of the spheres representing
the clay surface. The width of one clay layer is equal
to 6.54 Å (z-direction) and its horizontal dimensions are
45.5×45.0 Å2. The net negative charge of these clay sur-
faces is equal to 60 e, with e the elementary charge. In
the following, L takes the values 12.8, 17.8, 22.8 or 32.8 Å.
The interlayer space is filled with 60 sodium counterions.
Two different cases are studied in what follows. In the
first one, the simulation box also contains sodium chlo-
ride at a molar concentration Csalt. Owing to the periodic
boundary conditions in all dimensions, this corresponds
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to a periodic stacking of infinite clay layers is simulated.
This simulation box is used to fit the coarse-grained re-
pulsion parameter between ions and the clay (see Sec.
III A). In the second case, the finite clay layers and their
counterions are in contact with a reservoir which con-
tains an electrolyte solution. Again, the simulation box
is used with periodic boundary conditions in the three
directions. Fig. 4 shows both types of simulation boxes
for an interlayer distance L equal to 22.8 Å. The dimen-
sion of the boxes in the direction y parallel to the clay
surfaces is always equal to 45 Å.

To compute the soft core interactions we use a spherical
cutoff of half a box length, applying the minimum image
convention. Coulomb interactions are computed using
three dimensional Ewald summation with the conducting
boundary condition.

D. Density Functional Theory

1. Free energy functional

We also calculated ion properties at the coarse-grained
level of description (averaged over solvent configurations)
from Density Functional Theory (DFT) [46, 47]. The sys-
tem then reduces to a three-component “mixture” con-
sisting of (i) colloidal layers assumed to be parallel and
immobile (ii) counterions of charge +νe; and (iii) coions
of charge −νe. A semi-grand-canonical description is
adopted whereby the system is in osmotic equilibrium
with an ionic solution containing a symmetric salt made
up of the same point co- and counterions; this fixes the
chemical potential of the salt, µs = µ+ +µ− which is the
sum of the cationic and anionic ones.

The fundamental quantities in DFT are the equilib-
rium density profiles ρ+(r) and ρ−(r) of counterions and
coions in the “external” field of the clay layers. According
to the basic principles of DFT [48] they may be deter-
mined by minimizing the grand potential functional

Ω[ρ+(r), ρ−(r)] = F [ρ+(r), ρ−(r)]−
∑

α=+,−
µα

∫
V

ρα(r)dr.

(4)
F is the free energy functional, which is conventionally
split into ideal, external, Coulombic, and correlational
contributions [49]:

F = F [ρ+(r), ρ−(r)] = Fid + Fext + FCoul + Fcorr. (5)

The bulk concentrations differ from those in the reser-
voir for any given chemical potential µs = µ+ +µ−. The
various contributions to the functional (5) are

Fid = kBT
∑

α=+,−

∫
V

ρα(r)
(
ln(ρα(r)Λ3

α)− 1
)

dr, (6)

where Λα is the de Broglie thermal wavelength of ion
species α. The external field contribution may be cast in

the form

Fext =
∑

α=+,−

∫
V

ρα(r)Uα(r) dr. (7)

The (McMillan-Mayer) external potentials due to the in-
teractions with the clay surfaces Uα(r) are supposed to
be homogeneous. The atomic structure of the clay is
ignored. They are modelled by a hard wall with a uni-
form charge density equal to σ = −0.00805 × e per Å2,
equivalent to the charge density at the atomic level. The
minimal approach distance between ions and the clay
surfaces is obtained from MD simulations thanks to a
coarse-graining procedure (see Sec. III A).

The mean-field Coulomb contribution is of the familiar
form

FCoul =
ν2e2

8πε0εr

∫
V

dr
∫

V

dr′
ρ(r)ρ(r′)
|r− r′|

, (8)

where ρ(r) = ρ+(r) − ρ−(r) is the charge density of the
microions (divided by νe). No exact expression is known
for the correlation term, for which we adopt the local
density approximation (LDA):

Fcorr =
∫

V

F 0
exc(ρ+(r), ρ−(r)) dr, (9)

where F 0
exc denotes the excess free energy per unit vol-

ume of a uniform system of ρ− and ρ+ co- and counte-
rions per unit volume, in a neutralizing uniform back-
ground, representing the smeared-out charge of the clay
layer. Simple mean-field approaches, such as the Poisson-
Boltzmann theory, simply neglect this correlation term.
For concentrated electrolyte solutions, this approxima-
tion does not hold anymore: ionic correlations become
important, especially at molar concentration for which
excluded volume effects perturb the electrostatic force.
We treat the correlation effects within the Mean Spheri-
cal Approximation (MSA) [50]. This theory is based on
the primitive model of electrolytes where ions are mod-
eled by charged hard spheres. The MSA generalizes the
Debye-Huckel theory of electrolytes by accounting for the
excluded volume of the ions in the ionic atmospheres. For
bulk solutions, it can be applied to model simple salts up
to molar concentrations.

