A. F. Alexander-bloch, C. J. Mcdougle, Z. Ullman, and D. A. Sweetser, IQSEC2 and X-linked syndromal intellectual disability, Psychiatr Genet, vol.26, pp.101-108, 2016.

M. F. Lyon, X-chromosome inactivation and human genetic disease, Acta Paediatr Suppl, vol.91, pp.107-112, 2002.

P. Wieacker and I. Wieland, Clinical and genetic aspects of craniofrontonasal syndrome: towards resolving a genetic paradox, Mol Genet Metab, vol.86, pp.110-116, 2005.

C. Depienne and E. Leguern, PCDH19-related infantile epileptic encephalopathy: an unusual X-linked inheritance disorder, Hum Mutat, vol.33, pp.627-634, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00669941

R. Galupa and E. Heard, X-chromosome inactivation: new insights into cis and trans regulation, Curr Opin Genet Dev, vol.31, pp.57-66, 2015.

R. M. Plenge, R. A. Stevenson, H. A. Lubs, C. E. Schwartz, and H. F. Willard, Skewed Xchromosome inactivation is a common feature of X-linked mental retardation disorders, Am J Hum Genet, vol.71, pp.168-173, 2002.

T. Tukiainen, Landscape of X chromosome inactivation across human tissues, Nature, vol.550, pp.244-248, 2017.

L. Carrel and H. F. Willard, X-inactivation profile reveals extensive variability in X-linked gene expression in females, Nature, vol.434, pp.400-404, 2005.

S. B. Peeters, A. M. Cotton, and C. J. Brown, Variable escape from X-chromosome inactivation: identifying factors that tip the scales towards expression, Bioessays, vol.36, pp.746-756, 2014.

A. Nadaf and S. , A cross-species comparison of escape from X inactivation in Eutheria: implications for evolution of X chromosome inactivation, Chromosoma, vol.121, pp.71-78, 2012.

C. Shoubridge, Mutations in the guanine nucleotide exchange factor gene IQSEC2 cause nonsyndromic intellectual disability, Nat Genet, vol.42, pp.486-488, 2010.

H. Sakagami, IQ-ArfGEF/BRAG1 is a guanine nucleotide exchange factor for Arf6 that interacts with PSD-95 at postsynaptic density of excitatory synapses, Neurosci Res, vol.60, pp.199-212, 2008.

M. Sanda, The postsynaptic density protein, IQ-ArfGEF/BRAG1, can interact with IRSp53 through its proline-rich sequence, Brain Res, vol.1251, pp.7-15, 2009.

J. A. Murphy, O. N. Jensen, and R. S. Walikonis, BRAG1, a Sec7 domain-containing protein, is a component of the postsynaptic density of excitatory synapses, Brain Res, vol.1120, pp.35-45, 2006.

A. Dosemeci, Composition of the synaptic PSD-95 complex, Mol Cell Proteomics, vol.6, pp.1749-1760, 2007.

S. J. Hinze, Incorrect dosage of IQSEC2, a known intellectual disability and epilepsy gene, disrupts dendritic spine morphogenesis, Transl Psychiatry, vol.7, p.1110, 2017.

M. N. Elagabani, Subunit-selective N-Methyl-d-aspartate (NMDA) receptor signaling through brefeldin A-resistant Arf guanine nucleotide exchange factors BRAG1 and BRAG2 during synapse maturation, J Biol Chem, vol.291, pp.9105-9118, 2016.

V. M. Kalscheuer, Novel missense mutation A789V in IQSEC2 underlies X-linked intellectual disability in the MRX78 family, Front Mol Neurosci, vol.8, p.85, 2015.

J. C. Brown, Bidirectional regulation of synaptic transmission by BRAG1/IQSEC2 and its requirement in long-term depression, Nat Commun, vol.7, p.11080, 2016.

M. Morleo, Disruption of the IQSEC2 transcript in a female with X

, 2;q11.2) and a phenotype resembling X-linked infantile spasms (ISSX) syndrome, Mol Med Rep, vol.1, pp.33-39, 2008.