A difficulty arises from the fact that for bulk electrolyte
solutions the derivation of the MSA [51, 52] is obtained
for a neutral ionic system ρ+ = ρ− whereas in our case
the electro-neutrality condition is only satisfied thanks to
a uniform background. In fact, the solution of the MSA
in that case [53, 54] is similar to the case for which a
background is not necessary, except for a trivial renor-
malization of the charge carried by the spheres. If we
consider an excluded neutralizing background [55], this
charge renormalization can be omitted. The only pa-
rameter of this MSA model is the diameter of the ions,
supposed to be the same for cations and anions. The
MSA diameter used in this paper is 3.3 Å. This diameter
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is the average of the diameters of Na+ and Cl− used in
bulk MSA theory [34, 56], which is able to reproduce the
ion properties up to molar concentrations. Moreover, it
has already been shown that the MSA diameters and the
one used in BD with a soft-core repulsion yield similar
results [36, 57].

2. Ionic density profiles

Functional minimization of the form of the grand po-
tential (4) with respect to the profiles ρ+(r) and ρ−(r):

δΩ[ρ+(r), ρ−(r)]
δρα(r)

=
δF

δρα(r)
− µα = 0; (10)

leads to the following coupled Euler-Lagrange equations
for the unknown profiles:

kBT ln(ρα(r)Λ3
α) + Uα(r)

+α

∫
ν2e2

4πε0εr

ρ+(r′)− ρ−(r′)
|r− r′|

dr′

+µexc
α (ρ+(r), ρ−(r))− µα = 0 (11)

with α = +,−. The excess chemical potential of ion α,
µexc

α (ρ+(r), ρ−(r)) is calculated from the MSA.
If Fcorr is set to zero, µexc

α (ρ+(r), ρ−(r)) = 0 and min-
imization of the grand potential functional (4) is equiv-
alent to solving the Poisson-Boltzmann (PB) equation
[48]. In the general case of lamellar system, there is
no analytical solution of the PB equation, the classical
Gouy-Chapman being valid only for a single interface.
Nevertheless it is easily solved numerically. If correla-
tions are taken into account at the MSA level of approxi-
mation, the numerical solution can be found by a similar
method. We solved the two DFTs (PB and MSA) for the
various hydration states. The PB completely neglects the
correlations between the ions, but it is still the basic the-
ory for the mesoscopic description of hydrated clays so
that it is important to check its domain of validity. The
MSA functional takes into account the correlations be-
tween the ions, both for the electrostatic force and the
hard sphere repulsion, but it is a local functional.

III. RESULTS

A. Coarse-graining of the ion/surface repulsion

As stated before, in Brownian Dynamics (BD) simu-
lations, the ion/clay interaction potential is assumed to
contain a short-range repulsion whose range is controlled
by the parameter a, proportional to a distance (see. Eq.
3). This coarse-grained parameter a is obtained from the
calculation of the density profiles of co-ions and counte-
rions between the clay surfaces, in the z-direction per-
pendicular to the clay surface. The density profiles are
computed from Molecular Dynamics (MD) simulations
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FIG. 5: Density profiles of ions in the direction perpendicular
to the clay layers for an interlayer distance L = 32.8 Å and
a concentration of added electrolyte Csalt = 0.96 mol.L−1, in
a system of infinite clay layers. Molecular dynamics calcula-
tions in blue and Brownian Dynamics calculations in black,
for several values of parameter a, between 2.6 and 4.6 Å,
and in red, for the value a = 3.8 Å. Top: Density profiles of
coions (chloride ions), Bottom: Density profiles of counterions
(sodium ions).

in a system of infinite clay layers with a large interlayer
spacing (L = 32.8 Å) and a concentration of added elec-
trolyte solution equal to 0.96 mol.L−1. More precisely,
the MD simulation box contains 1454 water molecules, 28
chloride ions and 52 sodium ions. The density profiles of
ions are also computed from Brownian Dynamics at the
coarse-grained level, for several values of the repulsion
parameter a, ranging from 2.6 to 4.6 Å by steps of 0.4 Å.
The mesoscopic BD simulation box also contains an elec-
trolyte at a concentration equal to 0.96 mol.L−1 for an
interlayer spacing of 32.8 Å, which corresponds to 1440
neutral and charged immobile spheres to describe the in-
finite clay layers, 140 sodium ions and 80 chloride ions
to describe the confined electrolyte. The density profiles
obtained from MD and from BD with several repulsion
parameters a are shown in Fig. 5. From the plots shown
in this figure, we deduce that the best value for the repul-
sion parameter is a = 3.8 Å. For this repulsion parameter,
the position of the peak of the counterions density pro-
file is the same in BD as in MD, and the coions density
profile is non-zero in BD at the same distance from the
clay than in MD (see Fig. 6-top).

As can be seen in Fig. 6-bottom, the integrals of



8

0

2.0

4.0

6.0

8.0

c 
/ 

m
o

l.
L

-1

-2 -1 0 1 2
z / nm

0

0.5

1.0

in
te

g
ra

l 
o

f 
c(

z)

FIG. 6: Density profiles of ions in the direction perpendicular
to the clay surface (top) and their integrals (bottom) for an
interlayer spacing L = 32.8 Å and a concentration of added
electrolyte Csalt = 0.96 mol.L−1 in a system of infinite clay
layers. The density profiles of counterions are in dashed lines
and the ones of coions in plain lines. Molecular dynamics
calculations in blue, Brownian Dynamics calculations in red
for the parameter a = 3.8 Å, DFT/MSA calculations in black.

the density profiles as funtions of the distance z to
the clay surfaces obtained from MD or from BD with
a = 3.8 Å are also in good agreement. Fig. 6 also gives
the density profiles and their integrals obtained from
DFT/MSA calculations. For this last method, again,
a single parameter, namely the distance of minimal ap-
proach of the ions from the clay, is adjusted. The best
results are obtained when it is equal to the position of
the oxygen atoms of the clay surface increased by 3.4 Å.
As shown in Fig. 6, with this parameter the DFT/MSA
density profiles and their integrals are in good agreement
with those obtained from MD and BD. It should be noted
that the coarse-grained ion/clay repulsion adjusted from
BD and DFT/MSA are actually similar. On the one
hand, within the DFT/MSA calculation, the minimal
distance of approach corresponds to hard-cores and it
is equal to 3.4 Å. On the other hand, in BD simula-
tions, the repulsion corresponds to a soft-core one, and
the parameter is 3.8 Å. The BD parameter is larger than
the DFT/MSA one, because this soft repulsion allows
the ions to come closer to the surface than the distance
corresponding to the minimum of the interaction poten-
tial. Moreover, it has been shown previously [39] that the
sodium ion is hydrated in the vicinity of the clay surface
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FIG. 7: Density profiles of ions in the direction perpendicular
to the clay surfaces in a system of infinite clay layers. Top: In-
terlayer space L = 22.8 Å, concentration of added electrolyte
Csalt = 0.73 mol.L−1; Bottom: Interlayer space L = 12.8 Å,
concentration of added electrolyte Csalt = 0.43 mol.L−1. The
density profiles of counterions are in dashed lines and the ones
of coions in plain lines. Molecular dynamics calculations in
blue, Brownian Dynamics calculations in red.

so that this rather large distance of minimal approach to
the surface is not surprising.

The ion/clay repulsion parameter is assumed to be in-
dependent on the interlayer distance, since it accounts
for the non-electrostatic short-range interactions between
ions and the clay surface. We checked that the coarse-
grained repulsion used in BD simulations allows us also
to capture the essential features of the system for other
interlayer distances and other concentrations. Fig. 7-
top shows the density profiles of ions for an interlayer
distance L = 22.8 Å and a concentration of added elec-
trolyte equal to Csalt = 0.73 mol.L−1. Again, the peak
of the counterion density profile obtained from BD has
the same position as in MD and the BD density profile
of coions is non-zero at the same distance as in MD. Of
course, the density profiles at the coarse-grained level do
not present any of the oscillations observed in Molecular
Dynamics since those oscillations are mainly due to the
layering of water molecules [58, 59]. The same is observed
for the smallest interlayer distance (L = 12.8 Å, see Fig.
7-bottom). In this case, the influence of water molecules
on the ionic distribution is high since only about three
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FIG. 8: Average distribution functions of coions in the sim-
ulation box for an interlayer distance L = 22.8 Å. Top:
Cext = 0.18 mol.L−1. Bottom: Cext = 1.23 mol.L−1. Note
that to increase the statistical accuracy, these distribution
functions have been computed only for positive values of x
and z (i.e. for a quarter of the simulation box).

layers of water molecules are present between the clay
layers.