L. Allou, Rett-like phenotypes: expanding the genetic heterogeneity to the KCNA2 gene and first familial case of CDKL5-related disease, Clin Genet, vol.91, pp.431-440, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01404611

S. I. Berger, Exome analysis of Smith-Magenis-like syndrome cohort identifies de novo likely pathogenic variants, Hum Genet, vol.136, pp.409-420, 2017.

K. C. Epi, De novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies, Am J Hum Genet, vol.99, pp.287-298, 2016.

K. C. Epi, De novo mutations in epileptic encephalopathies, Nature, vol.501, pp.217-221, 2013.

A. Zerem, The molecular and phenotypic spectrum of IQSEC2related epilepsy, Epilepsia, vol.57, pp.1858-1869, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01818978

C. Gilissen, Genome sequencing identifies major causes of severe intellectual disability, Nature, vol.511, pp.344-347, 2014.

A. Tzschach, Next-generation sequencing in X-linked intellectual disability, Eur J Hum Genet, vol.23, pp.1513-1518, 2015.

C. G. Kovel, Targeted sequencing of 351 candidate genes for epileptic encephalopathy in a large cohort of patients, Mol Genet Genomic Med, vol.4, pp.568-580, 2016.

H. E. Olson, Mutations in epilepsy and intellectual disability genes in patients with features of Rett syndrome, Am J Med Genet A, vol.167, pp.2017-2025, 2015.

I. Madrigal, A novel splicing mutation in the IQSEC2 gene that modulates the phenotype severity in a family with intellectual disability

, Eur J Hum Genet, vol.24, pp.1117-1123, 2016.

L. J. Ewans, Gonadal mosaicism of a novel IQSEC2 variant causing female limited intellectual disability and epilepsy, Eur J Hum Genet, vol.25, pp.763-767, 2017.

G. N. Filippova, Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development, Dev Cell, vol.8, pp.31-42, 2005.

F. F. Hamdan, High rate of recurrent de novo mutations in developmental and epileptic encephalopathies, Am J Hum Genet, vol.101, pp.664-685, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01680255

Q. Li and K. Wang, InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines, Am J Hum Genet, vol.100, pp.267-280, 2017.

S. Richards, Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology, Genet Med, vol.17, pp.405-424, 2015.

M. Lizio, Gateways to the FANTOM5 promoter level mammalian expression atlas, Genome Biol, vol.16, p.22, 2015.

C. Shoubridge, R. S. Walikonis, J. Gecz, and R. J. Harvey, Subtle functional defects in the Arf-specific guanine nucleotide exchange factor IQSEC2 cause non-syndromic X-linked intellectual disability, Small GTPases, vol.1, pp.98-103, 2010.

C. Mignot, Genetic and neurodevelopmental spectrum of SYNGAP1-associated intellectual disability and epilepsy, J Med Genet, vol.53, pp.511-522, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01302596

M. Aceti, Syngap1 haploinsufficiency damages a postnatal critical period of pyramidal cell structural maturation linked to cortical circuit assembly, Biol Psychiatry, vol.77, pp.805-815, 2015.

J. P. Clement, Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses, Cell, vol.151, pp.709-723, 2012.

, Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source

C. Mignot, M. D. Phd-1,2-,-aoife, C. Mcmahon-;-philippe, M. Campeau, C. Davidson-;-xilma et al., Christèle Dubourg, PhD 25 , Elena Gardella, MD, PhD 26, Stéphanie Gobin-Limballe, PhD, vol.3, issue.11, p.58

I. , UPMC Univ Paris 06 UMR S 1127, Hôpital Pitie-Salpetriere, vol.7225

G. Upmc-«deficience-intellectuelle and . Autisme», 7 Division of Medical Genetics, Department of Pediatrics, 5 INSERM U1163, Imagine Institute

, Hôpital Cochin, p.17

, 20 Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Maladies rares et Medecine Personnalisee, vol.18

, 35 APHP, Department of Clinical Neurophysiology, Necker-Enfants Malades Hospital, Centre de Reference des Maladies rares du Developpement (AnD DI Rares), vol.10

, CNRS UMR 7104/INSERM, vol.57