B. Equilibrium with a reservoir

To study the insertion of ions in the micropore from
BD simulations, the following procedure is used. First,
counterions and coions are placed randomly in the reser-
voir of the simulation box, at an initial external concen-
tration C ini

ext between 0.15 and 2.5 mol.L−1. Secondly,
this system is equilibrated during 106 to 6 × 106 time
steps, the number of time steps depending on the total
number of moving particles (it is increased when the to-
tal number of particles is decreased). The value of the
time step also depends on the system and varies between
0.03× 10−12 and 0.2× 10−12 s. Once the system is equi-
librated, the distribution functions of ions are averaged
over 20 runs of about 106 time steps each (again, the
number of time steps per run depends on the total num-
ber of mobile particles in the simulation box). More pre-
cisely, the local ionic concentration as a function of the
position (x, z) in the simulation box is computed on a
grid of 200×200 points (only for positive values of x and
z, taking advantage of the symmetry of the simulation
box). From these distribution functions, the mean ion
concentration in the reservoir (Cext) and in the interlayer
space Cint at equilibrium are computed. As for the exter-
nal concentration, this quantity is obtained by averaging
the distribution functions over every z value but only for
|x| > 100.5 Å, i.e. over a slab of 10 Å width far from
the clay surfaces. The internal concentration is obtained
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FIG. 9: Ionic concentration as a function of the distance x
parallel to the clay surface obtained from Brownian Dynam-
ics simulations (this function is given for half a simulation
box), divided by the ionic concentration in the reservoir (de-
noted by Cext). The electrolyte concentration in the reser-
voir is indicated in the side of the figure, in mol.L−1. Top:
Concentration of coions (namely chloride ions). The inserted
plot represents the potential of mean force on a single ion
as a function of x. Bottom: Concentration of counterions
(namely sodium ions). The clay layer is situated between
x = −2.34 nm and x = 0 nm.

by averaging the distribution functions over all z values
but only for |x| < 5 Å, i.e. over a slab of 10 Å width
perpendicular to the clay surface in the middle of the
micropore (whose total length along the x-direction is
46.8 Å). This implies that the volume used to compute
the internal concentration always includes the volume of
the clay layers. We checked for two of the systems that
different initial configurations of the simulation box lead
to the same equilibrium states, i.e. to the same values of
Cint and Cext (all ions are placed either in the micropore,
or in the reservoir, or everywhere except inside the clay).

Typical distribution functions of coions obtained from
BD for an interlayer distance L = 22.8 Å are displayed in
Fig. 8. These distribution functions correspond to exter-
nal electrolyte concentrations at the equilibrium equal to
0.18 mol.L−1 (Fig. 8-Top) and to 1.23 mol.L−1 (Fig. 8-
Bottom). This figure shows that the insertion of coions in
the micropore space increases strongly when the external
concentration is increased, as expected. To have more in-
sight into this question, we have also plotted the ”local”
co- and counterions concentrations (i.e. averaged over a
thin layer of 4 Å width parallel to the clay surfaces and
in the middle of the interlayer space) as functions of the
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abcissa x, for different external concentrations (see Fig.
9). To enable a comparison between different cases, these
concentrations are renormalized by the external concen-
tration. As expected, the insertion of coions increases
significantly as the external concentration is increased:
anions can enter the interlayer space provided that the
charged surfaces are screened by the Debye layer, i.e.
κL > 1 with κ the inverse of the Debye length and L the
interlayer distance, as observed in other studies [3, 60].
Moreover, these plots allow us to evaluate the energy bar-
rier which must be overcome by the coions to penetrate
into the interlayer space:

V (x) = −kBT ln (C(x)/Cext) (12)

where V is the potential of mean force on a single an-
ion for abcissa x. As the external concentration goes
from 0.18 to 2 mol.L−1, this barrier decreases from about
1 kBT to zero. (see the insert in Fig. 9). Fig. 9 also shows
that the edge effect due to the finite size of the clay layers
depends on the salt concentration. At small κ values (i.e.
at small concentrations), the screening length is large so
that the influence of the clay ranges over wide distances
in the reservoir. Interestingly, for the coions, the edge
domain is mainly in the reservoir part whereas for the
counterions it is mainly in the interlayer space.

Fig. 10 displays the ratio between the internal concen-
tration of coions and their external concentration, as a
function of the external concentration. Note that in this
plot, the internal concentration is not a local value in the
interlayer space, but the number of coions divided by the
whole volume of the porous medium, including the vol-
ume of the clay layers. Thus, the ratio Cint/Cext tends
to 1 only if the volume occupied by the clays becomes
negligible with respect to the interlayer spacing, i.e. the
interlayer spacing becomes very large. Several results
are compared on Fig. 10: for four different interlayer
distances, the results of Brownian Dynamics simulations
are compared to DFTs calculations, either in the Poisson-
Boltmann treatment or in the MSA. The diameter of cir-
cles used to represent BD results in Fig. 10 corresponds
to the uncertainty of the result, estimated from the stan-
dard deviation of different runs. The shape of the curves
as a function of Cext is the same with all methods: As
expected, the internal concentration of coions tends to 0
when Cext tends to 0 and is a growing function of Cext.
Fig. 10 also shows that DFT/MSA calculations yield a
good agreement with BD calculations for the two highest
interlayer distances (namely for L ≥ 22.8 Å). At small
interlayer distances, the DFT result, which is based on
a local density approximation, does not account for the
strong correlation effects between ions. Thus, it overes-
timates the insertion rate of coions.

It is worth noting that there are two regimes in the
Donnan equilibrium. On the one hand, when Cext tends
to 0, the PB calculation, which treats ions as point
charges, slightly underestimates the insertion rate of
coions with respect to the DFT/MSA and BD results.
This is due to the fact that for these small values of the
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FIG. 10: Ratio between the internal concentration of coions
and their external concentration as a function of the external
concentration (concentration in the reservoir), for several in-
terlayer distances. Circles: Brownian Dynamics simulation,
dashed lines: Poisson-Boltzmann calculations and plain lines:
DFT/MSA calulations.

electrolyte concentration, the main interactions between
ions are due to electrostatics and the attraction between
ions of opposite charges tends to increase the insertion
of coions; in this regime, the activity coefficients of ions
are smaller than 1 whereas PB calculations assume that
they are equal to 1. On the other hand, for higher ex-
ternal concentrations, hence for higher internal concen-
trations, the excluded volumes of ions becomes impor-
tant, especially in the micropore. This excluded volume
effect tends to prevent them from entering into the in-
terlayer space; as the excluded volumes are not taken
into account in the PB calculation, PB overestimates the
insertion rate.

The influence of the coarse-grained repulsion param-
eter a on the insertion rate of coions in the micropore
is shown in Fig. 11. We performed Brownian Dynam-
ics simulations have been performed for the interlayer
distance L = 22.8 Å and for three intermediate exter-
nal concentrations with a repulsion parameter slightly
smaller (3.0) and slightly larger (4.6) than the optimal
choice based on the density profiles (a = 3.8 Å). The in-
fluence of this parameter on the insertion rate is non neg-
ligible. As expected, the insertion rate increases when the
repulsion parameter decreases. This underlines a posteri-
ori the importance of a careful coarse-graining procedure
to obtain accurate results from mesoscopic descriptions
of this system. It should be noted that the parameter a
would probably be different in the presence of other type
of counterions. For example, the cesium ion is known to
come closer to the clay surface than the sodium ion [39].
Furthermore, we also investigate the influence of the size
of the reservoir in the BD simulation box. It is shown
in Fig. 11 that even with a roughly twice smaller pore
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L = 22.8 Å, for different values of the ion/clay repulsion pa-
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length, we are able to describe quantitatively the Donnan
equilibrium.

The effect of ionic correlations is illustrated in Fig.
12. It represents the product of the cationic and anionic
concentrations in the interlayer space as a function of the
external electrolyte concentrations. The function y = x2

is also plotted. In the ideal case (PB equation, activity
coefficients of all ions equal to 1), the equality of the
chemical potentials of the electrolyte inside and outside
the interlayer space yields (C+C−)int = (C+C−)ext where
C+ and C− are the concentrations of cations and anions,
respectively. Thus, if this equality is verified, we expect
a data collapse on the parabolic curve y = x2. It is
shown in Fig. 12 that this equality is roughly verified
even if the activity coefficients of ions are different from
1. Nevertheless, there are small departures from the ideal
case. They can be understood by taking into account the
activity corrections, because

(C+C−)int

(C+C−)ext
=

(γ+γ−)ext

(γ+γ−)int
(13)

where γ+ (resp. γ−) is the activity coefficient of the
cation (resp. anion). For large interlayer distances and
large external concentrations, both in the interlayer space
and in the reservoir, the activity coefficients of ions are
increasing functions of the concentration (a repulsive
regime is observed). As the ionic concentration is larger
in the reservoir than in the interlayer space, in this case
the ratio (γ+γ−)ext/(γ+γ−)int is larger than one, thus
the product (C+C−)int is larger than (C+C−)ext. For
small interlayer distances, the excess of counterions that
neutralize the clay medium in the interlayer space in-
creases the internal concentration so that the activity
coefficients are larger inside the pore than outside. In
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FIG. 12: Product of the local concentrations of coions and
counterions in the interlayer space obtained from Brownian
Dynamics as a function of the electrolyte concentration in
the reservoir.

this case, (C+C−)int is thus smaller than its ideal value
(C+C−)ext.

IV. CONCLUSION

We developed a coarse-graining strategy to study the
exclusion properties of salt in Montmorillonite clays,
which is an example of lamellar porous medium. We
first calibrate a mesosopic description of the system us-
ing Molecular Dynamics simulation at the atomic scale,
and then use it to derive the salt-exclusion properties
in a variety of porosity and salinity conditions The first
coarse-graining step is to treat the solvent as a continuous
medium and to adopt a simplified but realistic descrip-
tion of the clay layers. Then, the two-body correlations
(between ions) are assumed to be the same as in bulk elec-
trolyte solutions. For the one-body correlations (between
ions and the clay surface), we use the continuous model
for electrostatics and a repulsive potential. The latter
is adjusted from results obtained at the atomic scale by
Molecular Dynamics simulations. The value of this repul-
sion parameter is found to have a crucial influence on the
Donnan effect. If other types of counterions, with other
hydration properties (in particular in the vicinity of the
clay surface) are studied, the coarse-graining procedure
will have to be repeated.

We have shown that the salt exclusion increases when
κL decreases (where κ is the inverse of the Debye length
and L the interlayer distance) and that this effect is mod-
ulated by the correlations between ions. We have iden-
tified two different regimes. At low concentration in the
reservoir, we observe a regime controlled by electrostat-
ics: the Coulomb attraction between ions increases the
amount af salt in the interlayer space. On the opposite,
at high concentration in the reservoir, the excluded vol-
ume effect dominates. This repulsion strongly reduces
the amount of salt entering in the interlayer space, es-
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pecially for low hydration states of the clay (i.e. small
interlayer distances). Of course, when only one or two
layers of water molecules are present in the interlayer
space, the resort to atomistic simulations is required to
study structural and dynamical properties of ions in these
porous media [30]. But, as far as very hydrated clays are
under study, theoretical investigations must be carried
at a mesoscopic scale. We show in this paper how the
mesoscopic model may be calibrated on the atomic one.
Moreover, the interest of Brownian Dynamics simulations
is that they do not only provide structural results but
also enable to investigate dynamical properties of ions.

In a future work, we will study the diffusion properties
of ions in the interlayer space in every direction using BD.
Another interesting question concern the so-called diffu-
siophoresis effect, which is related to the possible motion
of clay layers in the presence of a gradient of electrolyte
concentration [61]. We aim in the near future at study-
ing this effect which is the dynamical reciprocal of the
motion of ions with respect to the clay surface.
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[1] ANDRA, Évaluation de la faisabilité du stockage
géologique en formation argileuse, Dossier 2005 Argile
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[34] J.-F. Dufrêche, O. Bernard, S. Durand-Vidal, and
P. Turq, J. Phys. Chem. B 109, 9873 (2005).

[35] A. R. Altenberger H. L. Friedman, J. Chem. Phys.
78, 4162 (1983).
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